Supporting Information for

Methylviologen-templated layered bimetal phosphate: a multifunctional X-ray-induced photochromic material

Junbiao Wu, Chunyao Tao, Yi Li, Yan Yan, Jiyang Li* and Jihong Yu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P. R. China)

E-mail: lijiyang@jlu.edu.cn; jihong@jlu.edu.cn

Empirical formula	$C_{6}H_{12}NO_{14}P_{3}Zn_{3}Mn_{0.5}$
Formula weight	638.66
Temperature	296(2) K
Wavelength (Å)	0.71073
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	
<i>a</i> (Å)	9.4416(9)
<i>b</i> (Å)	9.5014(9)
<i>c</i> (Å)	9.8153(9)
α (deg)	107.922(2)
β (deg)	91.314(2)
γ (deg)	92.350(2)
Volume (Å ³)	836.50(14)
Z, calculated density (mg m^{-3})	2, 2.536
Absorption coefficient (mm ⁻¹)	4.990
F (000)	629
Crystal size (mm ³)	$0.250 \times 0.240 \times 0.220$
θ range (°) for data collection	2.160-26.371
Limiting indices	$-11 \le h \le 11, -11 \le k \le 10, -12 \le l \le 10$
Reflections collected/unique	5367/3406, [$R(int) = 0.0238$]
Completeness to θ (%)	25.242, 99.8
Absorption correction	semi-empirical from equivalents
Refinement method	full-matrix least-squares on F^2
Data/restraints/parameters	3406/47/254
Goodness-of-fit on F^2	1.049
Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0434, wR_2 = 0.1129$
R indices (all data)	$R_1 = 0.0556, wR_2 = 0.1207$
Largest diff. peak and hole (eÅ-3)	1.189 and -0.840

Table S1. Crystal data and structure refinement for JU99 [a]

 $aR_1 = \sum (\Delta F / \sum (F_o)), wR_2 = (\sum [w(F_o^2 - F_c^2)]) / \sum [w(F_o^2)^2]^{1/2} \text{ and } w = 1 / [\sigma^2 (F_o^2) + (0.0595P)^2 + 2.8937P] \text{ where}$ $P = (F_o^2 + 2F_c^2) / 3$

Fig. S1 Thermal ellipsoids of JU99 given at 50% probability, showing the atomic labelling scheme.

Fig. S2 Temperature dependence of χ_m and χ_m^{-1} for JU99 at 1000 Oe, suggesting that JU99 possesses paramagnetic property.

Fig. S3 EPR spectrum of JU99 at 123K, showing the characteristic six hyperfine lines with high resolution of Mn^{2+} ions.

Fig. S4 HT-PXRD patterns of JU99 recorded from room temperature to 400 °C with a heating rate of 10°C min⁻¹.

Fig. S5 TGA curve of JU99, showing two stages of weight loss of 21.84% occurring at 200-650°C, corresponding to the loss of the water molecules and the MV²⁺cations.

Fig. S6 PXRD pattern of JU99 after ultrasonic treatment compared with the simulated PXRD pattern of mineral Hopeite.

Fig. S7 ¹H MAS NMR of methylviologen dichloride and JU99 after ultrasonic treatment in D_2O .

Fig. S8 Experimental and simulated PXRD patterns of JU99, X-ray irradiated JU99-X and heating treated JU99-H.

Fig. S9 The emission and excitation spectra of decolored JU99 upon heating treatment.

Fig. S10 SPV spectrum of decolored JU99 upon heating treatment in the absence of an external electric field.