Electronic Supporting Information

Trapping of the Putative 1,2-Dinitrosoarene Intermediate of

Benzofuroxan Tautomerization by Coordination at Ruthenium, and Exploration of its Redox Non-Innocence

Siu-Chung Chan,^a Jason England,^b Karl Wieghardt^{*b} and Chun-Yuen Wong^{*a}

^{*a*} Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China. E-mail: acywong@cityu.edu.hk

 ^b Max-Planck-Institut f
ür Chemische EnergieKonversion, Stiftstrasse 34–36, 45470 M
ülheim an der Ruhr, Germany.
 E-mail: karl.wieghardt@cec.mpg.de

Table of Content

Experimental Section	S 1
X-ray Crystallography	S 8
Electrochemical Studies	S12
EPR Studies	S14
Theoretical Calculation	S16
References	S30

EXPERIMENTAL SECTION

General Procedures. All reactions were performed under an argon atmosphere using standard Schlenk techniques unless otherwise stated. All reagents were used as received, and solvents for reactions were purified by a PureSolv MD5 solvent purification system. $[Ru([9]aneS3)(dmso)Cl_2]^1$, $[Ru(bpy)_2(CH_3CN)_2](PF_6)_2^2$, $[Ru([14]aneS4)(dmso)Cl](PF_6)^3$ and $[Ru([9]aneS3)(ON^N)(CH_3CN)](ClO_4)^4$ were prepared according to literature procedures. Benzofuroxan was purchased from Sigma Aldrich while 5-methoxylbenzofuroxan and 5,6-dimethylbenzofuxan were synthesized from oxidative cyclization of 4-methoxy-2-nitroaniline and 4,5-dimethyl-2-nitroaniline respectively according to literature procedures.⁵

Physical Measurements and Instrumentation. ¹H NMR spectra were recorded on Bruker 400 DRX FT-NMR spectrometers. Peak positions were calibrated with solvent residue peaks as internal standard. Electrospray ionization mass spectrometry (ESI-MS) was performed on a PE-SCIEX API 3000 triple quadrupole mass spectrometer. Infrared spectra were recorded as KBr plates on a Perkin-Elmer FTIR-1600 spectrophotometer. UV–visible spectra were recorded on a Shimadzu UV-1700 spectrophotometer. Elemental analyses were done on an Elementar Vario EL analyzer. Cyclic voltammetry was performed with a CH Instrument Model 600C series electrochemical analyzer/workstation. All solutions were degassed with argon before experiments. The glassy carbon working electrode was polished with 0.05 μ m alumina on a microcloth, sonicated for 5 min in deionized water, and rinsed with CH₃CN before use. An Ag/AgNO₃ (0.1 M in CH₃CN) electrode was used as the reference electrode, and the *E*_{1/2} value of the ferrocenium/ferrocene couple (Fc⁺/Fc⁰) measured in the same solution was used as an internal reference. Thin-layer UV–vis spectroelectrochemistry was performed on an Agilent 8453 diode array spectrophotometer using a thin-layer quartz cell with a platinum-gauze working electrode, a platinum wire counter electrode, and an Ag/AgNO₃ reference electrode.

EPR samples of 1b⁻ and 1c⁻ were prepared by bulk electrolysis at -20°C of 2 mM CH₃CN

solutions of **1b** and **1c**, respectively, containing 0.2 M [Bu₄N]PF₆ electrolyte. Complexes **2a**⁻ and **2b**⁻ were isolated as pure solids, so 0.25 mM EPR samples of these were prepared by straightforward dissolution in CH₂Cl₂. Continuous wave X-band EPR spectra were recorded for all complexes on a Bruker E500 ELEXSYS spectrometer with a standard Bruker cavity (ER4102ST) and an Oxford Instruments helium flow cryostat (ESR 910). Microwave frequencies were measured using a Hewlett-Packard frequency counter (HP5352B) and the field control was calibrated with a Bruker NMR field probe (ER035M). As a consequence of signal attenuation in fluid solution due to high solvent polarity, it was necessary to measure the spectra of **1b**⁻ and **1c**⁻ in Q-band EPR tubes inserted into X-band tubes. All spectral manipulation and simulations were performed using the Bruker XSOPHE Suite, with a spin Hamiltonian of the form $\hat{H} = g \ \mu_B B S + \Sigma a S I$, where the summation term is weighted over all naturally occurring isotopes of N and Ru and the other terms have their standard meanings. Satisfactory fits were achieved using Gaussian line shapes and the isotropic liquids model, $\sigma_V = a + bM_1 + cM_1^{2} + dM_1^{3}$, which accounts for molecular tumbling.

 $[Ru([9]aneS3)(ON^NO)(Cl)](ClO_4)$ $(1a-1c(ClO_4)).$ 0.1 g (0.23)mM) of $[Ru(9]aneS3)(dmso)Cl_2]$ and 3 eq. of the corresponding benzofuroxan were refluxed in CHCl₃ (40 ml) under argon for 14 hours. The initial yellow color suspension gradually changed to dark-green suspension. The reaction mixture was then evaporated to dryness. Deionized water (10 ml) was added and the resulting green solution was added into a saturated aqueous solution of $NaClO_4$ (2 ml) to afford green precipitates. (Caution! Perchlorate salts are potentially explosive and should be handled with care and in small amounts). The green precipitates were collected and washed with absolute ethanol followed by diethyl ether. The solid was then recrystallized by slow diffusion of diethyl ether into a nitromethane solution to afford dark-green crystals. Preparation of 1a(Cl): after the reaction mixture was evaporated to dryness, acetone (5 ml) was added instead of water and the green solution was added into diethyl ether (100 ml) to afford green precipitates. Recrystallization by the same condition affords the dark-green crystals which are suitable for X-ray crystal diffraction

measurement.

The diamagnetic nature of $[Ru([9]aneS3)(ON^NO)Cl]^+$ (**1a–1c**) in solid state have been confirmed by magnetic susceptibility measurements. Notably, they do not show signals in the conventional aromatic region (7–8 ppm), although the ON^NO ligands are expected to display signals there. It is due to fluxional behavior of the complexes in solution. Variable temperature ¹H NMR of **1b** has been measured from 293 K down to 193 K in d⁶-acetone, and all aromatic proton signals can be located and resolved at 193 K (Figure S1).

