Supplementary Information

The nature of [N-Cl-N]⁺ and [N-F-N]⁺ halogen bonds in solution

Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Jürgen Gräfenstein, Máté Erdélyi*

Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg,

Sweden. E-mail: mate@chem.gu.se

Table of contents

S2	1. Exper	1. Experimental details – Synthesis and NMR			
S3	2. NMR	data			
	S 3	2.1 Bis(pyridine)silver(I) triflate, bis(pyridine)chloronium triflate 3			
	S5	2.2 Pyridine <i>N</i> -fluoropyridinium tetrafluoroborate 4			
S9 2.3 Pyridine <i>N</i> -fluoropyridinium heptafluorodiborate 10					
	S13	2.4 Pyridine <i>N</i> -fluoropyridinium tetrafluoroborate 8			
	S17	2.5 Addition of water to <i>N</i> -fluoropyridinium tetrafluoroborate 8			
S18	3. Comp	utational details			
	S18	3.1 Equilibrium geometries and thermochemistry			
	S20	3.2 Natural Bond Order (NBO) analyses			
	S21	3.2 Cartesian coordinates, energies and selected vibrational frequencies			
S40	4. Refer	ences			

1. Experimental details – Synthesis and NMR

General information. CH_2Cl_2 was freshly distilled from CaH_2 , and *n*-hexane was distilled from sodium metal/benzophenone ketyl in presence of tetraethylene glycol dimethyl ether prior to use. Reactions were carried out in capped Biotage microwave process vials. All glassware used in the syntheses of $[N \cdots X \cdots N]^+$ complexes was dried in an oven at 150 °C for several hours prior to use. The halogenation reactions were all performed under dry conditions with dry solvents, and in a nitrogen or argon atmosphere. Centrifugations were carried out with a Heraeus Christ Labofuge A centrifuge. *N*-fluoropyridinium tetrafluoroborate and pyridine *N*-fluoropyridinium heptafluoro-diborate were purchased from Sigma Aldrich. Pyridine was distilled from CaH₂ prior to use.

Scheme S1 Synthesis of bis(pyridine)chloronium triflate 3

Bis(pyridine)chloronium triflate (3). Into an oven dried 0.5-2 microwave vial equipped with а stir mL bar. bis(pyridine)silver(I) triflate (115 mg, 0.267 mmol), prepared as described earlier,¹ was weighed in. The vial was immediately sealed, and dried thoroughly under vacuum for 3 to 4 hours. Then dry CD₂Cl₂ (4 mL) was added, and the mixture was sonicated while being kept in a dry ice/acetone bath at -78°C for 30 minutes to ensure that the sample reached the desired temperature. Subsequently, Cl_2 (g) was transferred into a balloon and introduced into the microwave vial containing the bis(pyridine)silver(I) complex via a connector and needle (Fig. S1). Immediately upon introduction of the gas, the solution turned yellow, AgCl was precipitated, and the bis(pyridine)chloronium complex 3 was formed. The balloon was left inside the vial for 20 minutes until no further precipitation was observed. This vial was then centrifuged at 2500 rpm for 5 minutes at -78°C under an Ar(g) atmosphere. After 5 minutes, the vial was removed and the supernatant was transferred at -78°C via a cannula (pre-dried in a 150°C oven and purged with Ar(g)) wrapped in a dry ice jacket into a dried NMR tube, which was immersed in a dry ice/acetone bath. Immediately following the transfer, the NMR tube was inserted into the spectrometer for measurements at -80°C.

Figure S1. Bis(pyridine)chloronium triflate **3** was synthesized by bubbling Cl₂ gas into a carefully dried solution of bis(pyridine) silver(I) triflate kept at -80°C and mixed by ultrasonication for 30 minutes.

Figure S2 Superimposed ¹H NMR spectra of bis(pyridine)silver(I) triflate (blue) and bis(pyridine)chloronium triflate **3** (red) in CD_2Cl_2 solution, obtained at -80°C.

A considerable shift change is observed when chlorine gas is introduced into a bis(pyridine)silver(I) triflate solution. In Figure S2, the ¹H NMR spectrum of bis(pyridine)- silver(I) triflate is shown in blue. The signals of **3** are shown in red, marked with the corresponding chemical shifts. Due to the high reactivity of the $[N-Cl-N]^+$ complex **3**, upon contact with humidity it decomposes to the corresponding $[N-H-N]^+$ complex, bis(pyridinium) triflate. The signals of bis(pyridinium) triflate are shown as broad peaks in the spectrum of **3**, in red.

NMR. Spectra were recorded on a four-channel Varian VNMR-S 500 spectrometer equipped with a ${}^{1}\text{H}{-}^{19}\text{F}{/}^{15}\text{N}{-}^{31}\text{P}$ 5 mm pulse-field gradient dual broadband probe and an extended-duration liquids variable temperature accessory using liquid N₂ for cooling. Chemical shifts are reported on the δ scale in ppm using the residual solvent signal as internal standard for ${}^{1}\text{H}$ (CD₂Cl₂ δ_{H} 5.32, CD₃CN δ_{H} 1.94) and ${}^{13}\text{C}$ NMR (CD₂Cl₂ δ_{C} 54.0, CD₃CN δ_{C} 1.32), whereas for the ${}^{19}\text{F}$ and ${}^{15}\text{N}$ NMR spectra a sealed capillary filled with hexafluorobenzene (δ_{F} -164.4) or nitromethane (δ_{N} 0) was used as an internal standard.

2. NMR data

2.1 Bis(pyridine)silver(I) triflate, Bis(pyridine)chloronium triflate 3

Bis(pyridine)silver(I) triflate.^{1 1}H NMR (499.89 MHz, CD₂Cl₂, 25 °C) δ 8.61 (m, 4H, H-2), 7.81 (m, 2H, H-4), 7.38 (m, 4H, H-3). ¹H NMR (499.89 MHz, CD₂Cl₂, -80 °C) δ 8.67 (m, 4H, H-2), 7.96 (m, 2H, H-4), 7.56 (m, 4H, H-3). ¹³C NMR (125.61 MHz, CD₂Cl₂, -80 °C) δ 151.2 (C-2), 139.0 (C-4), 125.3 (C-3). ¹⁹F NMR (470.3 MHz, CD₂Cl₂, 25 °C) δ 155 (CF₃).

Bis(pyridine)chloronium triflate (3). ¹H NMR (499.89 MHz, CD₂Cl₂, -80 °C) δ 8.87 (br s, 4H, H-2), 8.46 (br s, 2H, H-4), 8.02 (br s, 4H, H-3).¹³C NMR (125.61 MHz, CD₂Cl₂, -80 °C) δ 145.7 (C-2), δ 144.8 (C-4), δ 129.4 (C-3).

Fig. S3 The ¹H broadband and ¹⁹F inverse gated decoupled ¹³C NMR spectrum of bis(pyridine)chloronium triflate 3, acquired at -80 °C in CD_2Cl_2 at 125.71 MHz.

2.2 Pyridine N-fluoropyridinium tetrafluoroborate 4

Pyridine *N*-fluoropyridinium tetrafluoroborate (4). ¹H NMR (499.89 MHz, CD₃CN, -35 °C) δ 9.22 (m, 2H, H-2'), 8.65 (m, 1H, H-4'), 8.55 (m, 2H, H-2), 8.23 (m, 2H, H-3'), 7.75 (m, 1H, H-4), 7.34 (m, 2H, H-3). ¹³C NMR (125.61 MHz, CD₃CN, -35 °C) δ 150.2 (C-2), 147.7 (C-4'), 137.1 (C-4), 131.3 (C-3'), 136.9 (C-2'), 130.8 (C-3'), 124.7 (C-3). ¹⁹F NMR (470.3 MHz, CD₃CN, -35 °C) δ 45.9 (N-F), -150.9 (B₂F₇⁻). ¹⁵N NMR (50.67 MHz, CD₃CN, -35 °C) δ-70.6 (N-1), -127.9 (N-1').

