Biologically Targeted Probes for Zn^{2+} : A Diversity Oriented Modular "Click-S_NAr-Click" Approach

J. Pancholi,^{*a*} D. J. Hodson,^{*b*} K. Jobe,^{*a*} G. A. Rutter,^{*b**} S. M. Goldup,^{*a**} and M. Watkinson^{*a**}

^{*a*}School of Biological and Chemical Science, Queen Mary University of London, Mile End Road, London, E1 4NS, U.K. ^{*b*}Section of Cell Biology, Department of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.

Table of Contents

1)	General Experimental Information	S 3
2)	Experimental Procedures	S5
3)	UV and Fluorescence Characterisation of sensors 6-11	S33
4)	Aggregation studies of sensor 6	S44
5)	Response of sensor 6 to other metal ions	S55
6)	Experimental Procedures for the Evaluation of Sensors in cellulo	S55
7)	NMR Spectroscopic Characterisation	S59

1) General Experimental Information

All commercially available reagents, unless otherwise stated, and solvents for column chromatography were used as supplied without further purification. EDTA refers to ethylenediaminetetraacetic acid. EtOH was stored over 4 Å-molecular sieves. Et₃N was stored over KOH under a N₂ atmosphere. Reaction solvents were supplied dry from an MBRAUN MB SPS-800 solvent purification system. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. All glassware and needles were oven dried and cooled under an inert atmosphere prior to experimental use.

Infrared spectra were recorded in the range 4000-600 cm⁻¹, obtained directly from the compound as a solid or neat liquid on a Bruker Tensor 37 FTIR spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AV400 or AVIII 400 NMR spectrometer. Chemical shifts were reported in δ (ppm) and referenced to residual solvent. Multiplicities of signals are reported using standard abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad, and coupling constants measured in Hertz (Hz) and reported to 1 d.p.. Electrospray ionisation mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service, University of Wales, Swansea on a Thermofisher LTQ Orbitrap XL. Melting points were measured on a Stuart SMP3 melting point apparatus and are uncorrected.

Flash column chromatography, unless stated otherwise was performed using VWR silica gel 60 (220-240 mesh), and TLC was carried out using pre-coated aluminium backed plates with Merck Kieselgel 60 F254. The plates were visualised under a UV lamp (254 nm), or by staining with basified aqueous KMnO₄ solution followed by gentle heating.

Fluorescence spectroscopic/spectrophotometric studies for characterisation were performed using a Jobin Yvon Horiba Fluorormax[®]-3 machine, in a 1 cm path length cell without an incident ray filter. Solutions of deprotected sensor were prepared from a stock solution in DMSO such that each 3 mL testing sample contained 1% DMSO. All aqueous testing was carried out using HEPES buffered water (0.1 mM, pH 7.4) at ambient temperature. Testing in MeCN was carried out using HPLC grade MeCN (VWR) which was used without any further purification.

Dynamic light scattering (DLS) measurements to determine average aggregate size of solutions of sensors **8** and **9b** were obtained on a Malvern Zetasizer Nano ZS instrument equipped with a 633 nm laser. The measurement angle was 173 degrees. Samples were prepared as for the fluorescence measurements.

S3

Tri-Boc protected cyclam (**S1**),¹ tri-Boc protected cyclam acetylene (**S2**),² propargyl-dipicolylamine (**S3**),³ diethyl iminodiacetate (**S4**),⁴ (4-azidobutyl)triphenylphosphonium bromide (**S5**),⁵ 3-azido-1aminopropane (**S6**),⁶ 2-chloro-*N*-(2-diethylamino-ethyl)acetamide hydrochloride (**S7**),⁷ and 1propargyl-2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside (**S8**),⁸ were all prepared following previously reported literature procedures. All spectroscopic data obtained matched those previously reported.

2) Experimental Procedures

6-Bromo-2-(prop-2-yn-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (2):

Following a modified literature procedure,^b 4-bromo-1,8-naphthalic anhydride (1.0 g, 4.1 mmol) was dissolved in 1,4-dioxane (30 mL). One portion of propargyl amine (0.26 mL, 4.1 mmol) was added to the solution. This was stirred at r.t. for 1 h, and then heated at 70 °C for 2 h. After cooling the reaction mixture to r.t., a further portion of propargyl amine (0.05 mL, 0.8 mmol) was added, and the reaction left to stir at 70 °C overnight. After cooling to r.t, the reaction mixture was slowly poured into iced water (120 mL). The resulting precipitate was collected by suction filtration and dried *in vacuo* to give bromide **2** as a brown solid (1.1 g, 96%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.70 (d, *J* = 7.3, 1H, H_c), 8.60 (d, *J* = 8.5, 1H, H_e), 8.46 (d, *J* = 7.9, 1H, H_g), 8.06 (d, *J* = 7.9, 1H, H_f), 7.87 (dd, *J* = 8.4, 7.4, 1H, H_d), 4.95 (d, *J* = 2.4, 2H, H_b), 2.20 (t, *J* = 2.4, 1H, H_a); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 162.9, 162.9, 133.8, 132.5, 131.7, 131.2, 130.9, 130.8, 129.1, 128.2, 122.8, 121.9, 78.3, 70.7, 29.6; IR (ν_{max}/cm^{-1}) 3391, 3257, 2923, 2106, 1700, 1659, 778; M.p. (°C) 177-179; HRMS (EI) calcd for C₁₅H₈⁷⁹BrNO₂ [M + H]⁺ 313.9811, found: 313.9809. UV: $\lambda_{max}(CH_2Cl_2)/nm$ (ε / mol⁻¹cm⁻¹dm³) 357 (8379), 343 (10173), 328 (6896).

2-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-6-bromo-1H-benzo[de]isoquinoline-1,3(2H)-dione (S9):

Acetylene **3** (1.0 g, 3.2 mmol), benzyl azide (0.43 g, 3.2 mmol), and Cul (60 mg, 10 mol%) were combined in a sealed CEM microwave vial which was purged with N₂. Anhydrous NMP (16 mL) was added, and the reaction stirred at r.t. for 1 h. The reaction mixture was diluted with a saturated solution of EDTA in 17.5% aqueous NH₃ (30 mL) and stirred for 5 min. The resulting precipitate was collected by suction filtration and purified by flash column chromatography (4:1 to 1:1 CH₂Cl₂/EtOAc) to yield triazole **S9** as a pale yellow powder (1.35 g, 95%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.64 (d, *J* = 7.3, 1H, H_g), 8.55 (d, *J* = 8.5, 1H, H_i), 8.40 (d, *J* = 7.8, 1H, H_j), 8.02 (d, *J* = 7.8, 1H, H_k), 7.82 (dd, *J* = 8.5, 7.3, 1H, H_h), 7.56 (s, 1H, H_e), 7.37-7.29 (m, 4H, H_b and H_c), 7.26-7.22 (m, 1H, H_a), 5.46 (s, 4H, H_d and H_f); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 207.1, 163.5, 163.4, 134.7, 133.6, 132.5, 131.6, 131.2, 130.8, 130.8, 129.2, 128.8, 128.3, 128.2, 123.3, 123.1, 122.2, 54.3, 35.5, 31.1; IR: (v max/cm⁻¹) 3133, 1700, 1653, 1586, 1337, 1049, 959, 779. M.p. (°C) 128-131. HRMS (EI) calcd for C₂₂H₁₆⁷⁹BrN₄O₂ [M + H]⁺ 447.0451, found: 447.0450. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 358 (3459), 343 (4066), 328 (2753).

Bromo-triazole **S9** (1.4 g, 3.2 mmol), and NaN₃ (0.25 g, 3.80 mmol) were combined in a sealed CEM microwave vial which was purged with N₂ and wrapped in foil. Anhydrous NMP (16 mL) was added, and the reaction stirred at r.t. for 24 h. The reaction mixture was diluted with water (30 mL) and stirred for 5 min. The resulting precipitate was collected by suction filtration and purified by flash column chromatography (1:1 Petrol/EtOAc) to yield azide **S10** as a yellow powder (0.72 g, 55%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.64 (d, *J* = 7.2, 1H, H_g), 8.59 (d, *J* = 8.1, 1H, H_j), 8.44 (d, *J* = 8.4, 1H, H_i), 7.73 (dd, *J* = 7.4, 8.4, 1H, H_h), 7.55 (s, 1H, H_e), 7.46 (d, *J* = 8.0, 1H, H_k), 7.35-7.31 (m, 3H, H_a and H_b), 7.26-7.22 (m, 2H, H_c). 5.47 (s, 4H, H_d and H_f). ¹³C NMR (101 MHz, CDCl₃) δ_{C} 174.6, 163.8, 163.3, 143.8, 134.7, 132.6, 132.2, 129.3, 129.2, 129.1, 128.8, 128.3, 126.9, 124.5, 123.3, 122.5, 118.8, 114.8, 54.2, 35.4. IR: (v max/cm⁻¹) 3142, 2923, 2120, 1655, 1579, 1325, 1233, 1046, 780. M.p. (°C) 160-162. HRMS (EI) calcd for C₂₂H₁₆N₇O₂ [M + H]⁺ 410.1360, found: 410.1358. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 384 (9103), 367 (11295), 344 (7235).

2-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-1Hbenzo[de]isoquinoline-1,3(2H)-dione (4):

Triazole-azide **\$10** (0.050 g, 0.12 mmol), phenylacetylene (0.014 mL, 0.12 mmol), Cul (2.3 mg, 10 mol%) and NaOAc (1.1 mg, 10 mol%) were combined in a sealed CEM microwave vial which was purged with N₂. Anhydrous NMP (0.61 mL) was added, and the reaction stirred at r.t. for 16 h. The reaction mixture was diluted with a saturated solution of EDTA in 17.5% aqueous NH₃ (5 mL) and stirred for 5 min. The resulting precipitate was collected by suction filtration and purified by flash column chromatography (100% CH₂Cl₂ to 1:1 CH₂Cl₂/EtOAc) to yield bis-triazole **4** as a pale yellow powder (0.051 g, 81%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.75-8.68 (m, 2H, H_g and H_j), 8.33 (d, *J* = 8.5, 1H, H_i), 8.25 (s, 1H, H_i), 7.96 (d, *J* = 7.4, 2H, H_m), 7.88 (d, *J* = 7.8, 1H, H_k), 7.86-7.82 (m, 1H, H_h), 7.59 (s, 1H, H_e), 7.52-7.48 (m, 2H, H_n), 7.43-7.40 (m, 1H, H_o), 7.36-7.31 (m, 3H, H_a and H_b), 7.27-7.23 (m, 2H, H_c), 5.51 (s, 2H, H_f), 5.49 (s, 2H, H_d). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 163.5, 162.9, 148.7, 143.7, 138.5, 134.7, 132.7, 131.1, 129.9, 129.7, 129.4, 129.3, 129.2, 129.0, 128.8, 128.7, 128.3, 126.7, 126.1, 123.9, 123.6, 123.3, 123.0, 121.9, 54.3, 35.6. IR: (v max/cm⁻¹) 3128, 3066, 1705, 1658, 1584, 1401, 1121, 1023, 953, 850, 781, 761, 718. M.p. (°C) >230. HRMS (EI) calcd for C₃₀H₂₂N₇O₂ [M + H]⁺ 512.1829, found: 512.1829. UV: λ_{max} (CH₂Cl₂)/nm (ε /mol⁻¹cm⁻¹dm³) 344 (9099).