Figure S1. Variable temperature ¹H NMR spectra of **1b** from 293 K to 193 K in d⁶-acetone.

1a(ClO₄). Yield: 0.056 g, 43 %. Anal. Calcd for Ru₁C₁₂H₁₆N₂S₃Cl₂O₆: C, 26.09; H, 2.92; N, 5.07. Found: C, 26.31; H, 3.01; N, 5.02. ¹H NMR (400 MHz, CD₃CN, 293 K): δ 2.79–2.87, 2.93–3.01, 3.11–3.14 (m, [9]aneS3). IR (KBr, cm⁻¹): v_{NO} = 1375, 1383, v_{Cl-O} = 1070. ESI-MS: *m/z* 453 [M⁺].

1a(Cl)·CH₃NO₂. Yield: 0.045 g, 40 %. Anal. Calcd for Ru₁C₁₂H₁₆N₂S₃Cl₂O₂·CH₃NO₂: C, 28.42; H, 3.49; N, 7.65. Found: C, 28.20; H, 3.52; N, 7.38. ¹H NMR (400 MHz, CD₃CN, 293 K): δ 2.82–2.90, 2.94–3.02, 3.11–3.16 (m, [9]aneS3). IR (KBr, cm⁻¹): v_{NO} = 1378, 1383, v_{Cl-O} = 1068. ESI-MS: *m/z* 453 [M⁺].

1b(ClO₄). Yield: 0.066 g, 49 %. Anal. Calcd for Ru₁C₁₃H₁₈N₂S₃Cl₂O₇: C, 26.81; H, 3.12; N, 4.81. Found: C, 26.83; H, 3.15; N, 4.67. ¹H NMR (400 MHz, d⁶-Acetone, 293 K): δ 3.07–3.43, 3.51–3.62 (m, 12H, [9]aneS3); 4.11 (s, 3H, MeO); 7.66 (s, 1H, ON^NO). ¹H NMR (400 MHz, d⁶-Acetone, 193 K): δ 3.00–3.29, 3.35–3.43, 3.50–3.64 (m, 12H, [9]aneS3); 4.11 (s, 3H, MeO); 7.21–7.42 (m, 2H, ON^NO); 7.72 (s, 1H, ON^NO). IR (KBr, cm⁻¹): v_{NO} = 1389, v_{Cl-O} = 1081. ESI-MS: *m/z* 483 [M⁺].

1c(ClO₄). Yield: 0.065 g, 49 %. Anal. Calcd for Ru₁C₁₄H₂₀N₂S₃Cl₂O₆: C, 28.97; H, 3.47; N, 4.83. Found: C, 29.11; H, 3.71; N, 4.81. ¹H NMR (400 MHz, CD₃CN, 293 K): δ 2.14 (s, 6H, Me₂); 2.77–2.86, 2.90–3.00, 3.08–3.16 (m, 12H, [9]aneS3). IR (KBr, cm⁻¹): v_{NO} = 1365, v_{Cl-O} = 1086. ESI-MS: *m/z* 481 [M⁺].

 $[Ru(bpy)_2(ON^NO)](PF_6)$ ($2a^--2b^-(PF_6)$). 0.1 g (0.13 mM) of $[Ru(bpy)_2(CH_3CN)_2](PF_6)_2$ and 1.1 eq. of corresponding benzofuroxan were refluxed in acetone (10 ml) under argon for 14 hours. The initial organge-yellow solution gradually changed to greenish-brown solution. The reaction mixture was then added to 150 ml diethyl ether to afford greenish-brown precipitates which correspond to the mixture of $[Ru(bpy)_2(ON^NO)]^{2+}$ (2a, 2b) and $[Ru(bpy)_2(ON^NO)^{-}]^{+}$ ($2a^{-}$, $2b^{-}$). Complexes 2a and 2b could be reduced to $2a^-$ and $2b^-$ by filtering through a short pad of basic alumina using 20 % acetone/dichloromethane as eluent. The initial greenish-brown solution changed to orange-brown after discharging into the basic alumina and the resulting orange-brown solution was eluted out using the eluent as aforementioned. The orange-brown solution was concentrated to *ca*. 3 ml and then added dropwise by filtration into a diethyl ether solution (150 ml) to afford the orange-brown precipitate. The solid was then recrystallized by slow diffusion of diethyl ether into a dichloromethane solution under argon to afford the brown crystals. Although singe crystal of 2b is obtained, attempt to get pure 2a and 2b for further analysis were unsuccessful. Therefore, only the x-ray crystal data of 2b is reported.

2a⁻(PF₆)·CH₂Cl₂. Yield: 0.045 g, 51 %. Anal. Calcd for Ru₁C₂₆H₂₀N₆O₂P₁F₆·CH₂Cl₂: C, 41.60; H, 2.84; N, 10.78. Found: C, 41.39; H, 2.68; N, 11.01. IR (KBr, cm⁻¹): v_{NO} = 1239, v_{P-F} = 841. ESI-MS: *m/z* 549 [M⁺].

2b⁻(PF₆)·CH₂Cl₂. Yield: 0.052 g, 55 %. Anal. Calcd for Ru₁C₂₇H₂₂N₆O₃P₁F₆·CH₂Cl₂: C, 41.54; H, 2.99; N, 10.38. Found: C, 41.60; H; 2.94; N, 10.56. IR (KBr, cm⁻¹): $v_{NO} = 1218$, $v_{P-F} = 841$. ESI-MS: *m/z* 579 [M⁺].

[Ru([14]aneS4)(PhNO)Cl](PF₆). 0.1 g (0.16 mM) of [Ru([14]aneS4)(dmso)Cl](PF₆) was reacted with 1.5 eq. of nitrosobenzene in methanol. The initial yellow solution gradually changed to reddish-brown solution. The reddish-brown solution was concentrated to *ca*. 2 ml and saturated aqueous solution of NH_4PF_6 (2 ml) was added to afford the brown precipitates. The precipitates are filtered and washed with absolute ethanol followed by diethyl ether. The solid was then recrystallized by slow diffusion of diethyl ether into a nitromethane solution to afford the reddish-brown crystals.