Fig. S4 The ¹H NMR spectrum of pyridine *N*-fluoropyridinium tetrafluoroborate 4, acquired at -35 °C in CD₃CN at 499.89 MHz.

Fig.S5 The ¹⁹F NMR spectrum of pyridine N-fluoropyridinium tetrafluoroborate 4, acquired at -35 °C in CD₃CN at 470.3 MHz. The signal at 45.91 ppm of the nitrogen bound fluorine (N-F) is broadened by $J_{\rm HF}$ couplings and possibly by the quadrupolar relaxation of the quaternalized nitrogen it binds to.

°C in CD₃CN at 125.71 MHz.

Fig. S7 The overlaid ¹H NMR spectra of pyridine *N*-fluoropyridinium tetrafluoroborate 4 (blue) and *N*fluoropyridinium tetrafluoroborate 8 (black), acquired at -35 °C in CD₃CN at 499.89 MHz.

Fig S8 The ¹H,¹⁵N HMBC of pyridine *N*-fluoropyridinium tetrafluoroborate 4, acquired at -35 °C in CD₃CN. The N-fluorinated pyridine, with ¹⁹F-¹H couplings observed in the ¹H spectrum, gives correlation to a nitrogen at -127.9 ppm with a ${}^{1}J_{F,N}$ =133 Hz. The second set of pyridine protons gives correlation to a nitrogen at -70.6 ppm.

2.3 Pyridine N-fluoropyridinium heptafluorodiborate 10

Pyridine *N*-fluoropyridinium heptafluorodiborate (10). ¹H NMR (499.95 MHz, CD₃CN, 25 °C) δ 13.06 (br s, 2H, H₂O), 9.19 (m, 2H, H-2'), 8.74 (br m, 2H, H 2), 8.69 (m, 1H, H-4'), 8.63 (br m, 1H, H-4), 8.27 (m, 2H, H-3'), 8.08 (br m, 2H, H-3). ¹³C NMR (125.61 MHz, CD₃CN, 25 °C) δ 148.9 (C-2), 148.1 (C-2'), 142.6 (C-4), 137.2 (C-4'), 131.3 (C-3'), 128.8 (C-3). ¹⁹F NMR (470.3 MHz, CD₃CN, 25 °C) δ 45.8 (N-F), -150.7 (B₂F₇⁻). ¹¹B NMR (128.3 MHz, CD₃CN, 25 °C) δ -1.12 (B₂F₇⁻). ¹⁵N NMR (50.67 MHz, CD₃CN, -35 °C) δ 123.6 (N-1'), -185.3 (N-1).

Fig. S10 The ¹H NMR spectrum of pyridine *N*-fluoropyridinium heptafluorodiborate 10, acquired at 25 °C in CD₃CN at 499.89 MHz.

Fig. S11 The ¹⁹F-decoupled ¹H NMR spectrum of pyridine *N*-fluoropyridinium heptafluorodibo-rate 10, acquired at 25 °C in CD₃CN at 499.89 MHz.

Fig. S12 The ¹H broadband and ¹⁹F inverse gated decoupled ¹³C NMR spectrum of pyridine *N*-fluoropyridinium heptafluorodiborate **10**, acquired at 25 °C in CD₃CN at 125.71 MHz.

Fig. S13 The ¹H,¹⁵N HMBC of pyridine *N*-fluoropyridinium heptafluorodiborate **10**, acquired at 25 °C in CD₃CN. The pyridine ring with broadened ¹H NMR signals gives correlations to a nitrogen at -185.5 ppm, whereas the other pyridine ring with sharper signals and distinct J_{HF} couplings to gives correlation to a nitrogen at -123.6 ppm. This signal, in turn, is splitted by a ¹ J_{NF} =128 Hz coupling.

Fig. S14 The ¹⁹F NMR spectrum of pyridine *N*-fluoropyridinium heptafluorodiborate **10**, acquired at 25 °C in CD₃CN at 470.3 Hz. The signal at 45.8 ppm of the nitrogen bound fluorine (N-F) is broadened by $J_{\rm HF}$ couplings and possibly by the quadrupolar relaxation of the quaternalized nitrogen it binds to. The signal at 150.7 ppm of the B₂F₇ counter ion is splitted by the isotope effect of boron, reflecting the 1 to 4 distribution of ¹⁰B and ¹¹B.

1.0 13.6 13.2 12.8 12.4 12.0 11.6 11.2 10.8 10.4 10.0 9.6 9.2 8.8 8.4 8.0 7.6 7.2 **Fig. S15** The ¹H NMR spectrum of pyridine *N*-fluoropyridinium heptafluorodiborate **10**, acquired at 25 °C in CD₃CN at 399.95 MHz, indicating the broad OH peak at 13.1 ppm.

.30 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70

Fig. S16 The ¹¹B NMR spectrum of *N*-fluoropyridinium heptafluorodiborate **10** acquired at 25 °C in CD₃CN at 128.32 MHz.

2.4 Pyridine N-fluoropyridinium tetrafluoroborate 8

N-Fluoropyridinium tetrafluoroborate (8). ¹H NMR (399.95 MHz, CD₃CN, 25 °C) δ 9.19 (m, 2H, H-2), 8.69 (m, 1H, H-4), 8.27 (m, 2H, H-3). ¹³C NMR (125.61 MHz, CD₃CN, 25 °C) δ 148.9 (C-2), 148.1 (C-2'), 142.6 (C-4), 137.2 (C-4'), 131.3 (C-3'), 128.8 (C-3). ¹⁹F NMR (470.3 MHz, CD₂Cl₂, 25 °C) δ 45.8 (N-F), -150.7 (B₂F₇⁻). ¹¹B NMR (128.3 MHz, CD₃CN, 25 °C) δ -1.12 (B₂F₇⁻). ¹⁵N NMR (50.67 MHz, CD₃CN, -35 °C) δ -120.5 (N-1).

9.20 9.10 9.00 8.90 8.80 8.70 8.60 8.50 8.40 8.30 8.20 9.30 8.10 8.00 Fig. S17 The ¹H NMR spectrum of *N*-fluoropyridinium tetrafluoroborate 8, acquired at 25 °C in CD₃CN at 499.89 MHz.

Fig. S18 The ¹⁹F NMR spectrum of *N*-fluoropyridinium tetrafluoroborate **8** acquired at 25 °C in CD₃CN at 470.3 MHz.

157 155 153 151 149 147 145 143 141 139 137 135 133 131 129 127 125 12 **Fig. S19** The ¹³C NMR spectrum of *N*-fluoropyridinium tetrafluoroborate **8**, acquired at 25 °C in CD₃CN at 125.61 MHz.

Fig. S20 The ¹¹B NMR spectrum of *N*-fluoropyridinium tetrafluoroborate **8**, acquired at 25 °C in CD₃CN at 128.32 MHz

Fig. S21 The ¹⁹F-decoupled ¹H, ¹⁵N HMBC of *N*-fluoropyridinium tetrafluoroborate **8**, acquired at 25 °C in CD_3CN .

Fig. S22 ¹H, ¹⁵N HMBC of *N*-fluoropyridinium tetrafluoroborate **8**, acquired at -35 °C in CD₃CN. The signal is splitted by a ¹ J_{NF} =129 Hz coupling.