2-(3-Azidopropyl)-6-bromo-1H-benzo[de]isoquinoline-1,3(2H)-dione (3):

4-Bromo-1,8-naphthalic anhydride (0.25 g, 0.91 mmol) was dissolved in EtOH (30 mL). 3-azido-1aminopropane **S6** (0.46 g, 4.6 mmol) was added to the solution and the reaction left to stir at reflux overnight. After slow cooling to r.t, the resulting precipitate was collected by suction filtration and purified by flash column chromatography (4:1 CH₂Cl₂/EtOAc) to give bromide **3** as a brown solid (0.26 g, 79%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.67 (d, *J* = 7.2, 1H, H_d), 8.59 (d, *J* = 8.5, 1H, H_f), 8.42 (d, *J* = 7.8, 1H, H_g), 8.05 (d, *J* = 7.8, 1H, H_h), 7.86 (m, 1H, H_e), 4.28 (t, *J* = 7.0, 2H, H_c), 3.44 (t, *J* = 6.8, 2H, H_a), 2.04 (app. quint, *J* = 6.8, 2H, H_b). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 163.8, 163.8, 133.6, 132.4, 131.5, 131.3, 130.8, 130.6, 129.2, 128.3, 123.1, 122.2, 49.6, 38.2, 27.7. M.p. (°C) 92-93. HRMS (EI) calcd for C₁₅H₁₁⁷⁹BrN₄O₂ [M + H]⁺ 359.0138, found 359.0141. UV: λ_{max} (CH₂Cl₂)/nm (*ε* / mol⁻¹cm⁻¹dm³) 357 (11646), 343 (13675), 327 (9214). 6-Bromo-2-(3-(4-phenyl-1H-1,2,3-triazol-1-yl)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (S11):

Azide **3** (0.20 g, 0.56 mmol), phenylacetylene (0.062 mL, 0.56 mmol), and Cul (10 mg, 10 mol%) were combined in a sealed CEM microwave vial which was purged with N₂. Anhydrous NMP (2.8 mL) was added, and the reaction stirred at r.t. for 1 h. The reaction mixture was diluted with a saturated solution of EDTA in 17.5% aqueous NH₃ and stirred for 5 min. The resulting precipitate was collected by suction filtration and purified by flash column chromatography (4:1 to 1:1 CH₂Cl₂/EtOAc) to yield triazole **S11** as a pale yellow powder (0.17 g, 67%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.65 (d, *J* = 7.3, 1H, H_h), 8.56 (d, *J* = 8.5, 1H, H_j), 8.40 (d, *J* = 7.9, 1H, H_k), 8.02 (d, *J* = 7.9, 1H, H_l), 7.94 (s, 1H, H_d), 7.83 (dd, *J* = 8.3, 7.4, 1H, H_i), 7.75 (m, 2H, H_c), 7.42-7.36 (m, 2H, H_b), 7.34-7.28 (m, 1H, H_a), 4.54 (t, *J* = 6.9, 2H, H_g), 4.33 (t, *J* = 6.6, 2H, H_e), 2.48 (app. quint, *J* = 6.8, 2H, H_f). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 163.9, 163.9, 147.8, 133.7, 132.4, 131.6, 131.3, 130.8, 130.7, 129.1, 128.9, 128.3, 128.2, 125.7, 122.9, 122.0, 120.0, 48.6, 37.9, 28.8; IR: (v max/cm⁻¹) 3142, 3061, 1698. 1659, 1586, 1568, 1460, 1345, 1225, 1055, 970, 918, 810, 767, 696. M.p. (°C) 200-202. HRMS (EI) calcd for C₂₃H₁₇⁷⁹BrN₄O₂ [M + H]⁺ 461.0608, found 461.0604. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 358 (20486), 343 (23859), 327 (15782).

6-Azido-2-(3-(4-phenyl-1H-1,2,3-triazol-1-yl)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (S12):

Bromo-triazole **S11** (50 mg, 0.11 mmol), and NaN₃ (9.0 mg, 1.2 equiv., 0.13 mmol) were combined in a sealed CEM microwave vial which was purged with N₂ and wrapped in foil. Anhydrous NMP (0.54 mL) was added, and the reaction stirred at r.t. for 24 h. The reaction mixture was diluted with H₂O (5 mL) and stirred for 5 min. The resulting precipitate was collected by suction filtration and purified by flash column chromatography (1:1 Petrol/EtOAc) to yield azide **S12** as a yellow powder (35 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.63 (d, *J* = 7.3, 1H, H_h), 8.56 (d, *J* = 8.0, 1H, H_k), 8.44 (d, *J* = 8.4, 1H, H_j), 7.96 (s, 1H, H_d), 7.77-7.71 (m, 2H, H_i and H_l), 7.45-7.35 (m, 4H, H_b and H_c), 7.34-7.28 (m, 1H, H_a), 4.54 (t, *J* = 7.0, 2H, H_g), 4.33 (t, *J* = 6.6, 2H, H_e), 2.48 (app. quint, *J* = 6.8, 2H, H_f). Due to the instability of **S12** we were unable to obtain further characterisation data and it as used in subsequent reactions immediately. 6-(4-Phenyl-1H-1,2,3-triazol-1-yl)-2-(3-(4-phenyl-1H-1,2,3-triazol-1-yl)propyl)-1Hbenzo[de]isoquinoline-1,3(2H)-dione (5):

Triazole-azide **S12** (64 mg, 0.15 mmol), phenylacetylene (0.02 mL, 0.15 mmol), Cul (2.8 mg, 10 mol%) and NaOAc (1.2 mg, 10 mol%) were combined in a sealed CEM microwave vial which was purged with N₂. Anhydrous NMP (0.76 mL) was added, and the reaction stirred at r.t. for 16 h. The reaction mixture was diluted with a saturated solution of EDTA in 17.5% aqueous NH₃ (10 mL) and stirred for 5 min. The resulting precipitate was collected by suction filtration and purified by flash column chromatography (100% CH₂Cl₂ to 1:1 CH₂Cl₂/EtOAc) to yield bis-triazole **5** as a pale yellow powder (64 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.72 (d, *J* = 7.8, 1H, H_k), 8.71 (d, *J* = 7.2, 1H, H_h), 8.32 (d, *J* = 8.5, 1H, H_j), 8.21 (s, 1H, H_m), 7.97 (d, *J* = 7.3, 2H, H_n), 7.94 (s, 1H, H_d), 7.89-7.81 (m, 2H, H_i and H_i), 7.73 (d, *J* = 7.3, 2H, H_b), 7.55-7.49 (m, 2H, H_o), 7.47-7.35 (m, 3H, H_c and H_p), 7.34-7.28 (m, 1H, H_a), 4.57 (t, *J* = 6.8, 2H, H_g), 4.38 (t, *J* = 6.6, 2H, H_e), 2.53 (app. quint, *J* = 6.6, 2H, H_f). ¹³C NMR (101 MHz, CDCl₃) δ_{c} 158.9, 158.9, 132.7, 131.1, 130.0, 129.7, 129.3, 129.1, 128.9, 128.8, 128.2, 126.2, 125.7, 123.6, 121.9, 120.0, 48.6, 38.2, 28.7. IR: (v max/cm⁻¹) 3126, 3064, 2923, 2112, 1698, 1654, 1583, 1517, 1465, 1432, 1400, 1348, 1232, 1188, 1152, 1057, 976, 898, 783. M.p. (°C) 185-188. HRMS (EI) calcd for C₃₁H₂₃N₇O₂ [M + H]^{*} 526.1986, found 526.1979. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 345 (30104).

A solution of didodecylamine (2.00 g, 5.65 mmol) and NEt₃ (1.97 mL, 14.1 mmol) in dry CH₂Cl₂ (100 mL) was added in a slow dropwise manner to a solution of chloroacetyl chloride (0.54 mL, 6.79 mmol) in anhydrous CH₂Cl₂ (50 mL) at 0 °C under N₂. When the addition was complete, the red solution was warmed to r.t. and stirred for 24 h. The solution was filtered and the solid washed with chloroform (30 mL). The filtrate was further diluted with chloroform and washed with H₂O (2 x 200 mL), Na₂CO₃ solution (1 M, 2 x 200 mL), HCl solution (1 M, 2 x 200 mL) and brine (2 x 200 mL). The organic phase was dried over MgSO₄ and the solvent was removed *in vacuo*. The crude oil was purified by flash column chromatography (4:1 CH₂Cl₂/EtOAc) to yield chloride **S13** as a clear oil (1.86 g, 76%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 4.05 (s, 2H, H_a), 3.36-3.22 (m, 4H, H_b), 1.65-1.47 (m, 4H, H_c), 1.36-1.17 (m, 36H, alkyl-H), 0.92-0.84 (m, 6H, H_d). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 166.2, 48.4, 46.3, 41.5, 32.0, 29.8, 29.7, 29.7, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 27.5, 27.1, 27.0, 22.8, 14.3. IR: (v max/cm⁻¹) 2921, 2852, 1653, 1458, 1376, 1302, 1122, 925, 790. HRMS (EI) calcd for C₂₆H₅₂CINO [M + H]⁺ 430.3810, found 430.3810.

Chloride **\$13** (1.86 g, 4.31 mmol) and NaN₃ (1.68 g, 25 mmol) were combined in a flask purged with N₂, dissolved in dry DMF (60 mL) and stirred for 24 h at 65 °C. After cooling to r.t, the reaction mixture was slowly poured into icy H₂O (200 mL). The resulting precipitate was extracted with EtOAc (3 x 100 mL), the organic extracts combined and washed with saturated NaHCO₃ solution (2 x 200 mL), brine (2 x 200 mL) and H₂O (2 x 100 mL). The organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to give azide **\$14** as a viscous yellow oil (1.90 g, 98%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 3.87 (s, 2H, H_a), 3.31 (t, *J* = 7.6, 2H, H_b), 3.11 (t, *J* = 7.6, 2H, H_c), 1.58-1.48 (m, 4H, H_d), 1.35-1.20 (m, 36H, alkyl-H), 0.91-0.84 (m, 6H, H_e). ¹³C NMR (101 MHz, CDCl₃) δ_{c} 166.9, 50.4, 47.6, 46.6, 32.0, 29.7, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 29.2, 27.8, 27.1, 26.9, 22.8, 14.2. IR: (v max/cm⁻¹) 2921, 2852, 2103, 1654, 1458, 1425, 1376, 1273, 720. HRMS (EI) calcd for C₂₆H₅₃N₄O [M + H]⁺ 437.4214, found 437.4215.

