Electronic Supplementary Information for:

Quinoidal Diindenothienoacenes: Synthesis and Properties of New Functional Organic Materials

Gabriel E. Rudebusch, Aaron G. Fix, Hillary A. Henthorn, Chris L. Vonnegut, Lev N. Zakharov, and Michael M. Haley*
Department of Chemistry and Biochemistry and the Materials Science Institute University of Oregon, Eugene, OR 97403-1253 USA

Table of Contents Page
Experimental details S2
Figure S1 - UV-Vis spectra of DI1T and DI2T and their hydrocarbon analogues S10
X-ray crystallography S11
Figure S2 - Pairwise stacking in DI1T-TIPSE S12
Figure S3 - Pairwise stacking in DI1T-TESE S12
Figure S4 - Expanded packing view of 9 S13
Figure S5 - Expanded packing view of $\mathbf{1 3}$ S13
Cyclic Voltammetry S14
Electron Paramagnetic Resonance S15
Figure S6 - Experimental setup S15
Figures S7-9 - EPR spectra of anion radicals of DI1T, DI2T and DI3T S16
Table S1 - Hyperfine coupling constants \& carbon spin densities of anion radicals S16
Computational details S17
Table S2/Figure S10 - Bond alternation in DI1T S35
Table S3/Figure S11 - Bond alternation in DI2T S36
Table S4/Figure S12 - Bond alternation in DI3T S37
References S38
Copies of NMR Spectra S39

Experimental details

General information. Air sensitive manipulations were performed by standard Schlenk line technique. THF and toluene were refluxed with sodium benzophenone ketyl for 24 h prior to distillation and use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride. All other reagents were used without prior purification. 2-Ethoxycarbonylbenzeneboronic acid was purchased from Synthonix, Inc. (Trialkylsilyl)acetylenes were purchased from GFS Chemicals. Chromatography was performed on 230-400 mesh silica gel purchased from Aldrich. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} using a Varian Inova $500\left({ }^{1} \mathrm{H}: 500.11 \mathrm{MHz},{ }^{13} \mathrm{C}: 125.75 \mathrm{MHz}\right)$ or Bruker Avance-III-HD $600\left({ }^{1} \mathrm{H}: 599.98 \mathrm{MHz},{ }^{13} \mathrm{C}: 150.87 \mathrm{MHz}\right)$ NMR spectrometer. Chemical shifts (δ) are expressed in ppm relative to the residual chloroform (${ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: 77.16 \mathrm{ppm}$) reference. UV-Vis spectra were recorded on a HP 8453 UV-Vis spectrometer. High resolution mass spectra were recorded on a JEOL MS-Route mass spectrometer.

Diethyl 2,2'-(thiophene-3,4-diyl)dibenzoate (8) In a dry glass pressure vessel, 2-ethoxycarbonyl-benzeneboronic acid ($6.0 \mathrm{~g}, 31 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(120 \mathrm{mg}, 0.124 \mathrm{mmol})$, SPhos $(100 \mathrm{mg}, 0.248 \mathrm{mmol})$, anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}(10.5 \mathrm{~g}, 49.6 \mathrm{mmol})$ and toluene $(35 \mathrm{~mL})$ were combined. The mixture was sparged with nitrogen (10 min) then 3,4-dibromothiophene (3.0 g , 12.4 mmol) was added via syringe. The vessel was sealed and heated at $100^{\circ} \mathrm{C}$ for 16 h . Upon cooling to rt , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then filtered. The organics were washed with brine then dried over MgSO_{4}. Volatiles were removed under reduced pressure to give an orange oil in quantitative yield. This material can be used directly or purified by silica gel chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) (v/v). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70$ (dd, $J=7.7$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J=7.5,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.92,141.38,136.60,131.98,131.74,130.87,129.40,127.11,122.62,60.84,13.84$. HRMS (ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 381.1161$, found 381.1168.

Diindeno[2,1-b:1', $\left.\mathbf{2}^{\prime}-\boldsymbol{d}\right]$ thiophene-5,7-dione (9). To a solution of the crude diester $\mathbf{8}$ (4.4 g) in ethanol (100 mL) was added aqueous $\mathrm{KOH}(115 \mathrm{mmol}, 5 \mathrm{M})$. The reaction was heated at reflux for 16 h then cooled to rt . The volume was reduced in vacuo (30 mL) and acidified with conc. HCl . The diacid was collected, washed with water and dried. To a suspension of the diacid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added 5 drops DMF. Oxalyl chloride ($4.0 \mathrm{~mL}, 46 \mathrm{mmol}$) was added dropwise via syringe. The reaction was stirred at rt for 3 h then the volatiles were removed in vacuo. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added and the flask was cooled to $0^{\circ} \mathrm{C} . \mathrm{AlCl}_{3}(9.25 \mathrm{~g}, 69 \mathrm{mmol})$ was added and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 16 h . The dark solution was poured onto ice and the precipitate was collected by filtration then washed with water. Recrystallization from $\mathrm{CHCl}_{3}(1.5 \mathrm{~L})$ provided the title compound as orange needles $(1.71 \mathrm{~g}, 46 \%$ from 3,4dibromothiophene). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$; limited solubility of the title compound hindered acquisition of ${ }^{13} \mathrm{C}$ NMR spectra; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }: 313,440$ (br) nm; HRMS (EI+) calcd for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$289.0245, found 288.0240 .