[**Ru**([14]aneS4)(PhNO)CI](PF₆). Yield: 0.081 g, 77 %. Anal. Calcd for Ru₁C₁₆H₂₅N₁S₄O₁Cl₁P₁F₆: C, 29.25; H, 3.84; N, 2.13. Found: C, 29.56; H, 3.97; N, 2.33. ¹H NMR (400 MHz, d⁶-Acetone): δ 1.42–1.52, 1.71–1.98, 2.23–2.65, 2.76–2.97, 3.20–3.77 (m, 20H, [14]aneS4); 7.52–7.59 (m, 2H, PhNO), 7.78–7.86 (t, 1H, 6.4 Hz, PhNO), 8.49–8.53 (d, 2H, *J* = 6.6 Hz, PhNO). IR (KBr, cm⁻¹): v_{NO} = 1368, v_{P-F} = 841. ESI-MS: *m/z* 512 [M⁺].

X-ray Crystallography. X-ray diffraction data for $1a(Cl) \cdot CH_3NO_2$, $1b(ClO_4)$, $2b(PF_6)_2$, $2a^-(PF_6) \cdot CH_2Cl_2$ and $2b^-(PF_6) \cdot CH_2Cl_2$ were collected on an Oxford Diffraction Gemini S Ultra X-ray single crystal diffractometer with either Cu K α radiation ($\lambda = 1.54178$ Å) or Mo K α radiation ($\lambda = 0.71073$ Å) at either 133 K or 173 K. The data were processed using CrysAlis.⁷ The structures were solved by Patterson and Fourier methods and refined by full-matrix least-squares based on F^2 with program SHELXS-97 and SHELXL-97⁸ within WinGX⁹. All non-hydrogen atoms were refined anisotropically in the final stage of the least-squares refinement. The positions of H atoms were calculated based on riding mode with thermal parameters equal to 1.2 times that of the associated C atoms. Disorder of the Cl⁻ in $1a(Cl) \cdot CH_3NO_2$ and PF_6^- in $2b(PF_6)_2$ were observed, and split models were applied to them. CCDC 994514–994518 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational Methodology. DFT calculations were performed on complexes **1a–1c**, **2a**, and **2b** (S = 0, spin-restricted Kohn–Sham solutions) and **1a[–]-1c[–]**, **2a[–]**, and **2b[–]** (S = 1/2, spin-unrestricted Kohn–Sham solutions) using the ORCA software package (version 3.0.0)¹⁰. Their electronic ground states were optimized using the TPSSh functional¹¹ accompanied with (i) the zero-order regular approximation (ZORA)¹² to account for relativistic effects, (ii) the conductor-like screening model (COSMO)¹³ to model solvation in CH₃CN, and (iii) empirical dispersion correction by Grimme.¹⁴ The def2-SVP basis sets were used for the C and H atoms, while the

def2-TZVP basis sets were used for the Ru, Cl, S, O and N atoms.¹⁵ Auxiliary basis sets, used to expand the electron density in the calculations, were chosen to match the orbital basis sets. The combination of the resolution of the identity and the "chain of spheres exchange" algorithms $(RIJCOSX)^{16}$ was used to accelerate all calculations. Tight SCF convergence criteria $(1 \times 10^{-8} E_h in energy, 1 \times 10^{-7} E_h in the density charge, and <math>1 \times 10^{-7}$ in the maximum element of the DIIS error vector) were used throughout.

X-ray Crystallography

Table S1. Crystallography data

	$1a(Cl) \cdot CH_3NO_2$	1b (ClO ₄)	$2b(PF_6)_2$	$2a^{-}(PF_6) \cdot CH_2Cl_2$	$2\mathbf{b}^{-}(\mathbf{PF}_6)\cdot\mathbf{CH}_2\mathbf{Cl}_2$
Chem. Formula	$C_{13}H_{19}Cl_2N_3O_4RuS_3$	$C_{13}H_{18}Cl_2N_2O_7RuS_3$	$C_{27}H_{22}F_{12}N_6O_3P_2Ru$	$C_{27}H_{22}Cl_2F_6N_6O_2PRu$	$C_{28}H_{24}Cl_2F_6N_6O_3PRu$
Fw	549.34	582.44	869.52	779.45	809.47
Crystal size, mm ³	$0.28 \times 0.18 \times 0.09$	$0.81 \times 0.52 \times 0.03$	$0.36 \times 0.11 \times 0.02$	$0.79 \times 0.26 \times 0.02$	$0.41 \times 0.21 \times 0.03$
Space group	Pn	P21/c	P21/c	P21/c	Pbcn
<i>a</i> , Å	11.7724(2)	16.4668(3)	14.0590(2)	13.5677(7)	14.1173(2)
<i>b</i> , Å	13.4968(3)	19.6645(3)	14.2401(2)	14.3521(8)	15.5837(2)
<i>c</i> , Å	12.2285(3)	12.6551(3)	15.4559(2)	15.5809(7)	28.1669(5)
α , deg	90.00	90.00	90.00	90.00	90.00
β , deg	110.968(2)	106.281(2)	91.983(1)	95.869(5)	90.00
γ, deg	90.00	90.00	90.00	90.00	90.00
$V, Å^3$	1814.32(7)	3933.53(13)	3092.44(7)	2998.7(3)	6196.71(16)
Ζ	2	8	4	4	8
<i>T</i> , K	133(2)	133(2)	173(2)	173(2)	173(2)
ρ calcd, g cm ⁻³	1.900	1.967	1.868	1.726	1.735
refl. collected / $2\theta_{max}$	11507 / 134.98	21119 / 55.00	12045 / 134.98	13141 / 53.00	23669 / 135.00
unique refl. / $I > 2\sigma(I)$	4796 / 4747	8727 / 7553	5556 / 5259	6151 / 4905	5585 / 4846
No. of params / restr.	455 / 2	507 / 0	498 / 0	406 / 0	425 / 0
λ , Å / μ (K α), mm ⁻¹	1.54178 / 13.089	0.71073 / 1.428	1.54178 / 6.161	0.71073 / 0.830	1.54178 / 6.885
$R_1^{[a]}/GooF^{[b]}$	0.0235 / 1.025	0.0272 / 1.131	0.0382 / 1.073	0.0471 / 1.049	0.0482 / 1.053
$wR_2^{[c]}(I>2\sigma(I))$	0.0634	0.0567	0.0937	0.1198	0.1333
residual density,	+0.608 / -0.538	+0.904/-0.581	+1.000/-0.552	+1.056/-0.782	+0.867 / -0.777
eÅ ^{−3}					