(4-Azidobutyl)triphenylphosphonium tetrafluoroborate (S15):

(4-Azidobutyl)triphenylphosphonium bromide **S5** (2.27 g, 5.15 mmol) was dissolved in CH₂Cl₂ (40 mL). This solution was thoroughly washed with a saturated aqueous solution of ammonium tetrafluoroborate (50 mL). The organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to yield tetrafluoroborate **S15** as a white solid (2.18 g, 95%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.86-7.65 (m, 15H, H_e), 3.46-3.28 (m, 4H, H_a and H_d), 1.96-1.85 (m, 2H, H_b), 1.78-1.63 (m, 2H, H_c). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 135.0 (J_{C-P} = 2.9), 133.2 (J_{C-P} = 9.9), 130.4 (J_{C-P} = 12.7), 117.9 (J_{C-P} = 86.4), 50.1, 28.8 (J_{C-P} = 16.9), 21.2 (J_{C-P} = 52.0), 19.5 (J_{C-P} = 3.9). IR: (v max/cm⁻¹) 2943, 2923, 2877, 2098, 1588, 1486, 1438, 1342, 1276, 1239, 1025, 749, 722, 689. M.p. (°C) 115-118. HRMS (EI) calcd for C₂₂H₂₃N₃P₁ [M – BF₄]⁺ 360.1624, found 360.1627.

2-Chloro-*N*-(2-diethylamino-ethyl)acetamide hydrochloride **S7** (0.83 g, 2.50 mmol) was dissolved in H₂O (12.5 mL), NaN₃ (1.61 g, 15.0 mmol) was added to the flask, and the reaction mixture stirred for 48 h at 65 °C. After cooling, the solution was adjusted to pH 10 using aqueous NaHCO₃ (1.0 M), and extracted with EtOAc (3 x 20 mL). The remaining aqueous layer was adjusted to pH 14 with aqueous NaOH (1.0 M), and extracted with EtOAc (3 x 20 mL). The remaining aqueous layer was adjusted to pH 14 with aqueous NaOH (1.0 M), and extracted with EtOAc (3 x 20 mL). All organic extracts were combined, dried over MgSO₄ and the solvent was removed *in vacuo* (400 mbar – volatile product) to give azide **S16** as a pale yellow oil (0.31 g, 72%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 6.82 (br s, 1H, H_d), 3.96 (s, 2H, H_e), 3.34 (q, J = 5.9, 2H, H_c), 2.42 (t, J = 6.0, 2H, H_b), 2.23 (s, 6H, H_a). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 166.8, 57.8, 52.8, 45.3, 36.9. IR: (v max/cm⁻¹) 3292 (b), 3079, 2978, 2948, 2872, 2783, 2101, 1658, 1541, 1461, 1252, 1189, 1166, 1040, 906, 849, 776, 645. HRMS (EI) calcd for C₆H₁₃N₅O [M + H]⁺ 172.1193, found 172.1191.

Diethyl iminodiacetate **S4** (1.00 g, 5.28 mmol) was dissolved in MeCN (30 mL). K₂CO₃ (1.46 g, 10.5 mmol) was added, and propargyl bromide (0.94 mL, 6.34 mmol) was added slowly to the stirring reaction mixture and refluxed for 16 h. After cooling, the suspension was filtered, and the solvent removed *in vacuo*. The crude oil was purified by flash column chromatography (2:8 EtOAc/Petrol) to yield alkyne **S17** as a colourless oil (0.71 g, 58%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 4.17 (q, *J* = 7.1, 4H, H_d), 3.66 (d, *J* = 2.3, 2H, H_b), 3.54 (s, 4H, H_c), 2.25 (t, *J* = 2.4, 1H, H_a), 1.27 (t, *J* = 7.1, 6H, H_e). ¹³C NMR (101 MHz, CDCl₃) δ_{C} 170.5, 78.4, 73.8, 60.8, 54.4, 43.4, 14.3.IR: (v max/cm⁻¹) 3278, 2978, 2870, 2105, 1733, 1444, 1372, 1190, 1027, 990. HRMS (EI) calcd for C₁₁H₁₈N₁O₄ [M + H]⁺ 228.1230, found 228.1224.

General procedure A: a one-pot synthesis of a sensor from building block 2.

Acetylene **2** (314 mg, 1.0 mmol), an azide (1.0 mmol), Cul (19.0 mg, 10 mol%) and NaOAc (8.2 mg, 10 mol%) were combined in a sealed CEM microwave vial which was wrapped in foil and purged with N₂. Anhydrous NMP was added, and the reaction was stirred at r.t. for 1 h. Upon complete consumption of **2** (determined by ¹H NMR spectroscopy), NaN₃ (78 mg, 1.2 mmol) was added in a single portion to the reaction vial, which was resealed and the reaction stirred for a further 24 h. Upon completion of azide formation (determined by ¹H NMR spectroscopy), an acetylene (1 mmol) and EtOH (1:1 w/ NMP) were added to the reaction vial, and the final mixture was stirred for a further 16 h, at which point the reaction was complete (determined by ¹H NMR spectroscopy).

General procedure B: a one-pot synthesis of a sensor from building block 3.

Azide **3** (359 mg, 1.0 mmol), an acetylene (1.0 mmol), Cul (19.0 mg, 10 mol%) and NaOAc (8.2 mg, 10 mol%) were combined in a sealed CEM microwave vial which was wrapped in foil and purged with N₂. Anhydrous NMP was added, and the reaction was stirred at r.t. for 1 h. Upon complete consumption of **3** (determined by ¹H NMR spectroscopy), NaN₃ (78 mg, 1.2 mmol) was added in a single portion to the reaction vial, which was resealed and the reaction stirred for a further 24 h. Upon completion of azide formation (determined by ¹H NMR spectroscopy), an acetylene (1 mmol) and EtOH (1:1 w/ NMP) were added to the reaction vial, and the final mixture was stirred for a further 16 h, at which point the reaction was complete (determined by ¹H NMR spectroscopy).

2-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-6-(4-phenyl-1H-1,2,3-triazol-1-yl)-1Hbenzo[de]isoquinoline-1,3(2H)-dione (4):

General procedure A was employed with **2** (0.31 g, 1.0 mmol), benzyl azide (0.13 g, 1.0 mmol) in NMP (3.33 mL), followed by phenylacetylene (0.11 mL, 1.0 mmol) and EtOH (3.33 mL). The crude product was obtained obtained *via* precipitation with a saturated solution of EDTA in 17.5% aqueous NH₃ (20 mL) and purified by flash column chromatography (100% CH₂Cl₂ to CH₂Cl₂/EtOAc 1:1) to yield bis-triazole **4** as a pale yellow powder (0.43 g, 85%). All spectroscopic data in accordance with double triazole **4** *vide supra*.

6-(4-Phenyl-1H-1,2,3-triazol-1-yl)-2-(3-(4-phenyl-1H-1,2,3-triazol-1-yl)propyl)-1Hbenzo[de]isoquinoline-1,3(2H)-dione (5):

General procedure B was employed with **3** (0.36 g, 1.0 mmol), phenylacetylene (0.11 mL, 1.0 mmol) in NMP (3.33 mL), followed by a second portion of phenylacetylene (0.11 mL, 1.0 mmol) and EtOH (3.33 mL). The crude product was obtained obtained *via* precipitation with a saturated solution of EDTA in 17.5% aqueous NH₃ (20 mL) and purified by flash column chromatography (100% CH₂Cl₂ to CH₂Cl₂/EtOAc 1:1) to yield bis-triazole **5** a pale yellow powder (0.37 g, 72%). All spectroscopic data in accordance with double triazole **5** *vide supra*.

2-(4-((6-(4-((bis(Pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)methyl)-1H-1,2,3-triazol-1-yl)-N,N-didodecylacetamide (6):

General procedure A was employed with **2** (314 mg, 1.00 mmol), azide **S14** (0.48 g, 1.0 mmol) in NMP (3.33 mL), followed by propargyl dipicolylamine **S3** (0.29 g, 1.1 mmol) and EtOH (3.33 mL). Crude product obtained after dilution of the reaction mixture with CH_2Cl_2 (10 mL), and washing the organic mixture with a saturated solution of EDTA in 17.5% aqueous NH₃ (3 x 15 mL). The organic phase was dried over MgSO₄, concentrated *in vacuo* and purified by flash column chromatography on alumina (99:1 CH₂Cl₂/MeOH) to yield sensor **6** as a brown oil (0.78 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.68 (d, *J* = 7.8, 1H, H_h), 8.67 (d, *J* = 7.1, 1H, H_g), 8.55-8.51 (m, 2H, H_r), 8.25 (d, *J* = 8.5, 1H, H_j), 8.15 (s, 1H, H₁), 7.91 (s, 1H, H_e), 7.82-7.75 (m, 2H, H_i and H_k), 7.66 (app. td, *J* = 7.7, 1.6, 2H, H_p), 7.62-7.57 (m, 2H, H_o), 7.18-7.12 (m, 2H, H_q), 5.52 (s, 2H, H_f), 5.14 (s, 2H, H_d), 4.06 (s, 2H, H_m), 3.94 (s, 4H, H_n), 3.31-3.23 (m, 4H, H_c), 1.64-1.43 (m, 4H, H_b), 1.34-1.12 (m, 36H, alkyl-H), 0.85 (app. t, 6H, H_a). ¹³C NMR (101 MHz, CDCl₃) δ_c 164.3, 163.4, 162.9, 159.1, 149.3, 145.2, 143.4, 138.5, 136.6, 132.5, 131.1, 129.9, 129.3, 128.5, 126.5, 125.7, 125.3, 123.7, 123.5, 122.9, 122.3, 59.9, 50.8, 48.6, 47.9, 46.8, 35.5, 31.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 27.6, 27.1, 26.9, 22.8, 14.2. IR: (v max/cm⁻¹) 2922, 2852, 1703, 1661, 1587, 1467, 1430, 1369, 1233, 1040, 995, 783. HRMS (EI) calcd for C₅₆H₇₆N₁₁O₃ [M + H]⁺ 950.6127, found 950.6117. UV: λ_{max} (CH₂Cl₂)/nm (ε /mol⁻¹cm⁻¹dm³) 344 (20365)

Diethyl 2,2'-(((1-(2-((1-(2-(didodecylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dioxo-2,3dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-4-yl)methyl)azanediyl)diacetate (7):

General procedure A was employed with **2** (314 mg, 1.00 mmol), azide **S14** (0.48 g, 1.0 mmol) in NMP (3.33 mL), followed by acetylene **S17** (0.59 g, 1.1 mmol) and EtOH (3.33 mL). Crude product obtained after dilution of the reaction mixture with CH₂Cl₂ (10 mL), and washing the organic mixture with a saturated solution of EDTA in 17.5% aqueous NH₃ (3 x 15 mL). The organic phase was dried over MgSO₄, concentrated *in vacuo* and purified by flash column chromatography (4:1 CH₂Cl₂/EtOAc to EtOAc to 4:1 EtOAc/MeOH) to yield **7** as an orange foam (0.72 g, 76%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.70 (d, *J* = 7.8, 1H, H_j), 8.69 (d, *J* = 7.2, 1H, H_g), 8.28 (d, *J* = 8.6, 1H, H_i), 8.13 (s, 1H, H_i), 7.91 (s, 1H, H_e), 7.92-7.78 (m, 2H, H_h and H_k), 5.54 (s, 2H, H_f), 5.15 (s, 2H, H_d), 4.23 (s, 2H, H_m), 4.18 (q, *J* = 7.1, H_o), 3.69 (s, 4H, H_n), 3.33-3.22 (m, 4H, H_c), 1.65-1.41 (m, 4H, H_b), 1.35-1.14 (m, 42H, H_p (6H) and alkyl-H (36H)), 0.90-0.80 (m, 6H, H_a). ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 171.2, 164.3, 163.4, 162.9, 146.4, 143.5, 138.5, 132.6, 131.1, 129.9, 129.3, 128.6, 126.5, 125.7, 125.4, 123.9, 123.6, 122.9, 65.9, 60.8, 55.1, 50.9, 49.3, 48.0, 46.9, 35.6, 32.0, 29.8, 29.7, 29.7, 29.6, 29.4, 29.4, 29.3, 27.6, 27.1, 26.9, 22.8, 15.4, 14.4, 14.2. IR: (v max/cm⁻¹) 3145, 2921, 2852, 1739, 1704, 1659, 1585, 1465, 1369, 1232, 1184, 1026, 949, 783. M.p. (°C) 48-51. HRMS (EI) calcd for C₅₂H₇₈N₉O₇ [M + H]⁺ 940.6019, found 940.6010. UV: λ_{max}(CH₂Cl₂/nm (*ε*/mol⁻¹cm⁻¹dm³) 344 (18804).