1.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 f2 (ppm)

Fig. S23 The overlaid ¹H,¹⁵N HMBC of *N*-fluoropyridinium tetrafluoroborate **8** (black), of pyridine **9** (red), and of **4** (green, a mixture of *N*-fluoropyridinium tetrafluoroborate **8** and pyridine **9**) acquired at -35 °C in CD₃CN. Significant ¹⁵N chemical shift change is observed for one of the pyridines of **4** as compared to **9**. Upon mixing **8** and **9**, some signal broadenings is seen (**4**).

2.5 Addition of water to *N*-fluoropyridinium tetrafluoroborate

Fig. S24 (A) The overlaid ¹H NMR spectra of *N*-fluoropyridinium tetrafluoroborate **8** (41 mg, 0.6 mL CD₃CN, 25 °C) before (red), and after (blue) addition of 1 equivalent water (7 μ). (B) The enlarged aromatic region of the spectrum shown in (A). Upon addition of water a small chemical shift change of the H-2 pyridine proton (9.23 to 9.26 ppm) is observed. However, no sign of hydrolysis was observed. Hence the commercially available "pyridine *N*-fluoropyridinium heptafluorodiborate" **10** (*N*-fluoropyridinium pyridinium tetrafluoroborate trifluorohydroxyborate) is unlikely to form upon hydrolysis of pyridine *N*-fluoropyridinium heptafluorodiborate **4**.

3. Computational Details: Geometry Optimization and Thermochemistry

3.1 Equilibrium geometries and thermochemistry

Table S1 Equilibrium geometries and relative stabilities of 1 - 4. ΔE : electronic energy, ΔG : Gibbs free energy. Calculations done with the basis set described in Section 2 and for CH₂Cl₂ solution.

N.	±-X + N	ΔΕ	Ξ, ΔG ►	N X ⁺ M	\mathbf{v}
Χ	Method	N_1 -X (Å)	N_2 -X (Å)	$\Delta E (kJ/mol)$	ΔG (kJ/mol)
Ι	B3LYP	2.303	2.303	-109.23	-58.61
Br	B3LYP	2.140	2.140	-92.89	-42.70
Cl	B3LYP	2.025	2.025	-57.47	-9.46
	B3LYP-D3	2.025	2.025	-65.72	-18.97
	MP2	1.994	1.994	-58.79	-10.54
	M06-2X	1.982	1.982	-46.63	-0.70
F	B3LYP	1.360	3.792	-2.73	21.30

Table S2 The energy-cost of stretching an N-X bond from the optimized covalent length of **5** - **8** to the bond length of symmetric $[N^{...}X^{...}N]^+$ complexes **1** – **4**. This N-F bond length corresponds to the lowest energy of the symmetric geometry identified in the PES-scan (saddle point), which is described in the main text. Calculations were done at the B3LYP level of theory with the basis set described in Section 2, and for CH₂Cl₂ solution.

	N ⁺ -X	<u>ΔΕ</u> N ⁺ X	
X	N-X (Å)	N-X (Å)	$\Delta E (kJ/mol)$
Ι	2.093	2.303	22.31
Br	1.893	2.140	35.63
Cl	1.726	2.027	57.94
F	1.360	$1.800^{(a)}$	140.69

Table S3 The energy gain upon forming the symmetric $[N^{...}X^{...}N]^+$ geometry of 1 - 3, from the corresponding asymmetric $[N-X^{...}N]^+$ complexes.^a

	N-X ⁺ N	ΔΕ	→ N ⁺ 2	x N
Х	N₁-X (Å)	N_2 -X (Å)	N-X (Å)	ΔE (kJ/mol)
Ι	2.093	2.403	2.303	15.94
Br	1.893	2.315	2.140	20.09
Cl	1.726	2.371	2.027	16.31
F	1.360	3.781	1.360, 3.792	0.00074

^aCalculations done at the B3LYP level of theory with the basis set described in Section 2 and for CH_2Cl_2 solution. For 4 the unrestrained asymmetric geometry is the global energy minimum. In the asymmetric starting geometries one bond was fixed to the covalent N-X distance, corresponding to that in 5-8, whereas the second pyridine nitrogen was allowed to interact with the sigma hole of X in a geometry optimization. The symmetric 1-3 and asymmetric 4 geometries correspond to the global energy minimum of each complex.

Fig. S25 The superimposed structure of pyridine *N*-fluoropyridinium tetrafluoroborate 4, geometry optimized using dichloromethane (gray) and acetonitrile (blue) solvent models. Cartesian coordinates are given below in section 3.3.The comparable structure of 4 in the two solvents is in line with previous studies of 1 and 2^{2}

3.2 Natural bond orbital (NBO) analyses

Table S4 Natural polulation analysis (NPA) charges for the halogen and nitrogen atoms in the equilibrium geometries of complexes 1-4. X, denotes the halogen, whereas $\Delta Q(NPA)$ the change of the NPA charge upon the reaction of pyridine-X⁺ to of pyridine-X⁺-pyridine. Calculations were done at the B3LYP level of theory with the basis set described in Section 2, and for CH₂Cl₂ solution.

Structure	Compound	N1	N2	Χ	ΔQ(NPA)
NI ⁺ N	1	-0.52306	-0.52306	+0.41109	-0.09846
NBr ⁺ -N	2	-0.47079	-0.47079	+0.27835	-0.11412
NCI ⁺ N	3	-0.41031	-0.41039	+0.15503	-0.12131
N-F ⁺ N	4	+0.08956	-0.50874	-0.15437	+0.00405
№ +−I	5	-0.51726	n.a.	0.50955	
N ⁺ -Br	6	-0.44625	n.a.	0.39247	
N ⁺ -Cl	7	-0.35104	n.a.	0.27634	
N ⁺ -F	8	0.09074	n.a.	-0.15842	
N		-0.50705	n.a.	n.a.	

Table S5 Second-order perturbation theory analysis of the Fock matrix for the delocalization from the N lone-pair NBO into the N–X virtual bond NBO in compounds 1-3.^a

Structure	Compound	ε(N lp) ^b	ϵ (N–X bd [*]) ^c	$\Delta \epsilon^{d}$	F ^e	$\Delta E_{\rm PT2}^{\rm f}$
NI+N	1	-0.4573	-0.2066	0.2508	0.159	454
NBr ⁺ -N	2	-0.4519	-0.2366	0.2154	0.177	628
NCI*N	3	-0.4570	-0.2764	0.1806	0.188	808

^aCalculations done at the B3LYP level of theory with the basis set described in Section 2, and for CH₂Cl₂ solution. ^bOrbital energy for the N lone-pair NBO. ^cOrbital energy for the N–X virtual bond NBO. ^dOrbital energy difference. ^eFock matrix element between the two mentioned NBOs. ^fEnergy contribution (in second-order perturbation theory) arising from the from the mentioned delocalization.