 $[a] R_1 = \Sigma ||F_o| - |F_c| | / \Sigma |F_o|.$ $[b] GooF = \{ \Sigma [w(F_o^2 - F_c^2)^2] / (n-p) \}^{1/2}.$ $[c] wR_2 = \{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}.$

Figure S2. Perspective views of the cations in $1a(Cl) \cdot CH_3NO_2$ and $1b(ClO_4)$. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are at the 30 % level.

Figure S3. The asymmetric unit of $1a(Cl) \cdot CH_3NO_2$. The Cl(3) and Cl(4) are disorder over two positions.

Figure S4. The asymmetric unit of $1b(ClO_4)$.

Figure S5. Perspective views of the cations in $2b(PF_6)_2$, $2a^-(PF_6)\cdot CH_2Cl_2$ and $2b^-(PF_6)\cdot CH_2Cl_2$. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are at the 30 % level.

Electrochemical Studies

Figure S6. Cyclic voltammogram of **1a** (Top), **1b** (Middle) and **1c** (Bottom) (supporting electrolyte: 0.1 M [Bu₄N]PF₆ in CH₃CN; scan rate = 100 mVs⁻¹).

Figure S7. Cyclic voltammogram of $2a^{-}$ (Top) and $2b^{-}$ (Bottom) (supporting electrolyte: 0.1 M [Bu₄N]PF₆ in CH₃CN; scan rate = 100 mVs⁻¹).

Figure S8. Perpendicular mode X-band EPR spectrum (black line) and spectral simulation (red line) of **1b**⁻, recorded at room temperature in CH₃CN solution containing 0.2 M NBu₄PF₆. Conditions: frequency 9.66 GHz; power 1.0 mW; modulation 0.1 mT. Simulations were performed using the parameters listed in Table S4.

Figure S9. Perpendicular mode X-band EPR spectrum (black line) and spectral simulation (red line) of $1c^{-}$, recorded at room temperature in CH₃CN solution containing 0.2 M NBu₄PF₆. Conditions: frequency 9.66 GHz; power 1.0 mW; modulation 0.2 mT. Simulations were performed using the parameters listed in Table S4.

Theoretical Calculation

Table S2. Selected bond length and angle from DFT calculation with TPSSh functional accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH_3CN).

complex	1a	1a ⁻	1b	1b ⁻	1c	1c ⁻	2a	2a ⁻	2b	2b ⁻
Ru–N	1.960,	1.992,	1.960,	1.993,	1.963,	1.997,	1.959,	1.994,	1.953,	2.001,
	1.967	2.000	1.978	2.007	1.973	2.003	1.970	2.005	1.983	2.006
N-O	1.228,	1.259,	1.229,	1.265,	1.229,	1.267,	1.227,	1.265,	1.228,	1.264,
	1.229	1.260	1.233	1.271	1.231	1.268	1.228	1.266	1.232	1.271
N–C	1.438,	1.390,	1.417,	1.386	1.434	1.388,	1.440,	1.390,	1.417,	1.385,
	1.440	1.391	1.444			1.389	1.441	1.392	1.448	1.388
C–C	1.406	1.423	1.405	1.423	1.405	1.421	1.408	1.425	1.408	1.424
Ru-S _{eq}	2.367,	2.344,	2.368,	2.349,	2.365,	2.349,				
	2.378	2.351	2.374	2.358	2.378	2.356				
Ru-Sax	2.344	2.295	2.343	2.304	2.342	2.305				
RuCl	2.389	2.394	2.392	2.422	2.391	2.422				
Ru-N _{bpy}							2.086,	2.080,	2.086,	2.079,
trans to							2.091	2.084	2.093	2.083
NO										
Ru-N _{bpy}							2.066,	2.057,	2.065,	2.056,
cis to							2.071	2.061	2.072	2.061
NO										
C-C _{bpy}							1.468,	1.468,	1.469	1.468,
							1.470	1.469		1.469
N–Ru–N	83.58	82.00	83.30	81.65	83.44	81.67	83.57	81.69	83.24	81.38

A 4		Coordinates in Å	
Atom	Х	Y	Ζ
С	2.567692	0.700335	-0.13242
С	3.745082	1.420119	-0.31111
Н	3.722054	2.506441	-0.32702
С	4.939888	0.704955	-0.46201
Н	5.872304	1.246253	-0.60081
С	4.946501	-0.69775	-0.4382
Н	5.884305	-1.23443	-0.55738
С	3.758284	-1.41894	-0.26482
Н	3.746104	-2.50536	-0.24335
С	2.573757	-0.70521	-0.11104
С	-1.59048	-1.70287	-2.01699
Н	-2.05761	-1.77223	-3.00466
Н	-0.78204	-2.43896	-1.96426
С	-2.60778	-1.89869	-0.91524
Н	-2.98555	-2.92486	-0.93542
Н	-3.46049	-1.22308	-1.0159
С	-3.12632	-0.59242	1.560691
Н	-4.04794	-1.17909	1.618495
Н	-2.7328	-0.45563	2.572324
С	-3.37598	0.733123	0.872575
Н	-4.02304	1.359565	1.492993
Н	-3.85925	0.608031	-0.09945
С	-1.99793	2.243477	-1.11238
Н	-2.87538	2.895591	-1.16589
Н	-1.10436	2.851718	-1.28603
С	-2.11581	1.111718	-2.10795
Н	-2.064	1.497318	-3.13063
Н	-3.05009	0.55629	-1.99905
Cl	0.096474	0.029015	2.717737
Ν	1.276833	1.302407	0.066188
Ν	1.28641	-1.31474	0.103058
0	1.213518	2.530122	0.066273
О	1.234895	-2.54128	0.118926
Ru	-0.15959	-0.00224	0.34261
S	-0.71922	-0.08602	-1.93203
S	-1.84847	-1.62788	0.744264
S	-1.80734	1.673812	0.620379

Table S3. Cartesian Coordinates of **1a** at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH_3CN).