Tri-*tert*-butyl 11-((1-(2-((1-(2-(didodecylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-1,4,8,11tetraazacyclotetradecane-1,4,8-tricarboxylate (8a):

General procedure A was employed with **2** (314 mg, 1.00 mmol), azide **S14** in NMP (3.33 mL), followed by cyclam acetylene **S2** (0.59 g, 1.1 mmol) and EtOH (3.33 mL). Crude product was obtained by dilution of the reaction mixture with CH₂Cl₂ (10 mL), and washing the organic mixture with a saturated solution of EDTA in 17.5% aqueous NH₃ (3 x 15 mL). The organic phase was dried over MgSO₄, concentrated *in vacuo* and purified by flash column chromatography (4:1 CH₂Cl₂/EtOAC to EtOAc to 4:1 EtOAc/MeOH) to yield **8a** as a brown oil (0.93 g, 75%). ¹H NMR (400 MHz, CDCl₃) *δ*_H 8.67-8.59 (m, 2H, H_g and H_j), 8.20 (app. br s, 1H, H_i), 7.98-7.72 (m, 4H, H_e and H_h, H_I and H_k), 5.47 (s, 2H, H_f), 5.09 (s, 2H, H_d), 3.89 (br s, 2H, H_m), 3.50-3.08 (m, 16H, H_c and Cyclam-H (12H)), 2.70-2.62 (m, 2H, H_o), 2.54-2.48 (m, 2H, H_n), 1.92-1.78 (m, 2H, H_q), 1.76-1.66 (m, 2H, H_p), 1.60-0.93 (m, 67H, H_b (4H), ^tBu (27H) and alkyl-H (36H)), 0.86-0.72 (m, 6H, H_a). ¹³C NMR (101 MHz, CDCl₃) *δ*_c 164.2, 163.4, 162.8, 155.9, 155.6, 143.4, 138.4, 132.5, 131.1, 129.8, 129.2, 128.7, 126.5, 125.3, 123.7, 123.5, 122.9, 79.7, 50.8, 47.9, 46.8, 35.5, 31.9, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 28.6, 28.5, 27.6, 27.0, 26.9, 22.7, 14.2. IR: (v max/cm⁻¹) 2927, 2855, 1691, 1588, 1466, 1414, 1365, 1236, 1166, 782. HRMS (EI) calcd for C₂₉H₄₈N₃O₂ [M + H]⁺ 1251.8149, found 1251.8577. UV: λ_{max}(CH₂Cl₂)/nm (*ε* / mol⁻¹cm⁻¹ dm³) 344 (25178).

(4-(4-((1,3-Dioxo-6-(4-((4,8,11-tris(tert-butoxycarbonyl)-1,4,8,11-tetraazacyclotetradecan-1yl)methyl)-1H-1,2,3-triazol-1-yl)-1H-benzo[de]isoquinolin-2(3H)-yl)methyl)-1H-1,2,3-triazol-1yl)butyl)triphenylphosphonium (9a):

General procedure A was employed with 2 (314 mg, 1.00 mmol), azide S15 (0.45 g, 1.0 mmol) in NMP (5 mL), followed by cyclam acetylene S2 (0.59 g, 1.1 mmol) and EtOH (5 mL). Crude product obtained by dilution of the reaction mixture with CH₂Cl₂(10 mL), and washing the organic mixture with a saturated solution of EDTA in 17.5% aqueous NH₃ (3 x 15 mL). The organic phase was dried over MgSO₄, concentrated *in vacuo* and triturated with EtOAc (3 x 30 mL). The resulting suspension was filtered, the filtrate concentrated in vacuo and purified by flash column chromatography (CH₂Cl₂/MeOH 99:1 to 9:1) to yield **9a** as a yellow foam (0.84 g, 66%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.65-8.61 (m, 2H, Hg and Hi), 8.26-8.21 (m, 1H, Hi), 8.02 (br s, 1H, Hi), 7.88-7.83 (m, 1H, Hk), 7.80 (dd, J = 7.4, 8.4, 1H, H_h), 7.75 (s, 1H, H_e), 7.75-7.59 (m, 15H, 3 x Ph), 5.41 (s, 2H, H_f), 4.38 (t, J = 6.5, 2H, H_d), 3.93 (br s, 2H, H_m), 3.45-3.25 (m, 14H, cyclam-H (12H) and H_c), 2.74-2.68 (m, 2H, H_o), 2.55 (t, J =5.5, 2H, H_n), 2.16 (quint, J = 6.7, 2H, H_b), 1.93-1.86 (m, 2H, H_a), 1.80-1.72 (m, 2H, H_b), 1.63-1.51 (m, 2H, H_a), 1.48-1.30 (m, 27H, 3 x Boc). ¹³C NMR (101 MHz, CDCl₃) δ_c 163.5, 163.0, 155.7, 143.6, 138.6, 135.3, 135.3, 133.6, 133.5, 132.6, 131.2, 130.7, 130.6, 129.3, 128.7, 123.7, 123.7, 122.9, 118.4, 117.5, 79.8, 48.8, 35.7, 30.0, 29.8, 28.7, 28.6, 21.5, 21.0, 19.4, 19.3 (overlapping signals). IR: (v _{max}/cm⁻¹) 2981, 2930, 1684, 1664, 1588, 1478, 1441, 1411, 1364, 1237, 1157, 1111, 1050, 1049, 882. HRMS (EI) calcd for C₂₉H₄₈N₃O₂ [M – BF₄]⁺ 1174.6002, found 1174.5983. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻ ¹cm⁻¹dm³) 344 (3139)

tri-*tert*-Butyl 11-((1-(2-((1-(2-((2-(dimethylamino)ethyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4yl)methyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8-tricarboxylate (10a):

General procedure A was employed with **2** (314 mg, 1.0 mmol), azide **S16** (0.17 g, 1.0 mmol) in NMP (5 mL), followed by cyclam acetylene **S2** (0.59 g, 1.1 mmol) and EtOH (5 mL). The crude product was obtained by dilution of the reaction mixture with CH₂Cl₂ (10 mL), and washing the organic mixture with a saturated solution of EDTA in 17.5% aqueous NH₃ (3 x 15 mL). The organic phase was dried over MgSO₄, concentrated *in vacuo* and purified by flash column chromatography on alumina (EtOAC to 9:1 EtOAc/MeOH) to yield **10a** as a brown oil (0.67 g, 68%). ¹H NMR (400 MHz, CDCl₃) 8.75-8.69 (m, 2H, H_h and H_k), 8.34-8,26 (m, 1H, H_i), 7.98-7.82 (m, 4H, H_f, H_i, H_l and H_m), 6.49 (br s, 1H, H_d), 5.56 (s, 2H, H_g), 4.99 (s, 2H, H_e), 3.96 (br s, 2H, H_n), 3.49-3.25 (m, 12H, cyclam-H), 3.29 (q, *J* = 5.8, 2H, H_c), 2.70 (t, *J* = 5.2, 2H, H_p), 2.58 (t, *J* = 5.8, 2H, H_o), 2.35 (t, *J* = 6.0, 2H, H_b), 2.15 (s, 6H, H_a (2 x CH₃), 1.95-1.70 (m, 4H, H_p + H_q), 1.49-1.35 (m, 27H, 3 x ¹Bu). δ_{H} ¹³C NMR (101 MHz, CDCl₃) δ_{C} 164.9, 163.5, 163.0, 143.9, 132.7, 131.2, 130.2, 130.1, 130.0, 129.4, 128.8, 126.6, 124.9, 123.7, 123.7, 122.9, 79.8, 57.4, 53.2, 49.6, 45.1, 37.2, 35.5, 30.8, 28.7, 28.6, 17.8 (overlapping signals). IR: (v max/cm⁻¹) 3409, 2966, 2919, 2850, 1691, 1688, 1593, 1476, 1420, 1369, 1260, 1165, 1096, 1017, 864, 801. HRMS (El) calcd for C₄₉H₇₁N₁₃O₉ [M + H]⁺ 986.5570, found 986.5562. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 344 (43812).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-((1-(3-(6-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3triazol-1-yl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)-1H-1,2,3-triazol-4yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (11a):

General procedure B was employed with 3 (359 mg, 1.00 mmol), propargyl-glucose S8 (0.36 g, 1.0 mmol) in NMP (3.33 mL), followed by propargyl dipicolylamine **S3** (0.26 g, 1.1 mmol) and EtOH (3.33 mL). Crude product obtained by dilution of the reaction mixture with CH₂Cl₂ (10 mL), and washing the organic mixture with a saturated solution of EDTA in 17.5% aqueous NH_3 (3 x 15 mL). The organic phase was dried over MgSO₄, concentrated in vacuo and purified by flash column chromatography on alumina (gradient from 99:1 to 90:10 CH₂Cl₂/MeOH) to yield **11a** as a yellow foam (0.58 g, 61%). ¹H NMR (400 MHz, CDCl₃) δ_H 8.75-8.70 (m, 2H, H₁ + H₀), 8.58-8.54 (m, 2H, H_w), 8.32 (dd, J $= 8.6, 1.0, 1H, H_n$, 8.19 (s, $1H, H_a$), 7.88-7.82 (m, $2H, H_m + H_p$), 7.76 (s, $1H, H_h$), 7.69 (td, J = 7.7, 1.8, 2H, H_u), 7.63-7.59 (m, 2H, H_t), 7.20-7.16 (m, 2H, H_v), 5.22 (t, J = 9.5, 1H, H_d), 5.10 (t, J = 9.5, 1H, H_c), 5.03 7.9, 1H, H_f), 4.56-4.48 (m, 2H, H_k), 4.33-4.24 (m, 3H, H_i and one of H_a), 4.17 (dd, J = 12.2, 2.2, 1H, one of H_a), 4.08 (s, 2H, H_r), 3.96 (s, 4H, H_s), 3.80-3.74 (m, 1H, H_b), 2.43 (app. quint, J = 6.5, 2H, H_i), 2.09 (s, 3H, Ac), 2.02 (s, 3H, Ac), 2.00 (s, 3H, Ac), 1.99 (s, 3H, Ac). ¹³C NMR (101 MHz, CDCl₃) δ_c 170.8, 170.3, 169.5, 163.9, 163.4, 159.1, 149.3, 145.1, 144.1, 138.8, 136.7, 132.6, 131.2, 130.3, 129.3, 128.7, 126.6, 125.8, 123.6, 123.6, 123.5, 123.3, 122.7, 122.4, 99.6, 72.9, 72.0, 71.4, 68.6, 62.9, 62.0, 59.9, 53.5, 48.6, 48.4, 37.9, 29.0, 20.9, 20.8, 20.7 (overlapping signals). IR: (v_{max}/cm⁻¹) 3454 (weak), 3138, 3006, 2958, 1753, 1704, 1660, 1588, 1435, 1361, 1218, 1038, 995, 905, 785, 755. HRMS (EI) calcd for $C_{47}H_{48}N_{10}O_{12}$ [M + H]⁺ 945.3526, found 945.3517. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 344 (16280)