3.3 Cartesian coordinates, energies and selected vibrational frequencies

Energies are given in Hartree units unless otherwise stated, coordinates in Ångström, and vibrational frequencies in cm⁻¹. E(e) denotes the electronic energy (without ZPE), E(298), H(298) and G(298) the energy (including vibrational corrections), enthalpy and Gibbs free energy at 298.15k and 1 atm.

kJ/mol

Pyridine, CH₂Cl₂, B3LYP

Charg	e = 0	Multi	plicity = 1	
С	1.19708	5	-0.671415	0.000000
С	1.14419	4	0.720604	-0.000001
С	0.00000	1	-1.382075	0.000000
С	-1.19708	34	-0.671416	0.000000
С	-1.14419	95	0.720603	0.000000
Ν	-0.0000	01	1.417441	0.000000
Η	2.06123	7	1.304206	0.000002
Η	2.15438	2	-1.180558	0.000002
Η	0.00000	1	-2.467179	0.000000
Н	-2.15438	81	-1.180561	-0.000001
Н	-2.06123	38	1.304204	-0.000001
E(e)		=	-248	3.3548683
ZPE		=	0.08	8293
		=	231.	8133
E(298	5)	=	-248	.262296
H(298	3)	=	-248	.261352
G(298	3)	=	-248	.293976

Pyr-F⁺, CH₂Cl₂, B3LYP

Charg	ge = 1 M	ultiplicity = 1	
Н	0.000000	0.000000	-2.910571
С	0.000000	0.000000	-1.825977
С	0.000000	1.208579	-1.130017
С	0.000000	1.198961	0.252370
Ν	0.000000	0.000000	0.852972
С	0.000000	-1.198961	0.252370
С	0.000000	-1.208579	-1.130017
Н	0.000000	2.163151	-1.642588
Н	0.000000	2.070205	0.898038
F	0.000000	0.000000	2.212944
Н	0.000000	-2.070205	0.898038
Н	0.000000	-2.163151	-1.642588
E(e)	=	-3	47.965659271
ZPÉ	=	0.	092084

	=	241.7666
E(298)	=	-347.868394
H(298)	=	-347.867450
G(298)	=	-347.901778
Frequenci	es:	
Stre	etch (N-F)	534.04

Pyr-F⁺ (N-F frozen), CH₂Cl₂, B3LYP

Charg	ge = 1 Mu	altiplicity = 1	
Н	0.000000	0.000000	-3.121566
С	0.000000	0.000000	-2.036061
С	0.000000	1.211273	-1.347128
С	0.000000	1.207714	0.048907
Ν	0.000000	0.000000	0.571255
С	0.000000	-1.207714	0.048907
С	0.000000	-1.211273	-1.347128
Н	0.000000	2.173611	-1.849377
Н	0.000000	2.079426	0.697574
F	0.000000	0.000000	2.371255
Н	0.000000	-2.079426	0.697574
Н	0.000000	-2.173611	-1.849377
E(e)	=	-3	47.912074592

Pyr-Cl⁺, CH₂Cl₂, B3LYP

Charg	ge = 1 Mul	tiplicity = 1	
Н	3.335371	0.000000	0.000104
С	2.250770	0.000000	0.000135
С	1.549713	-1.204110	0.000004
С	0.169279	-1.191041	-0.000087
Ν	-0.472969	-0.000001	-0.000109
С	0.169279	1.191043	-0.000087
С	1.549711	1.204111	0.000004
Н	2.058521	-2.160906	0.000035
Н	-0.447657	-2.081392	-0.000248
Cl	-2.198755	0.000000	0.000075
Н	-0.447660	2.081391	-0.000246
Н	2.058522	2.160906	0.000035
E(e)	=	-70	8.352318819
ZPÉ	=	0.0	91035
	=	239	0.0124

kJ/mol

kJ/mol

E(298)	=	-708.255757	
H(298)	=	-708.254813	
G(298)	=	-708.291109	
Frequencies:			
Stretch	(N-Cl)	424.68	

Pyr-Cl⁺ (N-Cl frozen), CH₂Cl₂, B3LYP

Charg	ge = 1 Mu	ltiplicity = 1	
Н	3.479310	0.000001	0.000059
С	2.394472	0.000000	0.000025
С	1.697891	-1.206534	-0.000017
С	0.310996	-1.196022	-0.000070
Ν	-0.285956	0.000000	-0.000095
С	0.310996	1.196022	-0.000069
С	1.697890	1.206534	-0.000017
Н	2.205588	-2.164691	-0.000007
Н	-0.311812	-2.082546	-0.000104
Cl	-2.312956	0.000000	-0.000141
Н	-0.311813	2.082546	-0.000103
Η	2.205588	2.164692	-0.000006
E(e)	=	-70	8.330251506

Pyr-Br⁺, CH₂Cl₂, B3LYP

Charg	e = 1 Mul	tiplicity $= 1$	
Н	3.929906	0.000066	0.000010
С	2.845304	0.000023	0.000098
С	2.143319	-1.203172	0.000029
С	0.762287	-1.187879	-0.000081
Ν	0.113773	-0.000025	-0.000144
С	0.762236	1.187857	-0.000078
С	2.143277	1.203197	0.000029
Н	2.651105	-2.160561	0.000140
Н	0.152753	-2.083028	-0.000264
Br	-1.779213	0.000000	0.000036
Н	0.152675	2.082985	-0.000261
Н	2.651055	2.160588	0.000127
E(e)	=	-26	1.309526253
ZPÉ	=	0.0	90505

	=	237.6209	kJ/mol
E(298)	=	-261.213253	
H(298)	=	-261.212308	
G(298)	=	-261.250000	
Frequencies: Stretch	(N-Br)	317.48	

Pyr-Br⁺ (N-Br frozen), CH₂Cl₂, B3LYP

Charg	ge = 1 Mul	tiplicity = 1	
Н	4.048475	0.000039	0.000081
С	2.963732	0.000023	0.000036
С	2.265205	-1.205037	-0.000005
С	0.879475	-1.190806	-0.000071
Ν	0.262792	-0.000015	-0.000100
С	0.879442	1.190794	-0.000073
С	2.265171	1.205064	-0.000007
Н	2.772991	-2.162880	0.000016
Н	0.265299	-2.082821	-0.000106
Br	-1.877208	-0.000039	-0.000152
Н	0.265242	2.082792	-0.000108
Н	2.772932	2.162920	0.000013
E(e)	=	-26	1.295955390

Pyr-I⁺, CH₂Cl₂, B3LYP

Charge = 1 Multiplicity = 1			
Н	4.386623	-0.000113	0.000077
С	3.302018	-0.000087	0.000259
С	2.598546	-1.201905	0.000052
С	1.216979	-1.183013	-0.000161
Ν	0.558009	0.000087	-0.000293
С	1.217111	1.183112	-0.000159
С	2.598667	1.201823	0.000045
Н	3.105337	-2.159800	0.000110
Н	0.616712	-2.084272	-0.000416
Ι	-1.534663	-0.000001	0.000044
Н	0.616892	2.084408	-0.000379
Н	3.105605	2.159639	0.000087

E(e)	=	-259.537455058	
ZPE	=	0.090266	
	=	236.9776	kJ/mol
E(298)	=	-259.441310	
H(298)	=	-259.440366	
G(298)	=	-259.479050	
Frequenci	es:		
Stre	etch (N-I)	260.40	

Pyr-I⁺ (N-I frozen), CH₂Cl₂, B3LYP

Charge = 1 Multiplicity = 1			
Н	4.487639	-0.000113	0.000135
С	3.402970	-0.000069	0.000081
С	2.702180	-1.203435	-0.000016
С	1.317218	-1.184696	-0.000125
Ν	0.680980	0.000049	-0.000172
С	1.317320	1.184739	-0.000123
С	2.702281	1.203358	-0.000015
Н	3.209811	-2.161142	-0.000008
Н	0.712464	-2.082748	-0.000207
Ι	-1.621020	0.000122	-0.000246
Η	0.712637	2.082840	-0.000202
Н	3.209997	2.161020	-0.000005
E(e)	=	-2	59.528958428