Atom		Coordinates in A	
Atom	Х	Y	Z
С	1.358286	7.018874	1.275314
С	1.687632	5.700229	1.632859
С	0.671063	4.763214	1.860042
Н	0.926185	3.742513	2.130415
С	-0.65085	5.166552	1.743982
Н	-1.46199	4.464857	1.918742
С	-0.97478	6.504522	1.407817
С	0.046277	7.445604	1.158557
Н	-0.15617	8.475035	0.884245
С	-2.66488	8.157243	1.038753
Н	-2.25375	8.843927	1.785752
Н	-3.75441	8.162898	1.079146
Н	-2.31989	8.425954	0.034999
С	4.904059	8.083173	-1.5867
Н	5.227501	7.910736	-2.61823
Н	3.955349	8.628366	-1.60885
С	5.964855	8.820006	-0.79892
Н	6.080135	9.835013	-1.18898
Н	6.935923	8.323709	-0.85584
С	7.077566	8.523657	1.804036
Н	7.831417	9.258365	1.505229
Н	6.855589	8.65892	2.866964
С	7.551289	7.116924	1.503967
Н	8.395846	6.862248	2.150128
Н	7.875243	7.005544	0.466648
С	6.353692	4.809413	0.336479
Н	7.351939	4.360868	0.311839
Н	5.622426	4.016054	0.519941
С	6.073916	5.554574	-0.94993
Н	5.99978	4.85564	-1.78821
Н	6.850043	6.28686	-1.18234
Cl	4.23006	7.669891	3.690328
Ν	2.488844	7.892543	1.063027
Ν	3.075117	5.437677	1.755278
0	2.250152	9.049782	0.726634
0	3.427889	4.301914	2.080479
0	-2.28146	6.797827	1.34968
Ru	4.210817	7.015273	1.390142
S	4.458277	6.449517	-0.87001
S	5.498128	8.967701	0.981274
S	6.232423	5.864564	1.831756

Table S4. Cartesian Coordinates of **1b** at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH_3CN).

Atom		Coordinates in Å			
Atom	Х	Y	Z		
С	2.568245	0.69271	-0.13022		
С	3.751741	1.398248	-0.30245		
Н	3.72887	2.485556	-0.30911		
С	4.96507	0.704767	-0.45679		
С	4.969827	-0.71691	-0.43947		
С	3.761179	-1.41418	-0.26791		
Н	3.745628	-2.50149	-0.24865		
С	2.57179	-0.71199	-0.11314		
С	-1.59555	-1.69454	-2.02416		
Н	-2.06606	-1.75665	-3.01074		
Н	-0.78965	-2.43385	-1.97813		
С	-2.61043	-1.89402	-0.92064		
Н	-2.98997	-2.91951	-0.94446		
Н	-3.46242	-1.21675	-1.01678		
С	-3.12461	-0.59861	1.559973		
Н	-4.04639	-1.18528	1.61605		
Н	-2.73027	-0.46589	2.571852		
С	-3.374	0.729877	0.877208		
Н	-4.02071	1.354062	1.500251		
Н	-3.85761	0.608732	-0.09523		
С	-1.99431	2.247305	-1.10256		
Н	-2.87138	2.900133	-1.15361		
Н	-1.10006	2.855565	-1.27262		
С	-2.11146	1.120981	-2.10484		
Н	-2.0562	1.512546	-3.12508		
Н	-3.04741	0.567038	-2.00195		
Cl	0.109585	0.013793	2.717732		
Ν	1.284356	1.298792	0.069125		
Ν	1.290222	-1.32017	0.097648		
О	1.223853	2.528112	0.080406		
О	1.235194	-2.54811	0.122389		
Ru	-0.15866	-0.00389	0.341682		
S	-0.71795	-0.08122	-1.93169		
S	-1.84715	-1.63033	0.738293		
S	-1.80424	1.670117	0.627961		
С	6.227999	1.496919	-0.65336		
Н	6.262538	1.893866	-1.67708		
Н	6.254629	2.352864	0.028751		
Н	7.124369	0.893803	-0.49639		
С	6.249096	-1.48838	-0.60798		
Н	6.714636	-1.26101	-1.57588		
Н	6.97406	-1.22161	0.171285		
Н	6.064292	-2.56479	-0.55568		

Table S5. Cartesian Coordinates of **1c** at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH_3CN).

Atom		Coordinates in Å	
Atom	X	Y	Ζ
С	0.02909	-0.03542	0.044927
С	0.084922	-0.14853	1.430071
Н	1.045682	-0.19145	1.935128
С	-1.12355	-0.19515	2.136473
Н	-1.10503	-0.27657	3.220432
С	-2.3539	-0.141	1.464558
Н	-3.27937	-0.1823	2.032901
С	-2.40706	-0.03548	0.069224
Н	-3.35144	0.004437	-0.46636
С	-1.20518	0.020468	-0.62985
С	0.643388	3.119611	-1.4244
Н	1.025483	2.583091	-0.56231
С	0.369837	4.481809	-1.36693
Н	0.537582	5.022569	-0.44035
С	-0.11622	5.117145	-2.51172
Н	-0.34758	6.178635	-2.50188
С	-0.3017	4.372189	-3.67585
Н	-0.67475	4.849636	-4.57599
С	-0.00883	3.006554	-3.67505
С	-0.16126	2.130772	-4.84527
С	-0.59428	2.573432	-6.09716
Н	-0.84831	3.616974	-6.25324
С	-0.70143	1.659712	-7.1456
Н	-1.04055	1.989947	-8.1237
С	-0.37272	0.322657	-6.91549
Н	-0.44343	-0.42453	-7.70031
С	0.053288	-0.05446	-5.64442
Н	0.317529	-1.08219	-5.41787
С	3.450913	1.626692	-3.34868
Н	2.927909	2.538021	-3.07909
С	4.784949	1.645053	-3.74678
Н	5.316524	2.590651	-3.79596
С	5.40505	0.438242	-4.07574
Н	6.443641	0.414893	-4.39294
С	4.670138	-0.74458	-3.99838
Н	5.13143	-1.69301	-4.25341
С	3.334119	-0.69469	-3.59491
С	2.465785	-1.87363	-3.48642
С	2.877528	-3.17872	-3.76653
Н	3.896973	-3.37253	-4.08336
С	1.969235	-4.22877	-3.64116
Н	2.280645	-5.24703	-3.8585
С	0.660288	-3.95151	-3.24
Н	-0.08181	-4.73646	-3.13035
С	0.306691	-2.63364	-2.97268
Н	-0.69713	-2.36844	-2.65787
Ν	1.188762	0.022689	-0.80834