2,2'-(((1-(2-((1-(2-(Didodecylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)-1H-1,2,3-triazol-4-yl)methyl)azanediyl)diacetic acid (7b):

To a stirred solution of **7a** (28 mg, 0.030 mmol) in THF (0.15 mL) was added an aqueous solution of LiOH (2 equiv., 0.15 mL). The reaction mixture was stirred for 18 h at r.t., and the solvent removed *in vacuo*. The residue was re-suspended in CHCl₃ (5 mL), washed with aqueous citric acid solution (5% w/v, 5 mL), the organic phase dried over MgSO₄ and the solvent removed *in vacuo* to yield deprotected sensor **7b** as an orange residue (14.0 mg, 53%). ¹H NMR (400 MHz, MeOD) δ_{H} 8.72-8.66 (m, 2H, H_g and H_J), 8.50 (s, 1H, H_I), 8.24 (d, *J* = 5.6, 1H, H_I), 7.98 (s, 1H, H_e), 7.96 (d, *J* = 5.2, 1H, H_k), 7.91-7.86 (m, 1H, H_h), 5.49 (s, 2H, H_f), 5.34 (s, 2H, H_d), 4.35 (s, 2H, H_m), 3.73 (s, 4H, H_n), 3.39-3.11 (m, 2H, H_c – obscured by solvent peak), 1.68-1.46 (m, 4H, H_b), 1.37-1.13 (m, 36H, alkyl-H), 0.89-0.84 (m, 6H, H_a). ¹³C NMR (101 MHz, MeOD) δ_{C} 166.5, 164.5, 164.0, 156.7, 144.3, 140.3, 133.1, 132.2, 131.8, 131.4, 131.0, 130.6, 130.6, 130.1, 129.6, 128.4, 128.3, 127.6, 127.1, 125.0, 124.9, 123.8, 121.2, 51.8, 49.6, 47.7, 35.9, 32.8, 30.5, 30.4, 30.4, 30.2, 30.1, 29.6, 28.3, 27.7, 27.6, 23.5, 14.4. IR: (v max/cm⁻¹) 3357 (broad), 2923, 2854, 1705, 1661, 1588, 1465, 1423, 1377, 1235, 1120, 1052, 952, 785. HRMS (EI) calcd for C₄₈H₆₉N₉O₇ [M + H]⁺ 884.5393, found 884.5391. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 344 (9173) 2-(4-((6-(4-((1,4,8,11-Tetraazacyclotetradecan-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)methyl)-1H-1,2,3-triazol-1-yl)-N,N-didodecylacetamide (8b):

Compound **8a** (50 mg, 0.040 mmol) was dissolved in a solution of TFA (20%) in CH₂Cl₂ (1 mL), and for 6 h at r.t. The reaction mixture was concentrated *in vacuo*, re-suspended in CHCl₃ (5 mL) and washed with aqueous NaOH (1 M, 5 mL). The organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to yield deprotected sensor **8b** as a yellow residue (34.0 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.72-8.64 (m, 2H, H_g and H_j), 8.30 (d, *J* = 8.5, 1H, H_i), 8.15 (s, 1H, H_i), 7.90 (s, 1H, H_e), 7.85 (d, J = 7.8, 1H, H_k), 7.83-7.78 (m, 1H, H_h), 5.52 (s, 2H, H_f), 5.14 (s, 2H, H_d), 3.98 (s, 2H, H_m), 3.33-3.20 (m, 4H, H_c), 2.84-2.62 (m, 12H, cyclam-H), 2.00-1.87 (m, 2H, H_o), 1.70-1.42 (m, 6H, H_n, H_q, H_p), 1.36-1.12 (m, 40H, H_b (4H), and alkyl-H (36H)), 0.90-0.82 (m, 6H, H_a). ¹³C NMR (101 MHz, CDCl₃) δ_{c} 164.3, 163.4, 162.9, 145.8, 143.5, 138.6, 132.5, 131.1, 129.9, 129.3, 128.6, 126.5, 125.3, 125.2, 123.8, 123.6, 123.0, 55.2, 53.8, 51.0, 50.9, 50.0, 49.4, 48.8, 48.2, 48.0, 47.8, 47.4, 46.9, 35.6, 32.0, 29.7, 29.7, 29.7, 29.6, 29.4, 29.3, 29.2, 28.8, 27.6, 27.1, 26.9, 26.3, 22.8, 14.2. IR: (v max/cm⁻¹) 2927, 2850, 1695, 1578, 1460, 1403, 1368, 1244, 1156, 807, 782. HRMS (EI) calcd for C₅₄H₈₆N₁₂O₃ [M + H]⁺ 951.7019, found 951.7022. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 345 (8389)

(4-(4-((6-(4-((1,4,8,11-Tetraazacyclotetradecan-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)methyl)-1H-1,2,3-triazol-1-yl)butyl)triphenylphosphonium trifluoroacetate (9b):

Compound **9a** (20 mg, 0.016 mmol) was dissolved in a solution of TFA (20%) in CH_2Cl_2 (1 mL), and for 6 h at r.t. The reaction mixture was concentrated *in vacuo*, re-suspended in CHCl₃ (5 mL) and washed with aqueous NaOH (1 M, 5 mL). The organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to yield deprotected sensor **9b** as a yellow residue (12.0 mg, 74%) ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.71-8.64 (m, 2H, Hg and Hj), 8.30 (dd, *J* = 8.6, 0.9, 1H, H_i), 8.16 (s, 1H, H_i), 7.87 (d, *J* = 7.8, 1H, H_k), 7.83-7.58 (m, 16H, H_h and 3 x Ph), 7.80 (s, 1H, H_e), 5.46 (s, 2H, H_f), 4.47 (t, *J* = 6.3, 2H, H_d), 3.98 (s, 2H, H_m), 3.64-3.55 (m, 2H, H_c), 2.87-2.64 (m, 16H, cyclam-H (12H) and H_n + H_o), 2.22 (app. quint, *J* = 6.6, 2H, H_b), 1.99-1.90 (m, 2H, H_q), 1.74-1.65 (m, 2H, H_p), 1.63-1.52 (m, 2H, H_a). ¹³C NMR (101 MHz, CDCl₃) δ_{c} 163.5, 163.1, 145.6, 143.6, 138.7, 138.2, 135.2, 135.2, 133.7, 133.7, 132.6, 131.2, 130.7, 130.6, 129.4, 128.7, 127.2, 126.7, 125.4, 123.8, 123.7, 123.0, 118.5, 117.9, 53.9, 50.9, 49.4, 48.8, 48.7, 47.7, 44.0, 35.8, 29.8, 29.8, 21.2, 19.4. ¹⁹F NMR (376MHz, CDCl₃) δ_{c} -75.0. ³¹P NMR (162 MHz, CDCl₃) δ_{c} 24.3. IR: (v max/cm⁻¹) 3509 (b), 2966, 2943, 1663, 1585, 1482, 1443, 1419, 1363, 1325, 1232, 1167, 1108, 1030, 863, 802. HRMS (EI) submitted calcd for [M – anion]⁺ 874.4429, found 874.4425. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 345 (10549)

2-(4-((6-(4-((1,4,8,11-Tetraazacyclotetradecan-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-(dimethylamino)ethyl)acetamide (10b):

Compound **10a** (20.0 mg, 0.016 mmol) was dissolved in a solution of TFA (20%) in CH₂Cl₂ (1 mL), and for 6 h at r.t.. The reaction mixture was concentrated *in vacuo*, re-suspended in CHCl₃ (5 mL) and washed with aqueous NaOH (1 M, 5 mL). The organic phase was dried over MgSO₄ and the solvent was removed *in vacuo* to yield deprotected sensor **10b** as a yellow residue (8.9 mg, 63%) ¹H NMR (400 MHz, CDCl₃) δ_{H} 8.72-8.66 (m, 2H, H_h + H_k), 8.31 (d, *J* = 6.5, 1H, H_j), 8.15 (s, 1H, H_m), 7.87 (d, *J* = 7.8, 1H, H₁), 7.84 (s, 1H, H_m), 7.81 (dd, *J* = 7.4, 8.5, 1H, H_i and H_i), 6.57 (br s, 1H, H_d), 5.53 (s, 2H, H_g), 4.99 (s, 2H, H_e), 3.98 (s, 2H, H_n), 3.28 (q, *J* = 5.7, 2H, H_c), 2.85-2.60 (m, 16H, H_o and H_p and cyclam-H), 2.33 (t, *J* = 6.0, 2H, H_b), 2.13 (s, 6H, H_a (2 x CH₃)), 1.96-1.89 (m, 2H, H_r), 1.70-1.62 (m, 2H, H_q). ¹³C NMR (101 MHz, CD₃CN) δ_{C} 168.4, 164.4, 163.8, 160.9, 160.7, 160.5, 144.1, 138.8, 132.9, 131.6, 130.4, 129.6, 129.6, 127.1, 127.0, 126.6, 124.9, 118.3, 116.0, 58.5, 55.5, 52.9, 50.7, 49.0, 47.9, 47.7, 45.9, 45.5, 44.1, 36.1, 35.7, 31.0, 24.7, 23.4, 18.2. IR: (v max/cm⁻¹). UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 345 (11800)

6-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)-2-(3-(4-((((2R,3R,4S,5S,6R)-3,4,5trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (11b):

Following a modified literature procedure^h, sensor **11a** (25 mg, 0.026 mmol) was dissolved in MeOH (0.5 mL) and NaOMe (0.3 eq) was added to the solution. The reaction mixture was stirred for 4 h, and evaporated to dryness *in vacuo* to yield deprotected sensor **11b** as a yellow residue (16.0 mg, 79%). ¹H NMR (400 MHz, MeOD) δ_{H} 8.84-8.77 (m, 2H, H₁ + H₀), 8.60 (s, 1H, H_q), 8.58-8.55 (m, 2H, H_w), 8.33 (d, *J* = 8.6, 1H, H_n), 8.17 (s, 1H, H_h), 8.07 (d, *J* = 7.8, 1H, H_p), 8.04-7.98 (m, 1H, H_m), 7.90 (td, *J* = 7.7, 1.6, 2H, H_u), 7.86-7.81 (m, 2H, H_t), 7.41-7.35 (m, 2H, H_m), 5.01 (d, *J* = 12.5, 1H, one of H_g), 4.86-4.82 (m, 1H, one of H_g – obscured by solvent peak, identified by cross peak on COSY), 4.66 (t, *J* = 6.8, 2H, H_k), 4.48 (d, *J* = 7.7, 1H, H_f), 4.39 (t, *J* = 7.0, 2H, H_i), 4.16 (s, 2H, H_r), 4.06 (s, 4H, H_s), 4.00 (dd, *J* = 12.1, 1.6, 1H, one of H_a), 3.80 (dd, *J* = 11.8, 5.3, 1H, one of H_a), 3.50-3.40 (m, 3H, H_c and H_d and H_e – obscured by solvent peak, identified by cross peak on COSY), 3.34 (dd, *J* = 9.0, 7.8, 1H, H_b), 2.54 (quint, *J* = 7.0, 2H, H_j). ¹³C NMR (101 MHz, CDCl₃) δ_c 159.8, 149.3, 145.3, 139.4, 138.5, 133.2, 131.8, 130.1, 127.5, 125.2, 124.8, 123.7, 120.7, 103.1, 95.6, 77.7, 77.6, 74.7, 71.4, 62.7, 62.6, 60.5, 49.8, 49.6, 38.7. IR: (v max/cm⁻¹) 3378 (broad), 2929, 2831, 1699, 1659, 1623, 1592, 1476, 1434, 1394, 1352, 1268, 1233, 1103, 1082, 1046, 996, 842. HRMS (EI) calcd for C₃₉H₄₀N₁₀O₈ [M + H]⁺ 777.3103, found 777.3104. UV: λ_{max} (CH₂Cl₂)/nm (ε / mol⁻¹cm⁻¹dm³) 345 (13126).