Pyr-F⁺-Pyr, CH₂Cl₂, B3LYP

Charg	ge = 1 Multipli	$\operatorname{city} = 1$	
С	-4.681931000	-0.937006000	-0.586024000
С	-3.302663000	-0.907931000	-0.779008000
С	-5.260677000	0.035423000	0.224792000
С	-4.436267000	0.994273000	0.806963000
С	-3.067950000	0.938134000	0.552510000
Ν	-2.497035000	0.008204000	-0.225048000
Н	-2.821750000	-1.653358000	-1.407149000
Н	-5.282383000	-1.704337000	-1.061807000
Н	-6.331555000	0.045923000	0.399089000
Η	-4.840146000	1.771808000	1.445749000
Н	-2.398791000	1.672950000	0.992765000

F	0.999449000	-0.068332000	-0.132544000
Ν	2.356799000	-0.038060000	-0.053041000
С	2.972764000	0.982435000	-0.667958000
С	4.352519000	1.022879000	-0.590745000
С	2.941946000	-1.031008000	0.632966000
С	4.321485000	-1.007574000	0.720229000
С	5.031564000	0.023947000	0.106473000
Н	2.339403000	1.698918000	-1.179239000
Н	4.876301000	1.836641000	-1.078061000
Н	6.113933000	0.049207000	0.171169000
Н	2.286213000	-1.777430000	1.067456000
Н	4.820650000	-1.797771000	1.268354000

E(e)	=	-596.3215555
ZPE	=	0.180828
	=	474.5303
E(298)	=	-596.128815
H(298)	=	-596.127871
G(298)	=	-596.185821

Frequencies:

Twist	39.76
Stretch (N-F-N symm)	32.19

Pyr-F⁺---Pyr (N-F frozen), CH₂Cl₂, B3LYP

Char	ge = 1 Mu	ltiplicity = 1	
Η	0.042125	0.132479	-3.611909
С	0.030250	0.083155	-2.528501
С	0.095396	1.256616	-1.777649
С	0.079523	1.184081	-0.397227
Ν	0.000994	-0.038681	0.148527
С	-0.064434	-1.206713	-0.507578
С	-0.050056	-1.153575	-1.888938
Н	0.158259	2.231835	-2.245674
Η	0.124203	2.023339	0.288031
F	-0.014034	-0.100651	1.507003
Η	-0.123384	-2.104623	0.097629
Η	-0.101701	-2.082217	-2.444817
С	1.012679	0.007395	7.330248
С	0.965385	-0.104380	5.942639
С	-0.137092	-0.281170	8.060131
С	-1.283501	-0.668618	7.371890
С	-1.229689	-0.750383	5.982390
Ν	-0.130549	-0.475643	5.267084

kJ/mol

Н	1.846883	0.113779	5.345262
Н	1.929911	0.312975	7.821183
Н	-0.139650	-0.205890	9.142542
Н	-2.202990	-0.903880	7.896184
Н	-2.108218	-1.050124	5.416857
E(e)	=	-59	96.321568802

Pyr-Cl⁺-Pyr, CH₂Cl₂, B3LYP

Charge = 1 Multiplicity = 1			
Cl	0.000000	0.000000	0.000000
Ν	0.000000	0.000000	2.024485
С	-0.521116	1.047300	2.675480
С	0.521116	-1.047300	2.675480
С	0.000000	0.000000	4.764823
С	-0.535475	1.077195	4.062462
С	0.535475	-1.077195	4.062462
Н	-0.921850	1.850654	2.067362
Н	0.921850	-1.850654	2.067362
Н	0.000000	0.000000	5.849401
Н	-0.960881	1.932464	4.573813
Н	0.960881	-1.932464	4.573813
Ν	0.000000	0.000000	-2.024485
С	0.521116	1.047300	-2.675480
С	-0.521116	-1.047300	-2.675480
С	0.000000	0.000000	-4.764823
С	0.535475	1.077195	-4.062462
С	-0.535475	-1.077195	-4.062462
Н	0.921850	1.850654	-2.067362
Н	-0.921850	-1.850654	-2.067362
Н	0.000000	0.000000	-5.849401
Н	0.960881	1.932464	-4.573813
Η	-0.960881	-1.932464	-4.573813
E(e)	=	-956.7290)220980
ZPÉ	=	0.1807	12
	=	474.4597	kJ/mol
E(29	(8) =	-956.536	6653
H(29	98) =	-956.53	5709
G(29	98) =	-956.58	7703

Frequencies: Stretch (N-Cl-N, asym) 123.02 Twist 19.99 Stretch (N-Cl-N, sym) 174.98

Pyr-Cl⁺-Pyr (N-Cl frozen), CH₂Cl₂, B3LYP

Charg	ge = 1 Mul	tiplicity = 1	
Η	-5.826173	-0.000049	0.000595
С	-4.741742	-0.000083	0.000447
С	-4.038523	-1.076366	0.536608
С	-2.656892	-1.056782	0.527411
Ν	-2.000796	-0.000165	0.000060
С	-2.656966	1.056485	-0.527110
С	-4.038599	1.076149	-0.535915
Н	-4.547353	-1.932389	0.963318
Н	-2.043201	-1.855317	0.926578
Cl	-0.275016	-0.000235	-0.000193
Η	-2.043335	1.854981	-0.926453
Η	-4.547492	1.932205	-0.962483
С	4.162399	1.067587	0.549161
С	2.772484	1.026958	0.527925
С	4.869405	0.000411	0.001011
С	4.163219	-1.066937	-0.547857
С	2.773271	-1.026668	-0.528003
Ν	2.096166	0.000055	-0.000372
Н	2.178861	1.835551	0.944170
Н	4.672833	1.917799	0.986540
Η	5.954212	0.000547	0.001552
Η	4.674307	-1.917009	-0.984744
Η	2.180272	-1.835398	-0.944872
E(e)	=	-95	6.722864325

Pyr-Br⁺-Pyr, CH₂Cl₂, B3LYP

Charg	e = 1 Multi	iplicity $= 1$	
Н	3.873254	0.047569	-0.023682
С	2.789144	0.016321	-0.029979
С	2.121122	-1.196090	-0.183285
С	0.734411	-1.202637	-0.187347
Ν	0.040748	-0.062887	-0.045930
С	0.665922	1.114864	0.103172
С	2.050666	1.188183	0.115205
Н	2.659288	-2.129275	-0.299179
Н	0.157555	-2.113200	-0.303226
Br	-2.098399	-0.124241	-0.058801
Н	0.036258	1.990638	0.212104
Н	2.532802	2.150773	0.237065
С	-6.304299	0.694593	-0.838048

С	-4.917940	0.707022	-0.808536	
С	-6.986062	-0.260993	-0.088533	
С	-6.261309	-1.177208	0.669731	
С	-4.876148	-1.112172	0.657350	
Ν	-4.237624	-0.184171	-0.071547	
Н	-4.330757	1.424791	-1.370093	
Н	-6.831565	1.424379	-1.440783	
Н	-8.070197	-0.291283	-0.095240	
Н	-6.754379	-1.935483	1.266210	
Н	-4.256793	-1.796153	1.226463	
E(e)	=	-509	.699774924	
ZPÉ	=	0.18	0595	
	=	474.	1522	
E(298	3) =	-509	.507424	
H(298	3) =	-509	.506479	
G(298	3) =	-509	.560239	
Frequencies:				
	Stretch (N-Br	-N, asym)	165.15	
	Twist	22.0	3	
	Stretch (N-Br	-N, sym) 172.	95	