Table S6. Cartesian Coordinates of 2a at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH₃CN).

Ν	-1.1071	0.155414	-2.05968
Ν	0.455935	2.401399	-2.5466
Ν	0.156056	0.825641	-4.63754
Ν	2.745697	0.488055	-3.27463
Ν	1.185759	-1.62209	-3.09337
0	2.286325	-0.17516	-0.29532
0	-2.15045	0.219026	-2.7015
Ru	0.748641	0.356166	-2.68838

Atom	Coordinates in Å			
Atom	X	Y	Ζ	
С	10.74639	8.182193	4.708411	
С	10.41585	9.360842	5.403761	
С	9.582942	9.355998	6.509206	
Н	9.357504	10.28991	7.012829	
С	9.05149	8.1142	6.92332	
С	9.396293	6.920342	6.239451	
Н	8.975359	5.983385	6.593711	
С	10.2391	6.948904	5.14006	
Н	10.50291	6.0397	4.607504	
С	7.785875	9.154094	8.671884	
Н	7.264774	9.838903	7.99457	
Н	7.104455	8.787564	9.439477	
Н	8.649376	9.643796	9.132471	
С	14.40102	9.402043	4.754048	
Н	13.92053	8.431426	4.689384	
С	15.61239	9.570379	5.415795	
Н	16.09015	8.714658	5.882598	
С	16.18247	10.84484	5.461351	
Н	17.12656	11.0131	5.971598	
С	15.52814	11.90405	4.834073	
Н	15.95976	12.89948	4.850579	
С	14.31569	11.67484	4.179318	
С	13.55955	12.70961	3.462301	
С	13.98126	14.03525	3.333712	
Н	14.90754	14.36346	3.793545	
С	13.20312	14.9308	2.60024	
Н	13.52331	15.96268	2.483614	
С	12.0166	14.48055	2.018572	
Н	11.3791	15.14178	1.439218	
С	11.64704	13.14937	2.192889	
Н	10.73025	12.75628	1.766482	
С	14.09122	9.695868	1.058564	
Н	14.75134	9.717342	1.919156	
С	14.58229	9.484122	-0.22752	
Н	15.64798	9.337088	-0.37712	
С	13.68468	9.467703	-1.29625	
Н	14.03413	9.309652	-2.31314	
С	12.32604	9.653039	-1.04161	
Н	11.60967	9.640873	-1.85709	
С	11.89708	9.856328	0.272424	
С	10.49108	10.05114	0.652733	
С	9.426016	10.01551	-0.25034	
Н	9.611388	9.836655	-1.3048	
С	8.123315	10.20179	0.211698	
Н	7.288278	10.17225	-0.48291	
С	7.911765	10.42628	1.573286	
Н	6.917116	10.58056	1.980959	

Table S7. Cartesian Coordinates of **2b** at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH_3CN).

С	9.01096	10.45596	2.424373
Η	8.892155	10.63693	3.487684
Ν	11.58059	8.363625	3.577981
Ν	11.02055	10.56481	4.872597
Ν	13.76784	10.42771	4.155422
Ν	12.39874	12.28786	2.894583
Ν	12.78526	9.882422	1.301215
Ν	10.26717	10.27322	1.977949
Ο	11.93233	7.367525	2.943994
Ο	10.88895	11.59778	5.523493
Ο	8.208526	7.973079	7.950865
Ru	11.95392	10.27012	3.182011

Atom		Coordinates in A	
Atom	Х	Y	Ζ
С	2.557935	0.710062	-0.13271
С	3.767443	1.416729	-0.29276
Н	3.745238	2.503284	-0.3118
С	4.951997	0.706607	-0.41603
Н	5.891706	1.241793	-0.53488
С	4.95449	-0.71166	-0.39196
Н	5.896182	-1.24743	-0.49147
С	3.772244	-1.42116	-0.24551
Н	3.753574	-2.50782	-0.22614
С	2.560492	-0.71355	-0.10886
С	-1.61677	-1.69356	-2.02892
Н	-2.09766	-1.75698	-3.01065
Н	-0.80642	-2.42843	-1.98444
С	-2.6173	-1.90215	-0.91258
Н	-2.98734	-2.93135	-0.92662
Н	-3.47646	-1.23246	-1.00178
С	-3.11299	-0.59703	1.564035
Н	-4.03279	-1.18622	1.630761
Н	-2.70919	-0.45867	2.571852
С	-3.37333	0.733023	0.884805
Н	-4.01716	1.354882	1.513446
Н	-3.86735	0.605909	-0.08214
С	-2.02936	2.24434	-1.11643
Н	-2.91235	2.890085	-1.16076
Н	-1.13693	2.853034	-1.29589
С	-2.14411	1.111925	-2.11322
Н	-2.09881	1.49722	-3.13642
Н	-3.07696	0.55412	-1.99919
Cl	0.18788	0.043149	2.703381
Ν	1.309283	1.305215	0.011053
Ν	1.314267	-1.30943	0.055486
0	1.224668	2.568414	-0.02818
0	1.236414	-2.57277	0.043555
Ru	-0.17077	0.005099	0.310405
S	-0.73808	-0.07911	-1.92423
S	-1.82783	-1.61803	0.735063
S	-1.80125	1.671543	0.612178

Table S8. Cartesian Coordinates of $1a^-$ at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH₃CN).