3) UV and Fluorescence Spectroscopic Characterisation

a) Sensor 6 - for full aggregation phenomena studies see Section 4.

Fig. S1 UV-vis absorption spectrum of sensor 6 (MeCN)

Fig. S2 Fluorescence response of sensor **6** (50 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S3 Fluorescence response of sensor **6** (100 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm.

Fig. S4 Fluorescence response of sensor **6** (100 μ M) with increasing amounts of Zn²⁺ in MeCN (ambient temperature, λ_{ex} = 347 nm).

Fig. S5 UV-vis absorption spectrum of sensor 7b (MeCN)

Fig. S6 Fluorescence response of sensor **7b** (100 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S7 Fluorescence response of sensor **7b** (100 μ M) with increasing amounts of Zn²⁺ in MeCN (ambient temperature, λ_{ex} = 347 nm).

c) Sensor 8b

Fig. S8 UV-vis absorption spectrum of sensor 8b (MeCN)

Fig. S9 Fluorescence response of sensor **8b** (50 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S10 Fluorescence response of sensor **8b** (100 μ M) with increasing amounts of Zn²⁺ in MeCN (ambient temperature, λ_{ex} = 347 nm.

d) Sensor 9b

Fig. S11 UV-vis absorption spectrum of sensor 9b (MeCN)

Fig. S12 Fluorescence response of sensor **9b** (50 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm

Fig. S13 Fluorescence response of sensor **9b** (100 μ M) with increasing amounts of Zn²⁺ in MeCN (ambient temperature, λ_{ex} = 347 nm).

d) Sensor 10b

Fig. S14 UV-vis absorption spectrum of sensor 10b (MeCN)

Fig. S15 Fluorescence response of sensor **10b** (100 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (10 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm.

Fig. S16 Fluorescence response of sensor **10b** (100 μ M) with increasing amounts of Zn²⁺ in MeCN (ambient temperature, λ_{ex} = 347 nm).

Fig. S17 UV-vis absorption spectrum of sensor 11b (MeCN)

Fig. S18 Fluorescence response of sensor **11b** (50 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S19 Fluorescence response of sensor **11b** (100 μ M) with increasing amounts of Zn²⁺ in MeCN (ambient temperature, λ_{ex} = 347 nm).

g) Determination of Kd values for sensors 8b, 9b, 10b, and 11b

Fluorescence titration was used to determine the dissociation constant (K_d) and F(max) of probes **8b**, **9b**, **10b**, and **11b** in HEPES buffer (1% DMSO). Each sensor was titrated at a constant sensor concentration of 50 μ M with increasing equivalents of Zn²⁺ and the fluorescence output (F) measured. The relative increase in fluorescence (F/F(0)) was plotted against the ratio of probe to Zn²⁺ (CM/CL) and fit to the 1:1 binding isotherm (equation shown in Fig. S20) using the non-linear regression function of Graphpad Prism 5.⁹ The values obtained are tabulated in Table S1. In the case of probes **9b** and **10b** that target the lysosome and mitochondria respectively titrations were also performed at the relevant pH of the organelle. The poor fitting of sensors **9b** and **11b** is currently under investigation.

$$\frac{F}{F(0)} = 1 + \left(\frac{F(max)}{2F(0)} - 0.5\right) \times \left(1 + \frac{CM}{CL} + \frac{Kd}{CL} - \left[\left(1 + \frac{CM}{CL} + \frac{Kd}{CL}\right)^2 - \frac{4CM}{CL}\right]^{0.5}\right)$$

Fig. S20 Equation used to determine K_d values for sensors **8b**, **9b**, **10b** and **11b** where CM and CL concentrations of Zn^{2+} and probe respectively, F is the observed fluorescence, F(0) is the observed fluorescence of the probe alone (ie CM = 0). Non-linear regression analysis was used to determine F(max)/F(0) and K_d .

Fig. S21 Example titration plot and non-linear curve fitting of Sensor 8b.

Sensor	K _d (calculated)	F(max)/F(0)	R ²	K _d Lit. value ^{2,10}
8b	2.96 x10 ⁻⁶ (pH7.4)	4.3	0.9926	4.3 x 10 ⁻⁸ M ⁻¹
9b	2.13 x10 ⁻⁷ (pH 7.4)	3.1	0.7438	4.3 x 10 ⁻⁸ M ⁻¹
	1.85 x10 ⁻⁷ (pH 7.8)	3.3	0.7150	
10b	9.80 x10 ⁻⁸ (pH 7.4)	11.5	0.9223	4.3 x 10 ⁻⁸ M ⁻¹
	1.38 x10 ⁻⁷ (pH 5.8)	10.0	0.9019	
11b	2.12 x10 ⁻⁷ (pH 7.4)	2.6	0.6482	$1.2 \times 10^{-8} \text{ M}^{-1}$

Table S1 Values for K_d and F(max)/F(0) obtained by non-linear regression analysis.

4) Aggregation Studies of Sensor 6

The aggregation of probe **6** was studied by investigating the effect of concentration on its response to Zn^{2+} , the effect of solvent composition and dynamic light scattering.

a) Effect of Probe Concentration of the Fluorescence Response of Probe 6

Fig. S22 Fluorescence response of the titration of sensor **6** (100 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm.

Fig. S24 Fluorescence response of the titration of sensor **6** (10 μ M) with increasing amounts of Zn²⁺ in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S25 Graphical representation of the red-shift in λ_{em} upon binding of 1 equiv. Zn²⁺ with sensor **6** (100 μ M) in aqueous buffer (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S26 HEPES/MeCN titration of sensor 6 (100 μ M) (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

Fig. S27 HEPES/MeCN titration of sensor **6** (100 μ M) with 5 equiv. of Zn²⁺ (0.1 mM HEPES, pH 7.4, ambient temperature, λ_{ex} = 347 nm).

b) Dynamic Light Scattering Study

Dynamic light scattering (DLS) experiments were performed at a sensor concentration of 30 μ M in HEPES buffer (1% DMSO). Sensor **6** demonstrates aggregation phenomena in aqueous solution, as demonstrated by the large particle size observed in these samples. The aggregates are at their largest with no Zn²⁺ present; in the presence of Zn²⁺ the particle size decreases greatly, coinciding

with an increase in fluorescence emission upon addition of Zn^{2+} to the sensor. Samples containing **11b** on the other hand, structurally similar to **6** but with a different biological targeting unit, show no significant aggregation as demonstrated by the low degree of scattering and poor signal quality, demonstrating the difference small structural changes can have on the behaviour of these probes.

• Sensor 6

Size Distribution Report by Intensity $_{\rm v2.2}$

ample Details							
Samp	ole Name:	JP2107 Water 30	uM 0 1				
S	OP Name:	mansettings.nan	0				
Gene	General Notes:		ated from recor	d number(s): 1 2 3			
F	ile Name:	ZET0002884.dts		Dispersant Name	e: Water		
Record	Number:	16		Dispersant R	l: 1.330		
N	laterial RI:	1.59		Viscosity (cP)	: 0.8872		
Material Abs	sorbtion:	0.010	Measure	ement Date and Time:	04 October	2013 10:15:43	
ystem							
Tempera	ture (℃):	25.0		Duration Used (s)	: 50		
Count Rat	e (kcps):	155.5 Measure		ement Position (mm):	1.25		
Cell Des	cription:	Disposable sizing cuvette		Attenuator: 7			
Results							
				Size (d.nm):	% Intensity:	St Dev (d.n	
Z-Averag	e (d.nm):	772.6	Peak 1:	732.1	98.6	222.7	
	Pdl:	0.250	Peak 2:	5011	1.4	603.9	
	Intercept:	0.972	Peak 3:	0.000	0.0	0.000	
Result	quality :	Refer to quality	report				
		:	Size Distributio	n by Intensity			
25 1							
-							
20 -		• • • • • • • • • • • • • • • • • • • •	•••••	· · · · · · · · · · · · · · · · · · ·			
cent)							
/ (Per							
fisual 10							
lnté							
5 -			:				
0			:				
0.	1	1	10	100	1000	10000	
			Size	e (d.nm)			

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002884.dts Record Number: 16 04 Oct 2013 10:17:13 • Sensor 6 + 1 equiv. Zn^{2+} :

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

Sample N	Name:	JP2-107 30uM 1 zi	inc 1			
SOP	Name:	mansettings.nand)			
General N	lotes:					
File	Name:	ZET0002894.dts		Dispersant Na	me: Water	
Record Nur	nber:	2		Dispersan	t RI: 1.330	
Mate	rial RI:	1.59		Viscosity (cP): 0.9781	
Material Absorb	otion:	0.010	Measure	ement Date and Tin	ne: 17 October	2013 14:38:36
ystem						
Temperature	e (°C):	21.0		Duration Used	(s): 70	
Count Rate (k	cps):	191.6	Measur	ement Position (mr	n): 4.65	
Cell Descrip	otion:	Disposable sizing	cuvette	Attenu	lator: 7	
esults						
				Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d	.nm):	260.6	Peak 1:	290.0	100.0	113.5
	PdI:	0.165	Peak 2:	0.000	0.0	0.000
Inte	ercept:	0.968	Peak 3:	0.000	0.0	0.000
Result qua	lity :	Good				
		S	ize Distributio	n by Intensity		
16		· · · · · · · · · · · · · · · · · · ·			·····	
14		•••••	•••••	••••••	·····	••••••
12 - · · ·	•••••			· · · · · · · · · · · · · · · · · · ·		
10 - · · ·		• • • • • • • • • • • • • • • • • • • •		•••••••		••••••
8 · · · · 8						
fi 6 + · · ·						
4						
2						
2						
0.1		1	10	100	1000	10000
			Size	(d.nm)		
			Record 2: JP2	-107 30uM 1 zinc 1		