Pyr-Br⁺-Pyr (N-Br frozen), CH₂Cl₂, B3LYP

Charg	e = 1 Multi	plicity $= 1$	
Н	3.837040	0.065302	-0.023366
С	2.753016	0.034984	-0.026147
С	2.082242	-1.174525	-0.189590
С	0.699468	-1.186481	-0.189785
Ν	-0.000615	-0.041997	-0.033309
С	0.633612	1.139793	0.126558
С	2.014867	1.205112	0.133551
Н	2.617046	-2.108011	-0.317253
Н	0.119277	-2.093156	-0.313343
Br	-1.892849	-0.094862	-0.038311
Н	0.003022	2.012615	0.246912
Н	2.496010	2.167009	0.263809
С	-6.291298	0.709503	-0.809188
С	-4.902656	0.716024	-0.781488
С	-6.971727	-0.236744	-0.047002
С	-6.241795	-1.143944	0.716877
С	-4.854855	-1.073442	0.692664

kJ/mol

Ν	-4.207417	-0.160061	-0.043539
Н	-4.324834	1.431799	-1.357280
Н	-6.821401	1.432919	-1.417379
Н	-8.056012	-0.266775	-0.048360
Н	-6.732458	-1.895714	1.323774
Н	-4.239683	-1.756154	1.269916
$\Gamma(z)$	_	50	0 (02122(70
e(e)	=	-50	9.692122679

Pyr-I⁺-Pyr, CH₂Cl₂, B3LYP

Charg	ge = 1 N	fultiplicity = 1	
Η	4.276318	0.014009	-0.046183
С	3.192130	-0.014975	-0.052120
С	2.520168	-1.226637	-0.190723
С	1.133816	-1.229353	-0.194589
Ν	0.433759	-0.088713	-0.067237
С	1.070439	1.087658	0.067443
С	2.454916	1.159015	0.078761
Η	3.055247	-2.162934	-0.295418
Η	0.561281	-2.143939	-0.299937
Ι	-1.868882	-0.150326	-0.079981
Н	0.448740	1.970319	0.166250
Н	2.938027	2.122532	0.189034
С	-6.246365	0.674834	-0.848966
С	-4.860338	0.684755	-0.819911
С	-6.929904	-0.285799	-0.108145
С	-6.204264	-1.208702	0.640555
С	-4.819451	-1.144430	0.627005
Ν	-4.171524	-0.211941	-0.092711
Н	-4.279063	1.409928	-1.378121
Η	-6.772223	1.411087	-1.445064
Η	-8.014089	-0.314834	-0.114218
Η	-6.696599	-1.972222	1.230953
Н	-4.206477	-1.837629	1.191897
E(e)	=	-5	07.933925174
ZPE	=	0.	180414
E(200	=	47	73.6770
E(298 H(201	s) = 8) =	-3	07 741606
G(29)	8) =	-5	07.795349
	/	-	

kJ/mol

Frequencies:

Stretch (N-I-N, asym) 167.00

Twist 20.80 Stretch (N-I-N, sym) 166.26

Pyr-I⁺-Pyr (N-I frozen), CH₂Cl₂, B3LYP

Char	ge = 1 Mu	ltiplicity = 1	
Н	4.218993	0.064656	-0.008045
С	3.134913	0.035198	-0.013266
С	2.462259	-1.175893	-0.152953
С	1.078851	-1.183300	-0.156503
Ν	0.370153	-0.039935	-0.026595
С	1.014428	1.140199	0.109841
С	2.396165	1.207934	0.119622
Н	2.995978	-2.112696	-0.259307
Н	0.506485	-2.097455	-0.262720
Ι	-1.721724	-0.096744	-0.036766
Н	0.392264	2.021891	0.210308
Н	2.877170	2.172313	0.230870
С	-6.206518	0.721546	-0.805205
С	-4.819061	0.728425	-0.774190
С	-6.890047	-0.236973	-0.061684
С	-6.162710	-1.157246	0.688582
С	-4.776691	-1.088937	0.670841
Ν	-4.124236	-0.161983	-0.048454
Η	-4.241095	1.454286	-1.336330
Η	-6.733474	1.455872	-1.402842
Η	-7.974292	-0.266399	-0.066846
Н	-6.654843	-1.919186	1.281321
Н	-4.165613	-1.782553	1.238644

E(e) = -507.927854856

Pyridine, CH₃CN, B3LYP

Charge = 0 Multiplicity = 1			
С	1.197236000	0.671386000	-0.000001000
С	1.144765000	-0.720618000	-0.000002000
С	-0.000001000	1.382086000	0.000000000
С	-1.197238000	0.671383000	0.000001000
С	-1.144763000	-0.720621000	0.000001000
Ν	0.000001000	-1.417456000	0.000000000
Н	2.062252000	-1.303729000	0.000000000
Н	2.154830000	1.180333000	-0.000001000
Н	-0.000003000	2.467302000	0.000000000
Н	-2.154832000	1.180330000	0.000001000
Н	-2.062249000	-1.303733000	0.000001000

E(e)	=	-248.355810472
ZPE	=	0.088256
	=	231.7161
E(298)	=	-248.263275
H(298)	=	-248.262331
G(298)	=	-248.294956

kJ/mol

Pyr-F⁺-Pyr, CH₃CN, B3LYP

Char	ge = 1 Multip	licity = 1	
Η	6.257701000	0.073888000	0.172291000
С	5.175397000	0.039353000	0.106690000
С	4.473419000	-0.995309000	0.724360000
С	3.094287000	-1.030895000	0.635846000
Ν	2.502320000	-0.045585000	-0.055084000
С	3.109646000	0.977670000	-0.673752000
С	4.488855000	1.029713000	-0.595262000
Н	4.978453000	-1.779253000	1.276577000
Н	2.444429000	-1.781474000	1.073006000
F	1.144703000	-0.088134000	-0.136224000
Н	2.470966000	1.687401000	-1.188681000
Н	5.006142000	1.846159000	-1.085587000
С	-4.864905000	-0.930629000	-0.584745000
С	-3.485117000	-0.914242000	-0.775454000
С	-5.436401000	0.048064000	0.223943000
С	-4.604662000	1.000479000	0.806505000
С	-3.236321000	0.932372000	0.554760000
Ν	-2.672741000	-0.003930000	-0.221015000
Н	-3.009384000	-1.664911000	-1.401456000
Н	-5.471294000	-1.693504000	-1.060515000
Н	-6.507611000	0.068108000	0.396474000
Н	-5.002772000	1.782307000	1.443927000
Н	-2.561195000	1.661638000	0.995319000

E(e)	=	-596.329156606	
ZPE	=	0.180606	
	=	474.1819	kJ/mol
E(298)	=	-596.136575	
H(298)	=	-596.135630	
G(298)	=	-596.194739	
Frequencies:			
Twist		38.29	

Pyr-F⁺---Pyr (N-F frozen), CH₃CN, B3LYP

Ch	arge = 1 Mul	tiplicity $= 1$	
С	-4.870060000	-0.927639000	-0.578635000
С	-3.492212000	-0.913222000	-0.783042000
С	-5.431828000	0.050603000	0.237376000
С	-4.592741000	1.000661000	0.813245000
С	-3.227106000	0.930731000	0.547690000
Ν	-2.672847000	-0.005198000	-0.235195000
Η	-3.024019000	-1.663639000	-1.415002000
Η	-5.482442000	-1.688676000	-1.049637000
Η	-6.501229000	0.072125000	0.420609000
Η	-4.983196000	1.782033000	1.455934000
Η	-2.546401000	1.658162000	0.982678000
F	1.143616000	-0.086013000	-0.141930000
Ν	2.500317000	-0.045026000	-0.057070000
С	3.110688000	0.977490000	-0.674068000
С	4.489739000	1.027801000	-0.592022000
С	3.089425000	-1.031126000	0.635276000
С	4.468353000	-0.997288000	0.727373000
С	5.173239000	0.036527000	0.111606000
Η	2.474239000	1.688023000	-1.190634000
Η	5.009328000	1.843617000	-1.080945000
Η	6.255409000	0.069673000	0.179979000
Η	2.437510000	-1.780949000	1.070649000
Η	4.970982000	-1.781915000	1.280802000
Е(e) –	506 3	20156434
ъ		-390.5	2/130434