Atom		Coordinates in Å	
Atom	Х	Y	Ζ
С	1.363755	7.03853	1.255066
С	1.693559	5.703986	1.621019
С	0.660219	4.772158	1.868032
Н	0.921242	3.752788	2.138508
С	-0.65546	5.174278	1.772835
Н	-1.46901	4.479324	1.965823
С	-0.97897	6.520554	1.428427
С	0.02103	7.449898	1.159159
Н	-0.18515	8.477315	0.881336
С	-2.68522	8.156626	1.08489
Н	-2.25872	8.849087	1.819724
Н	-3.77495	8.175885	1.139102
Н	-2.35227	8.427882	0.076285
С	4.943615	8.072736	-1.60616
Н	5.285164	7.896004	-2.63136
Н	3.994101	8.616335	-1.63906
С	5.986377	8.820544	-0.80306
Н	6.100343	9.837711	-1.18811
Н	6.961795	8.330439	-0.8465
С	7.064284	8.523552	1.810037
Н	7.820164	9.260033	1.519687
Н	6.827729	8.659182	2.870241
С	7.548366	7.115372	1.526304
Н	8.383967	6.866907	2.186735
Н	7.890257	7.004297	0.494111
С	6.384955	4.81151	0.333302
Н	7.388578	4.373845	0.319954
Н	5.654803	4.014609	0.506923
С	6.108685	5.555434	-0.95577
Н	6.042892	4.857292	-1.79554
Н	6.886094	6.28953	-1.1808
Cl	4.146118	7.672673	3.678604
Ν	2.444385	7.871106	1.008485
Ν	3.048303	5.423306	1.704424
0	2.223185	9.063291	0.628963
0	3.413979	4.250792	2.005438
0	-2.30701	6.803042	1.393195
Ru	4.218754	6.998213	1.353046
S	4.486813	6.449485	-0.86867
S	5.484641	8.950757	0.972061
S	6.218164	5.861873	1.829754

Table S9. Cartesian Coordinates of $1b^-$ at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH₃CN).

Atom	Coordinates in Å		
Atom	X	Y	Ζ
С	2.557239	0.706405	-0.16491
С	3.771352	1.405746	-0.31359
Н	3.748633	2.493512	-0.31587
С	4.970606	0.717253	-0.44452
С	4.973087	-0.71971	-0.4397
С	3.775971	-1.4112	-0.30494
Н	3.756542	-2.49902	-0.29957
С	2.559709	-0.71493	-0.16045
С	-1.65859	-1.66712	-2.05452
Н	-2.15859	-1.71177	-3.02778
Н	-0.85046	-2.40545	-2.03789
С	-2.63862	-1.89183	-0.92292
Н	-3.00902	-2.92076	-0.94448
Н	-3.49926	-1.22109	-0.98677
С	-3.09153	-0.62268	1.579417
Н	-4.01038	-1.21288	1.651577
Н	-2.67225	-0.49914	2.582809
С	-3.36227	0.71715	0.923984
Н	-3.99488	1.330698	1.572026
Н	-3.87266	0.604157	-0.03618
С	-2.05362	2.254893	-1.07861
Н	-2.93946	2.898155	-1.09715
Н	-1.16635	2.868868	-1.26527
С	-2.18287	1.136452	-2.08934
Н	-2.15472	1.536069	-3.10766
Н	-3.11346	0.576367	-1.96791
Cl	0.247597	0.003931	2.67134
Ν	1.311778	1.300845	-0.01595
Ν	1.316465	-1.31438	-0.00713
0	1.225598	2.565431	-0.04321
0	1.237042	-2.57846	-0.0408
Ru	-0.16941	-0.00366	0.285384
S	-0.77273	-0.05679	-1.93898
S	-1.81891	-1.63033	0.714492
S	-1.79295	1.65727	0.637442
С	6.268492	1.464922	-0.59113
Н	6.761169	1.21471	-1.54073
Н	6.10377	2.546233	-0.56117
Н	6.970952	1.197869	0.209483
С	6.273702	-1.46433	-0.57855
Н	6.777494	-1.20492	-1.51962
Н	6.966265	-1.20378	0.23305
Н	6.110222	-2.54608	-0.55971

Table S10. Cartesian Coordinates of $1c^{-}$ at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH₃CN).

Atom		Coordinates in Å		
	X	Y	Ζ	
С	0.065957	-0.02805	0.003931	
С	0.105083	-0.16111	1.406874	
Н	1.069226	-0.20686	1.905572	
С	-1.08763	-0.2204	2.109599	
Н	-1.0709	-0.31459	3.193371	
С	-2.33394	-0.16082	1.433483	
Н	-3.25585	-0.21057	2.008627	
С	-2.38981	-0.0405	0.054185	
Н	-3.3344	0.004495	-0.48093	
С	-1.18503	0.031744	-0.6758	
С	0.656582	3.11568	-1.4476	
Н	1.068715	2.569784	-0.60529	
С	0.355145	4.471361	-1.36453	
Н	0.532562	5.003818	-0.4345	
С	-0.17224	5.113758	-2.48769	
Н	-0.42724	6.169528	-2.45646	
С	-0.36726	4.379859	-3.65718	
Н	-0.772	4.859998	-4.54259	
С	-0.04288	3.020293	-3.68078	
С	-0.1969	2.155038	-4.85827	
С	-0.66155	2.601011	-6.09933	
Н	-0.94212	3.640381	-6.23878	
С	-0.76494	1.697656	-7.15635	
Н	-1.12772	2.029453	-8.1256	
С	-0.39943	0.365838	-6.94433	
Н	-0.46427	-0.37436	-7.73676	
С	0.056546	-0.01282	-5.68432	
Н	0.351904	-1.03525	-5.47089	
С	3.489435	1.605282	-3.38168	
Н	2.963624	2.525752	-3.1493	
С	4.835046	1.604508	-3.73863	
Н	5.376906	2.544289	-3.79415	
С	5.456229	0.384916	-4.02039	
Н	6.504099	0.346087	-4.30494	
С	4.707327	-0.78808	-3.93911	
Н	5.166775	-1.74669	-4.15827	
С	3.358745	-0.71728	-3.57694	
С	2.475857	-1.88475	-3.46504	
С	2.879749	-3.20124	-3.70735	
Н	3.904192	-3.41288	-3.99684	
С	1.957708	-4.23827	-3.57791	
Н	2.26092	-5.26536	-3.76424	
С	0.643873	-3.9339	-3.21101	
Н	-0.10926	-4.70829	-3.09833	
С	0.300262	-2.60538	-2.98319	
Н	-0.7052	-2.31431	-2.69652	
Ν	1.191361	0.054142	-0.81071	

Table S11. Cartesian Coordinates of $2a^-$ at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH₃CN).