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 2 23 Oct 2013 09:50:58 • Sensor 6 + 5 equiv. Zn^{2+} :

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

San	nple Name:	JP2-107 30uM 5	zinc 1			
	SOP Name:	mansettings.nar	10			
Gen	eral Notes:					
	File Name:	ZET0002894.dts		Dispersant Na	me: Water	
Recor	d Number:	3		Dispersan	t RI: 1.330	
	Material RI:	1.59		Viscosity (cP): 0.9781	
aterial A	bsorbtion:	0.010	Measure	ement Date and Tim	ne: 17 October	2013 14:45:15
Tempe	rature (℃):	21.0		Duration Used	(s): 80	
Count Ra	ate (kcps):	150.6	Measure	ement Position (mn	n): 4.65	
Cell D	escription:	Disposable sizing	g cuvette	Attenu	lator: 7	
				Size (d.nm):	% Intensity:	St Dev (d.n
Z-Avera	ige (d.nm):	226.1	Peak 1:	243.2	96.6	94.35
	Pdl:	0.210	Peak 2:	4769	3.4	737.7
	Intercept:	0.969	Peak 3:	0.000	0.0	0.000
Resul	t quality :	Good				
			Size Distribution	n by Intensity		
14	ļ	:	:	: ^	:	:
12	2			••••••		
_윤 10	,					
ercer	,+ ,+					
ty (Pe	_					
tensi	-	:		÷ .	÷	:
<u>د</u>	-					
2	2			••••••		
()					· · · · · · · · · · · · · · · · · · ·
	0.1	1	10 Size	100 (d.nm)	1000	10000
			SILC			
	San Gen Record laterial A Count Ra Cell D Z-Avera Result 14 12 (uuuus) 8 (14 12 10 8 8 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10	Sample Name: SOP Name: General Notes: File Name: Record Number: Material RI: Interial Absorbtion: Count Rate (kcps): Cell Description: Cell Description: Pdl: Intercept: Result quality :	Sample Name: JP2-107 30uM 5 SOP Name: mansettings.nar General Notes: File Name: ZET0002894.dts Record Number: 3 Material RI: 1.59 Jaterial Absorbtion: 0.010 Temperature (C): 21.0 Count Rate (kcps): 150.6 Cell Description: Disposable sizin Cell Description: Disposable sizin Intercept: 0.969 Result quality: Good	Sample Name: JP2-107 30uM 5 zinc 1 SOP Name: mansettings.nano General Notes: File Name: ZET0002894.dts Record Number: 3 Material RI: 1.59 iaterial Absorbtion: 0.010 Measure Temperature (C): 21.0 Count Rate (kcps): 150.6 Measure Cell Description: Disposable sizing cuvette Z-Average (d.nm): 226.1 Peak 1: PdI: 0.210 Peak 2: Intercept: 0.969 Peak 3: Result quality: Good Size Distribution 14 10 10 10 10 10 10 10 10 10 10	Sample Name: JP2-107 30uM 5 zinc 1 SOP Name: mansettings.nano General Notes: File Name: ZET0002894.dts Dispersant Na Record Number: 3 Dispersan Material RI: 1.59 Viscosity (i laterial Absorbtion: 0.010 Measurement Date and Tim Temperature (°C): 21.0 Duration Used Count Rate (kcps): 150.6 Measurement Position (mr Cell Description: Disposable sizing cuvette Attenu Z-Average (d.nm): 226.1 Peak 1: 243.2 Pdi: 0.210 Peak 2: 4769 Intercept: 0.969 Peak 3: 0.000 Result quality: Good Size Distribution by Intensity 14 10 10 10 Size (d.nm):	Sample Name: JP2-107 30uM 5 zinc 1 SOP Name: mansettings.nano General Notes: Dispersant Name: Water Record Number: 3 Dispersant RI: 1.330 Material RI: 1.59 Viscosity (CP): 0.9781 Iaterial Absorbtion: 0.010 Measurement Date and Time: 17 October Temperature (°C): 21.0 Duration Used (s): 80 Count Rate (kcps): 150.6 Measurement Position (mm): 4.65 Cell Description: Disposable sizing cuvette Attenuator: 7 Z-Average (d.nm): 226.1 Peak 1: 243.2 96.6 PdI: 0.210 Peak 2: 4769 3.4 Intercept: 0.969 Peak 3: 0.000 0.0 Result quality: Good Size Distribution by Intensity Just of the size (d.nm): 90 90 90 90 90 90 90 90 0.00 0.00 0.00 0.00 0.00 0.00

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 3 23 Oct 2013 09:52:03 • Sensor 6 + 15 equiv. Zn^{2+} :

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

JP2-107 30uM 15	zinc 1			
mansettings.nand)			
ZET0002894.dts		Dispersant Nar	me: Water	
4		Dispersant	RI: 1.330	
1.59		Viscosity (c	:P): 0.9781	
0.010	Measure	ement Date and Tim	ie: 17 October	2013 14:50:33
21.0		Duration Used	(s): 70	
185.7	Measure	ement Position (mm	n): 4.65	
Disposable sizing	cuvette	Attenu	ator: 7	
		Size (d.nm):	% Intensity:	St Dev (d.n
247.2	Peak 1:	279.7	100.0	116.4
0.187	Peak 2:	0.000	0.0	0.000
0.972	Peak 3:	0.000	0.0	0.000
Good				
S	ize Distributior	n by Intensity		
· · · · · · · · · · · · · · · · · · ·		·····	:	
			·····	
	:	·····		
		••••••••••••••••		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••	·····	
				· · · · · · · · · · · · · · · · · · ·
1	10	100	1000	10000
	Size	(d.nm)		
	247.2 0.187 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972	2ET0002894.dts 4 1.59 0.010 Measure 21.0 185.7 Measure 247.2 Peak 1: 0.187 Peak 2: 0.972 Peak 3: Good Size Distributio 1 10	JP2-107 30UM 15 zinc 1 mansettings.nano ZET0002894.dts Dispersant Nar 4 Dispersant 1.59 Viscosity (c 0.010 Measurement Date and Tim 21.0 Duration Used 185.7 Measurement Position (mm Disposable sizing cuvette Attenu 247.2 Peak 1: 279.7 0.187 Peak 2: 0.000 0.972 Peak 3: 0.000 Good Size Distribution by Intensity 1 10 100 Size (d.nm): 1 10	JP2-107 30UM 15 zinc 1 mansettings.nano ZET0002894.dts Dispersant Name: Water 4 Dispersant RI: 1.330 1.59 Viscosity (cP): 0.9781 0.010 Measurement Date and Time: 17 October 21.0 Duration Used (s): 70 185.7 Measurement Position (mm): 4.65 Disposable sizing cuvette Attenuator: 7 Size (d.nm): % Intensity: 247.2 Peak 1: 279.7 100.0 0.187 Peak 2: 0.000 0.0 Good Size Distribution by Intensity

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 4 23 Oct 2013 09:51:30

• Sensor **11b** blank:

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

Sample Name:	JP2-156D 30u	4 0 zinc 1				
SOP Name:	mansettings.n	ano				
General Notes:						
File Name:	ZET0002894.dt	ts	Dispersant Na	me: Water		
Record Number:	5		Dispersant	t RI: 1.330		
Material RI:	1.59		Viscosity (cP): 0.9781		
Material Absorbtion:	0.010	Measure	ement Date and Tim	ne: 17 October	2013 14:56:37	
stem						
Temperature (℃):	21.0		Duration Used	(s): 70		
Count Rate (kcps):	116.7	Measure	ement Position (mn	n): 4.65		
Cell Description:	Disposable sizi	ng cuvette	Attenu	ator: 10	10	
esults						
			Size (d.nm):	% Intensity:	St Dev (d.n	
Z-Average (d.nm):	552.7	Peak 1:	144.9	91.5	15.18	
Pdl	0.638	Peak 2:	16.53	8.5	1.176	
Intercept:	1.03	Peak 3:	0.000	0.0	0.000	
Result quality :	Refer to quali	Refer to quality report				
		Size Distribution	n by Intensity			
50	· · · · · · · · · · · · · · · · · · ·	:	:	:		
	:	:		÷	:	
40 ₽						
30 - · · · · · ·						
ty (Pe					-	
20				·····		
=						
				÷	-	
0	·····i	i / \		1000		
0.1	1	10 Siza	100 (d.nm)	1000	10000	
		5120	(

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 5 23 Oct 2013 09:52:30 • Sensor **11b** + 1 equiv. Zn^{2+} :

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

Sample Name	: JP2-156D 30	uM 1 zinc 1			
SOP Name	: mansettings.	nano			
General Notes	:				
File Name	e: ZET0002894.	dts	Dispersant N	ame: Water	
Record Number	6		Dispersa	nt RI: 1.330	
Material R	l: 1.59		Viscosity	(cP): 0.9781	
Material Absorbtion:	0.010	Measure	ement Date and Ti	me: 17 Octobe	2013 15:02:53
vstem					
Temperature (℃):	21.0		Duration Use	d (s): 60	
Count Rate (kcps):	337.7	Measure	ement Position (m	im): 4.65	
Cell Description:	Disposable si	izing cuvette	Atten	uator: 10	
esults					
			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm)	452.2	Peak 1:	226.4	100.0	27.00
P	dl: 0.468	Peak 2:	0.000	0.0	0.000
Intercep	t: 1.01	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to qua	ality report			
		Size Distributio	n by Intensity		
50	:	:	·····	····· :	
40					
40 					
u 30					
ty (Pe					
20+					
E 10+·····					
0					
0.1	1	10 Size	100 (d.nm)	1000	10000
		Decord 6, ID2	156D 20uM 1 zinc 1		

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 6 23 Oct 2013 09:52:51 • Sensor **11b** + 5 equiv. Zn^{2+} :

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

mansettings.n	ano				
ZET0002894.dt					
ZET0002894.dt					
	ts	Dispersant Na	me: Water		
7		Dispersan	t RI: 1.330		
1.59		Viscosity (cP): 0.9781		
0.010	Measure	ement Date and Tin	ne: 17 October	2013 15:08:06	
21.0		Duration Used	(s): 60		
302.3	Measure	ement Position (mr	n): 4.65		
Disposable sizi	Disposable sizing cuvette		lator: 10	10	
		Size (d.nm):	% Intensity:	St Dev (d.n	
1791	Peak 1:	214.1	100.0	12.08	
: 1.000	Peak 2:	0.000	0.0	0.000	
1.25	Peak 3:	0.000	0.0	0.000	
Refer to quali	ty report				
	Size Distributio	n by Intensity			
:	:	:	····· :	:	
			·····		
· · · · · · · · · · · · · · · · · · ·			••••••		
			••••••		
		•••••••••••••••••••••••••••••••••••••••			
			· · · · · · · · · · · · · · · · · · ·		
1	10	100	1000	10000	
	Size	(a.nm)			
	Record 7: IP2-	156D 30uM 5 zinc 1			
	1.59 0.010 21.0 302.3 Disposable sizi 1791 1.000 1.25 Refer to quali	1.59 0.010 Measure 21.0 302.3 Measure Disposable sizing cuvette 1791 Peak 1: 1.000 Peak 2: 1.25 Peak 3: Refer to quality report Size Distribution 1 10 Size Record 7: JP2-	7 Dispersion 1.59 Viscosity (0.010 Measurement Date and Tin 21.0 Duration Used 302.3 Measurement Position (mr Disposable sizing cuvette Attenu Size (d.nm): 1791 Peak 1: 21.1 : 1.000 Peak 2: 0.000 1.25 Peak 3: 0.000 Refer to quality report Size Distribution by Intensity 1 1 10 100 Size (d.nm)	7 Uspersam Ri. 1.50 1.59 Viscosity (cP): 0.9781 0.010 Measurement Date and Time: 17 October 21.0 Duration Used (s): 60 302.3 Measurement Position (mm): 4.65 Disposable sizing cuvette Attenuator: 10 Size (d.nm): % Intensity: 1791 Peak 1: 214.1 100.0 : 1.000 Peak 2: 0.000 0.0 1.25 Peak 3: 0.000 0.0 Refer to quality report Size Distribution by Intensity 1 10 10 Size Distribution by Intensity Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspa="2"Colspan="2"Colspa="2"Colspan="2"Colspan="2"C	