Pyr-F⁺, CH₃CN, B3LYP

Cha	rge = 1 Mult	iplicity = 1	
Η	0.000000000	0.000000000	-2.910571000
С	0.000000000	0.000000000	-1.825977000
С	0.000000000	1.208579000	-1.130017000
С	0.000000000	1.198961000	0.252370000
Ν	0.000000000	0.000000000	0.852972000
С	0.000000000	-1.198961000	0.252370000
С	0.000000000	-1.208579000	-1.130017000
Н	0.000000000	2.163151000	-1.642588000
Η	0.000000000	2.070205000	0.898038000
F	0.000000000	0.000000000	2.212944000

Н 0.00	0000000	-2.070205000	0.898038000
Н 0.00	0000000	-2.163151000	-1.642588000
E(e)	=	-347.97	72879887
ZPE	=	0.0919	95
	=	241.53	29
E(298)	=	-347.87	75700
H(298)	=	-347.87	74756
G(298)	=	-347.90)9090

Frequencies:

Stretch (N-F) 535.11

Pyr-F⁺ (N-F frozen), CH₃CN, B3LYP

```
Charge = 1 Multiplicity = 1
H 0.00000000 = 0.000000000
```

0.000000000	0.000000000	-2.967086000
0.000000000	0.000000000	-1.881291000
0.000000000	1.211077000	-1.192412000
0.000000000	1.207762000	0.203749000
0.000000000	0.000000000	0.725208000
0.000000000	-1.207762000	0.203749000
0.000000000	-1.211077000	-1.192412000
0.000000000	2.174139000	-1.694020000
0.000000000	2.080615000	0.851748000
0.000000000	0.000000000	2.525208000
0.000000000	-2.080615000	0.851748000
0.000000000	-2.174139000	-1.694020000
	0.000000000 0.000000000 0.000000000 0.000000	0.0000000000.000000000.0000000000.0000000000.0000000001.2110770000.0000000001.2077620000.000000000-1.2077620000.000000000-1.2110770000.0000000002.1741390000.0000000002.0806150000.000000000-2.0806150000.00000000-2.174139000

E(e) = -347.919801365

Pyridine, CH₂Cl₂, B3LYP-D3

Charg	e = 0	Mul	tiplicity $= 1$	
Ν	0.000	000	0.000000	1.419319
С	0.000	000	1.144430	0.721473
С	0.000	000	-1.144430	0.721473
С	0.000	000	0.000000	-1.383966
С	0.000	000	1.197810	-0.672182
С	0.000	000	-1.197810	-0.672182
Н	0.000	000	2.062492	1.303683
Н	0.000	000	-2.062492	1.303683
Н	0.000	000	0.000000	-2.469219
Н	0.000	000	2.155790	-1.180541
Н	0.000	000	-2.155790	-1.180541

kJ/mol

=	-248.3606	90361
=	0.087964	
=	230.9491	kJ/mol
=	-248.268	439
=	-248.267	7495
=	-248.299	9477
ncies:	385.5131 618.0185	
	= = = = ncies:	= -248.3606 $= 0.08796$ $= 230.9491$ $= -248.268$ $= -248.267$ $= -248.299$ ncies: 385.5131 618.0185

Pyr-Cl⁺, CH₂Cl₂, B3LYP-D3

Charge	e = 1 Multi	iplicity $= 1$			
Cl	0.000000	0.000000	2.199385		
Ν	0.000000	0.000000	0.473633		
С	0.000000	1.192209	-0.169234		
С	0.000000	-1.192209	-0.169234		
С	0.000000	0.000000	-2.251703		
С	0.000000	1.204984	-1.550203		
С	0.000000	-1.204984	-1.550203		
Н	0.000000	2.083970	0.446360		
Н	0.000000	-2.083970	0.446360		
Н	0.000000	0.000000	-3.336421		
Н	0.000000	2.161931	-2.058902		
Η	0.000000	-2.161931	-2.058902		
E(e)	=	-708.3603	313058		
ZPÉ	=	0.0907	95		
	=	238.3825	kJ/mol		
E(298	3) =	-708.263	3988		
H(298	8) =	-708.26	3044		
G(298	8) =	-708.29	8688		
Frequencies:					
	Stretch (N-0	CI) 7	715.28		
G(298 Freque	8) = encies: Stretch (N-G	-708.29	8688 715.28		

Pyr-Cl⁺-Pyr, CH₂Cl₂, B3LYP-D3

Charge = 1 Multiplicity = 1						
Cl	0.000000	0.000000	0.000000			
Ν	0.000000	0.000000	2.024539			
С	-0.514463	1.051398	2.675990			
С	0.514463	-1.051398	2.675990			
С	0.000000	0.000000	4.766558			
С	-0.528744	1.081543	4.063813			
С	0.528744	-1.081543	4.063813			

Η	-0.909	471	1.856711	2.0	66441	
Η	0.9094	471	-1.856711	2.0	66441	
Н	0.000	000	0.000000	5.8	51250	
Н	-0.948	589	1.939760	4.5	75056	
Н	0.948	589	-1.939760	4.5	75056	
Ν	0.000	000	0.000000	-2.0	24539	
С	0.5144	463	1.051398	-2.6	75990	
С	-0.514	463	-1.051398	-2.6	575990	
С	0.000	000	0.000000	-4.7	66558	
С	0.528′	744	1.081543	-4.0	63813	
С	-0.528	744	-1.081543	-4.0	63813	
Η	0.9094	471	1.856711	-2.0	66441	
Η	-0.909	471	-1.856711	-2.0)66441	
Η	0.000	000	0.000000	-5.8	51250	
Η	0.948	589	1.939760	-4.5	75056	
Η	-0.948	589	-1.939760	-4.5	575056	
E(•	e)	=	-956.74	6036	6003	
ZP	Έ	=	0.180)122		
	=	=	472.9091		kJ/mol	
E(2	298)	=	-956.5	5423	34	
H(298)	=	-956.5	5328	39	
G(298)	=	-956.6	60539	90	
Free	quencies	:				
Stretch (N-Cl-N, asym)						121.23
	Twist					18.87
Stretch (N-Cl-N, sym)					173.48	

Pyr, CH₂Cl₂, MP2

Charg	e = 0 Mul	tiplicity $= 1$	
Ν	0.000000	0.000000	1.427792
С	0.000000	1.147189	0.722826
С	0.000000	-1.147189	0.722826
С	0.000000	0.000000	-1.390449
С	0.000000	1.199455	-0.674567
С	0.000000	-1.199455	-0.674567
Н	0.000000	2.066213	1.306238
Н	0.000000	-2.066213	1.306238
Н	0.000000	0.000000	-2.477585
Н	0.000000	2.159649	-1.182920
Н	0.000000	-2.159649	-1.182920
$\mathbf{E}(\mathbf{a})$	_	247 610	1770172
E(e)	_	-24/.010	1/204/5
ZPE	=	0.0882	48
	=	231.695	0 kJ/mol