Ν	-1.10568	0.154572	-2.05815
Ν	0.460236	2.405433	-2.57404
Ν	0.156133	0.856248	-4.66602
Ν	2.768015	0.475911	-3.30059
Ν	1.191258	-1.60407	-3.10762
0	2.335266	-0.07905	-0.28781
0	-2.17548	0.188249	-2.73362
Ru	0.769701	0.37405	-2.73343

Atom	Coordinates in Å		
	Х	Y	Ζ
С	10.79909	8.209622	4.668111
С	10.46406	9.404307	5.366544
С	9.62579	9.369201	6.496981
Н	9.386802	10.30305	6.993439
С	9.128075	8.137672	6.913561
С	9.484389	6.932987	6.234338
Н	9.078085	5.994851	6.604111
С	10.30883	6.967197	5.13125
Н	10.58153	6.060371	4.598962
С	7.844352	9.150415	8.65831
Н	7.312098	9.822779	7.974805
Н	7.168694	8.792675	9.436423
Н	8.697757	9.668943	9.109335
С	14.39966	9.401147	4.710729
Н	13.95227	8.424047	4.55822
С	15.55606	9.569062	5.465696
Н	16.02872	8.703824	5.92073
С	16.0789	10.85589	5.623101
Н	16.97601	11.02468	6.212493
С	15.43659	11.92527	5.001178
Н	15.82969	12.93209	5.100828
С	14.28245	11.69336	4.246922
С	13.54842	12.73598	3.519323
С	13.94902	14.074	3.452038
Н	14.84044	14.40574	3.974822
С	13.19891	14.97509	2.697662
Н	13.50301	16.01629	2.62785
С	12.05969	14.51571	2.031444
Н	11.44507	15.18014	1.430841
С	11.7114	13.17294	2.146163
Н	10.83314	12.77019	1.65179
С	14.07445	9.658332	0.964832
Н	14.74956	9.710213	1.813113
С	14.53751	9.389568	-0.3208
Н	15.59859	9.225396	-0.48673
С	13.61817	9.337429	-1.37141
Н	13.94513	9.132212	-2.38752
С	12.26801	9.548023	-1.09523
Н	11.53307	9.508565	-1.89365
С	11.86858	9.80994	0.219
С	10.47336	10.03401	0.620804
С	9.386535	9.983857	-0.25705
Н	9.544991	9.768173	-1.3092
С	8.097366	10.20121	0.228392
Н	7.244856	10.15883	-0.44424
С	7.923908	10.47243	1.587836
Н	6.940671	10.65203	2.013334

Table S12. Cartesian Coordinates of $2b^-$ at the TPSSh optimized geometry accompanied with empirical dispersion correction and conductor-like screening model (COSMO, solvent = CH₃CN).

С	9.043966	10.51418	2.411697
H	8.962316	10.7289	3.472204
Ν	11.60361	8.374424	3.55252
Ν	11.00871	10.56746	4.840964
Ν	13.77075	10.43625	4.122922
Ν	12.43475	12.30359	2.869838
Ν	12.7758	9.868748	1.231153
Ν	10.28837	10.30046	1.944284
0	11.98444	7.351174	2.915958
0	10.8023	11.66708	5.444245
0	8.282133	7.971358	7.958856
Ru	11.9863	10.28837	3.112036

References:

- 1. C. Landgrafe and W. S. Sheldrick, J. Chem. Soc. Dalton Trans., 1994, 1885.
- 2. A. Petroni, L. D. Slep and R. Etchenique, *Inorg. CHem.*, 2008, 47, 951.
- 3. H. Adams, A. M. Amado, V. Félix, B. E. Mann, J. Antelo-Martinez, M. Newell, P. J. A.

Ribeiro-Claro, S. E. Spey and J. A. Thomas, Chem. Eur. J., 2005, 11, 2031.

- 4. S.-C. Chan, P.-K. Pat, T.-C. Lau and C.-Y. Wong, Organometallics, 2011, 30, 1311.
- T. A. Shoker, K. I. Ghattass, J. C. Fettinger, M. J. Kurth and M. J. Haddadin, *Org. Lett.*, 2012, 14, 3704.
- 6. (a) D. F. Evans, J. Chem. Soc., 1995, **72**, 39; (b) D. F. Evans, G. V. Fazakerley and P. R. F. Phillips, J. Chem. Soc. A., 1971, 1931.
- 7. CrysAlis, version 1.171.31.8; Oxford Diffraction Ltd.: Oxford, U.K., 2007.
- 8. G. M. Sheldrick, SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and

Refinements; University of Göttingen: Göttingen, Germany, 1997.

- 9. WinGX: L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
- 10. F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
- 11. J. M. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91 146401.
- (a) E. van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1993, **99**, 4597; (b) C. van
 Wüllen, *J. Chem. Phys.*, 1998, **109**, 392.

- 13. A. Klamt and D. Schüurman, J. Chem. Soc., Perkin Trans. 2, 1993, 799.
- (a) S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456. (b) S. Grimme, J.
 Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104
- 15. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 16. (a) F. Neese, J. Comput. Chem. 2003, 24, 1740; (b) F. Neese, F. Wennmohs, A. Hansen and U.

Becker, Chem. Phys., 2009, 356, 98.