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 7 23 Oct 2013 09:53:06 • Sensor **11b** + 15 equiv. Zn^{2+} :

Size Distribution Report by Intensity $_{\rm v2.2}$

Sample Details

			SIZ	e (u.nin)		
	0.1	1	10	100	1000	10000
	o					
_	20					
Intens	40					
ity (Pe	40					
ercent	60					
1	80					
	_					
	100					
		S	ize Distributio	n by Intensity		
Res	sult quality :	Refer to quality	report			
	Intercept:	1.29	Peak 3:	0.000	0.0	0.000
	Pdl:	1.000	Peak 2:	0.000	0.0	0.000
Z-Av	erage (d.nm):	1679	Peak 1:	216.2	100.0	10.22
SUITS				Size (d.nm):	% Intensity:	St Dev (d.n.
Cel	Description:	Disposable sizing	cuvette	Attenua	tor: 10	
Tem	perature (℃): t Pate (kcps):	21.0	Measur	Duration Used (s	s): 60 · 465	
tem						
Materia	Absorbtion:	0.010	Measure	ement Date and Time	: 17 October	2013 15:14:23
	Material RI:	1.59		Viscosity (cP): 0.9781	
Rec	ord Number:	8		Dispersant F	RI: 1.330	
	File Name:	ZET0002894.dts		Dispersant Nam	e: Water	
G	eneral Notes:					
	SOP Name:	mansettings.nand	0			
-	sample Name:	JP2-156D 300M 1	5 ZINC I			

Malvern Instruments Ltd www.malvern.com Zetasizer Ver. 7.02 Serial Number : MAL500457 File name: ZET0002894 Record Number: 8 23 Oct 2013 09:53:20

5) Response of Probe 6 to Other Metal Ions

Fig. S29 Fluorescence response of sensor **6** (100 μ M) in HEPES buffer (1% DMSO) to 5 equiv of metal ions (cations were used as the perchlorate salt).

6) Experimental Procedures for the Evaluation of Sensors in Pancreatic Islets

Female CD1 mice (8-12 weeks of age) were housed under specific pathogen free conditions with ad libitum access to food and water. Animals were euthanized by cervical dislocation before isolation of islets by collagenase digestion, as previously described (PMID: 20204627). Animal procedures were approved by the Home Office according to the Animals (Scientific Procedures) Act 1986 of the United Kingdom (PPL 70/7349). Following 24-48 h culture, islets were incubated for 60 min. with the sensor under study before imaging using a Zeiss Axiovert 200 inverted widefield stereomicroscope. Illumination was delivered through a 20× 0.4NA objective (LD Plan Neofluar) using a halogen light source and a DAPI filter set (λ_{ex} = 365/12, λ_{em} = 447/60). Emitted signals were detected using a highly-sensitive 1344 x 1024 CCD camera (Hamamatsu ORCA-ER). Throughout, islets were incubated at 36 °C and irrigated with HEPES-bicarbonate buffer (120 mM NaCl, 4.8 mM KCl, 24 mM NaHCO₃, 0.5 mM Na₂HPO₄, 5 mM HEPES, 2.5 mM CaCl₂ and 1.2 mM MgCl₂) saturated with 95% O₂/5% CO₂ and adjusted to pH 7.4. Offline signal analysis was performed using Volocity (Perkin Elmer) and Igor Pro (Wavemetrics) softwares. For two-photon imaging of probe distribution, islets were incubated with sensor as above before imaging using a Leica SP5 multiphoton microscope equipped with a 25× 0.95NA water-dipping objective adjusted for infrared wavelengths (HCX IRAPO). Two-photon excitation was achieved using a Spectraphysics Mai Tai femtosecond-pulsed laser (λ_{ex} = 850 nm) and emitted signals were collected using a PMT (λ_{em} = 400-550 nm). Image analysis was performed using Image J (NIH).

a) Cytotoxicity Assay

Islets were incubated with 3 μ M calcein-AM (Life Technologies) and 2.5 μ M propidium iodide (PI; Sigma-Aldrich) before detection of absorbance/emission at 491/525nm and 561/620nm, respectively. Calcein AM is a vital stain and requires cleavage by intracellular esterases for

fluorescence. Conversely, PI is a necrosis stain which only enters the nucleus in membranecompromised cells. The islet area occupied by dead cells was expressed as a unitary ratio versus that occupied by live cells. Non-multifactorial pairwise comparisons were performed using Student's ttest. Interactions between multiple treatments were assessed using Kruskal-Wallis test followed by pairwise comparisons using Dunn's post-hoc test. In all cases, analysis was performed using Graphpad Prism (Graphpad Software) and results considered significant at P<0.05.

Fig. S30: Cytotoxicity assays for probes **6**, **9b** and **10b**. A. Incubation of mouse islets with probes **6**, **9b** and **10b** does not significantly induce cell death (necrosis) versus DMSO-alone (1:333) (NS, non-significant; P<0.54). B. Representative images showing calcein and PI staining in islets treated with DMSO and probes **6**, **9b** and **10b**. Below is a positive control (Triton X-100; to permeabilise the membrane).

a) Live imaging of dye co-localisation

MIN6 beta cells were incubated for 1-2 h with each Zn^{2+} -binding probe (30 µM for probes **6** and **9b**; 300 µM for probe **10b** before 30 min incubation with either 200 nM Mitotracker Red FM or 200 nM Lysotracker DND-99 (both Life Technologies). Cells were washed three times with PBS before live-imaging using a confocal microscope equipped with an acousto optical beam splitter (AOBS) and spectral detectors (Leica TCS SP5). The Zn^{2+} -binding probes were excited using a 405 nm diode laser and emissions collected at 460/70 nm (63 x oil-immersion objective; NA 1.4). The organelle-specific dyes were excited using a 543 HeNe laser and emitted light captured using PMTs centred on 650/50 nm and 595/50 nm for Mitotracker and Lysotracker, respectively. Analysis of co-localisation was performed after background fluorescence correction using the Pearson's correlation coefficient embedded within the Intensity Correlation Analysis (ICA) plugin for ImageJ (NIH). Uniform linear adjustments were applied to contrast/brightness to improve image quality for analysis/presentation purposes.

Fig. S31: Cellular distribution of probes **6**, **9b** and **10b**. A. Probe **9b**, expected to sequester in mitochondria, is co-localised with Mitotracker. B. Probe **6**, expected to aggregate at the plasma membrane, does not co-localise with Mitotracker. C. Probe **10b**, expected to aggregate in lysosomes, does not co-localise with Mitotracker. D. Probe **10b** co-localises with Lysotracker, a marker of acidic organelles. E. Probe **9b** does not co-localise with Lysotracker, further confirming its mitochondrial specificity. Scale bar represents 10 μm.

Fig. S32 Statistical analysis of probe localisation with a) mito- and b) lyso-tracker.

Image analysis demonstrates that the signals from probe **9b** and Mitotracker are strongly correlated. By contrast, fluorescence from both probe **10b** and probe **6** poorly correlates with that of the organelle-specific dye (*P<0.05 and **P<0.01 versus probe **9b**) (Kruskal-Wallis test). Note that some co-localisation is still apparent due to the inability to fully resolve sub-cellular structures close to the diffraction limit. We also observe a strong correlation between probe **10b** and Lysotracker DND-99, but not probe **9b** and the organelle-specific dye (**P<0.001 probe 11b versus probe **10b**) (Student's t-test).

7) NMR Spectroscopic Characterisation

a) Compounds reported in the manuscript

¹H NMR of **2**

¹³C NMR of **2**

1 H NMR of **3**

¹³C NMR of **3**

¹H NMR of **4**

$^{\rm 13}C$ NMR of ${\bf 4}$

¹H NMR of **5**

¹³C NMR of **5**

¹H NMR of **6**

¹³C NMR of **6**

¹H NMR of **7a**

¹³C NMR of **7a**

¹H NMR of **8a**

¹³C NMR of **8a**

¹H NMR of **9a**

¹³C NMR of **9a**

³¹P of **9a**:

¹⁹F of **9a**:

¹H NMR of **10a**

¹³C NMR of **10a**

1H NMR of **11a**

13C NMR of **11a**

¹H NMR of **7b**

¹³C NMR of **7b**

¹H NMR of **8b**:

¹³C NMR of **8b**:

¹H NMR of **9b**

¹³C NMR of **9b**

³¹P of **9b**:

¹⁹F of **9b**:

¹H NMR of **10b**:

¹³C NMR of**10b**:

1H NMR of **11b**:

13C NMR of **11b**:

b) Starting materials, intermediates and other compounds

¹H NMR of **S9**

³¹P of **S15**:

¹⁹F of **S15**:

1H NMR of **\$16**

13C NMR of **S16**

References:

- 1) L. Fabbrizzi, F. Foti, M. Licchelli, P. Maccarini, D. Sacchi and M. Zema, Chem. Eur. J., 2002, 8, 4965.
- 2) E. Tamanini, A. Katewa, L.M. Sedger, M.H. Todd and M. Watkinson, Inorg. Chem. 2009, 48, 319
- 3) Y. Zhou, K. Liu, J-Y. Li, Y. Fang, T-C. Zhao and C. Yao, Org. Lett., 2011, 13, 1290.
- 4) T. Kuhn and H. Schwalbe, J. Am. Chem. Soc., 2000, **122**, 6169.
- 5) X. Chen, G.N. Khairallah, R.A.J. O'Hair and S.J. Williams, *Tetrahedron Lett.*, 2011, **52**, 2750.
- 6) P.M. Levine, K. Imberg, M.J. Garabedian and K. Kirshenbaum, J. Am. Chem. Soc., 2012, 134, 6912.
- 7) T. Gunnlaugsson, D. F. Brougham, A-M. Fanning, M. Nieuwenhuyzen, J. E. O'Brien and R. Viguier; *Org. Lett.*, 2004, **6**, 4805.
- 8) R. Daly, G. Vaz, A.M. Davies, M.O. Senge and E.M. Scanlan, Chem. Eur. J., 2012, 18, 14671
- 9) P Thordarson, Chem. Soc. Rev., 2011, 40, 1305
- 10) S Huang, RJ Clark and L Zhu, Org. Lett., 2007, 9, 4999