E(298)	=	-247.517524
H(298)	=	-247.516580
G(298)	=	-247.548748

Pyr-Cl⁺, CH₂Cl₂, MP2

Charg	Charge = 1 Multiplicity = 1						
Cl	0.000	0000	0.000	000	2.189	0138	
Ν	0.000	0000	0.000	000	0.477	7574	
С	0.000	000	1.1936	597	-0.159	9383	
С	0.000	000	-1.193	697	-0.159	9383	
С	0.000	000	0.0000	000	-2.255	5243	
С	0.000	000	1.2045	592	-1.548	3823	
С	0.000	000	-1.204	592	-1.548	3823	
Н	0.000	0000	2.083	355	0.463	3299	
Н	0.000	0000	-2.083	355	0.463	3299	
Н	0.000	0000	0.000	000	-3.34	1896	
Н	0.000	0000	2.164	802	-2.056	5571	
Н	0.000	0000	-2.164	802	-2.05	6571	
E(e)		=	-707	.0383	67467	7	
ZPÉ		=	0.	09114	42		
		=	239	9.2928	3	kJ/mol	
E(29	8)	=	-70	6.941	584		
H(29	8)	=	-70	6.940)640		
G(29	8)	=	-70	6.976	5446		

Frequencies:

Stretch	(N-Cl)	719.65

Pyr-Cl⁺-Pyr, CH₂Cl₂, MP2

Charge = 1 Multiplicity = 1					
Cl	0.000000	0.000000	0.000000		
Ν	0.000000	0.000000	-1.993590		
С	-0.788563	0.872994	-2.643398		
С	0.788563	-0.872994	-2.643398		
С	0.000000	0.000000	-4.743771		
С	-0.808523	0.894570	-4.036561		
С	0.808523	-0.894570	-4.036561		
Н	-1.389596	1.538460	-2.028869		
Н	1.389596	-1.538460	-2.028869		
Н	0.000000	0.000000	-5.830454		
Н	-1.450331	1.604938	-4.549384		
Н	1.450331	-1.604938	-4.549384		
Ν	0.000000	0.000000	1.993590		
С	-0.788563	-0.872994	2.643398		
С	0.788563	0.872994	2.643398		

С	0.0	00000	0.000000	4.743771	
С	-0.8	08523	-0.894570	4.036561	
С	0.8	08523	0.894570	4.036561	
Н	-1.3	89596	-1.538460	2.028869	
Н	1.3	89596	1.538460	2.028869	
Н	0.0	00000	0.000000	5.830454	
Н	-1.4	50331	-1.604938	4.549384	
Н	1.4	50331	1.604938	4.549384	
E(e)	=	-954.6709	322532	
ZPI	Ξ	=	0.1805	98	
		=	474.1596	kJ/mol	
E(2	98)	=	-954.478	3591	
H(2	.98)	=	-954.47′	7647	
G(2	.98)	=	-954.52	9208	
Fre	equen	cies:			
	Stre	etch (N-	Cl-N, asym)		212.91
	Twi	ist			24.71
	Stre	etch (N-	Cl-N, sym)		185.66

Pyr, CH₂Cl₂, M06-2X

Charge = 0 Multiplicity = 1					
000000	0.000000	1.413888			
000000	1.140280	0.719511			
000000	-1.140280	0.719511			
000000	0.000000	-1.379508			
000000	1.194606	-0.670137			
000000	-1.194606	-0.670137			
000000	2.056708	1.303021			
000000	-2.056708	1.303021			
000000	0.000000	-2.464140			
000000	2.152181	-1.177278			
000000	-2.152181	-1.177278			
=	-248.2420	0247410			
=	0.0891	70			
=	234.1152	2 kJ/mol			
=	-248.14	8603			
=	-248.147658				
=	-248.17	9587			
	$\begin{array}{l} = 0 \text{Mult} \\ 000000 \\ 000000 \\ 000000 \\ 000000 \\ 000000$	$\begin{array}{rcl} & 0 & \text{Multiplicity} = 1 \\ 000000 & 0.000000 \\ 000000 & 1.140280 \\ 000000 & -1.140280 \\ 000000 & 0.000000 \\ 000000 & 1.194606 \\ 000000 & -1.194606 \\ 000000 & 2.056708 \\ 000000 & 2.056708 \\ 000000 & 0.000000 \\ 0.000000 & 0.000000 \\ 0.000000 & 2.152181 \\ 000000 & -2.152181 \\ 000000 & -2.152181 \\ \end{array}$			

Pyr-Cl⁺, CH₂Cl₂, M06-2X

Charge = 1 Multiplicity = 1					
Cl	0.00	0000	0.000000	2.18	31799
Ν	0.000	0000	0.000000	0.475	5634
С	0.000	000	1.187256	-0.164	4136
С	0.000	000	-1.187256	-0.16	4136
С	0.000	000	0.000000	-2.23	9805
С	0.000	000	1.202749	-1.54	1876
С	0.000	000	-1.202749	-1.54	1876
Н	0.000	0000	2.075403	0.45	7777
Н	0.000	0000	-2.075403	0.45	7777
Н	0.000	0000	0.000000	-3.324	4570
Н	0.000	0000	2.159684	-2.05	0015
Н	0.000	0000	-2.159684	-2.05	0015
E(e)		=	-708.210)49459	990
ZPÉ		=	0.0920	36	
		=	241.639	9	kJ/mol
E(29	8)	=	-708.113	3008	
H(29	8)	=	-708.112	2064	
G(29	8)	=	-708.14	7557	
Frequencies:					

requeileres.	
Stretch (N-Cl)	732.94

Pyr-Cl⁺-Pyr, CH₂Cl₂, M06-2X

Charge = 1 Multiplicity = 1					
Cl	0.000000	0.000000	0.000000		
Ν	0.000000	0.000000	1.982259		
С	-0.466492	1.069129	2.630575		
С	0.466492	-1.069129	2.630575		
С	0.000000	0.000000	4.714390		
С	-0.480552	1.101251	4.014909		
С	0.480552	-1.101251	4.014909		
Н	-0.824357	1.890100	2.017411		
Н	0.824357	-1.890100	2.017411		
Н	0.000000	0.000000	5.798854		
Н	-0.862684	1.976309	4.526102		
Η	0.862684	-1.976309	4.526102		
Ν	0.000000	0.000000	-1.982259		
С	0.466492	1.069129	-2.630575		
С	-0.466492	-1.069129	-2.630575		
С	0.000000	0.000000	-4.714390		
С	0.480552	1.101251	-4.014909		
С	-0.480552	-1.101251	-4.014909		
Н	0.824357	1.890100	-2.017411		
Н	-0.824357	-1.890100	-2.017411		
Н	0.000000	0.000000	-5.798854		
Н	0.862684	1.976309	-4.526102		

Η	-0.80	62684	-1.976309	-4.526102		
E(e	e)	=	-956.4702	2781280		
ZŶ	É	=	0.1821	0.182101		
		=	478.105	51 kJ/mol		
E(2	298)	=	-956.270	6616		
H(2	298)	=	-956.27	5672		
G(2	298)	=	-956.32	7410		
Fr	equen	cies:				

90.15
19.80
190.91

4. References

- 1. R. Kleinmaier, S. Arenz, A. Karim, A.-C. C. Carlsson and M. Erdelyi, Magn. Reson. Chem., 2013, 51, 46.
- 2. A.-C. C. Carlsson, M. Uhrbom, A. Karim, U. Brath, J. Gräfenstein and M. Erdelyi, *CrystEngComm*, 2013, **15**, 3087.