9

DI1T-TIPSE. In a dry two-neck flask, (triisopropylsilyl)acetylene ($0.8 \mathrm{~mL}, 3.45 \mathrm{mmol}$) was added to THF (5 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of n-butyllithium ($3.1 \mathrm{mmol}, 1.6 \mathrm{M}$) was added dropwise then stirred for 5 min . In a second flask, dione 9 ($200 \mathrm{mg}, 0.69 \mathrm{mmol}$) was suspended in THF (25 mL) at $0^{\circ} \mathrm{C}$. The (triisopropylsilyl)ethynyllithium solution was transferred via syringe to the dione suspension and stirred for 30 min . The reaction was quenched with
saturated $\mathrm{NH}_{4} \mathrm{Cl}$ soln (50 mL). The organics were extracted with EtOAc ($2 \times 50 \mathrm{~mL}$), washed with brine and dried over MgSO_{4}. The volatiles were removed under reduced pressure, then the crude material was passed through a short plug of silica, eluting first with hexanes then EtOAc. The polar fractions were combined and reduced in vacuo. Toluene (15 mL) was added and the solution was degassed thoroughly under dynamic vacuum. Finely ground $\mathrm{SnCl}_{2}(400 \mathrm{mg}, 10.4$ mmol) was added then further degassed under dynamic vacuum. The slurry was stirred for 3 h at rt , then poured onto a plug of silica and eluted with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes. Removal of the volatiles under reduced pressure provided the title compound ($270 \mathrm{mg}, 63 \%$) as a green solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 42 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.77,148.89$, 144.03, 130.77, 130.19, 125.78, 124.37, 120.68, 116.32, 105.90, 99.70, 18.73, 11.28; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon): 266$ (36000), 303 (30000), 311 (30300), 416 (31600), 443 (38400), 655 (br, 6400), 765 (sh, 6000) nm; HRMS (ES+) calcd for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{SSi}_{2}(\mathrm{M}+\mathrm{H})^{+}$619.3250, found 619.3243.

9

DI1T-TESE

DI1T-TESE. The procedure for DI1T-TIPSE was adapted with (triethylsilyl)acetylene ($521 \mathrm{mg}, 3.71 \mathrm{mmol}$), n-butyllithium ($3.34 \mathrm{mmol}, 1.6 \mathrm{M}$) and $9(214 \mathrm{mg}, 0.74 \mathrm{mmol})$ to provide the title compound ($147 \mathrm{mg}, 37 \%$) as a green solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 18 \mathrm{H}), 0.77(\mathrm{q}, J=7.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.79$, $148.73,144.01,130.66,130.11,125.80,124.35,120.62,116.17,106.53,99.06,7.63,4.48$; HRMS (ES+) calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{SSi}_{2}\left(\mathrm{M}^{+}\right) 534.2233$, found 534.2208.

10

2-Benzoyl-3,4-dibromothiophene (10). $\mathrm{AlCl}_{3}(15 \mathrm{~g}, 125 \mathrm{mmol})$ was added in three portions to a stirred solution of 3,4-dibromothiophene ($10.0 \mathrm{~g}, 41.3 \mathrm{mmol}$) and benzoyl chloride $(8.7 \mathrm{~g}, 62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction was stirred for 16 h . The dark solution was poured onto ice, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) and washed successively with aqueous $\mathrm{NaOH}(1 \mathrm{M})$ and brine. The organic phases were combined and dried over MgSO_{4}. Removal of volatiles by reduced pressure provided the title compound (13.13 g, 92\%) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H})$, $7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=8.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.38$, 136.87, 136.82, 133.42, 129.86, 128.56, 128.08, 118.19, 116.67; HRMS (ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{SBr}_{2}\left(\mathrm{M}^{+}\right), 343.8506$ found 343.8521 .

Ethyl 6-bromo-3-phenylthieno[3,2-b]thiophene-2-carboxylate (11). To a solution of $\mathbf{1 0}$ $(13.13 \mathrm{~g}, 37.9 \mathrm{mmol})$ in DMF (50 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(15.7 \mathrm{~g}, 113.8 \mathrm{mmol})$ and the reaction was rigorously degassed under dynamic vacuum. With stirring, ethyl thioglycolate ($4.79 \mathrm{~g}, 39.8$ mmol) was added dropwise via syringe and then the reaction was heated at $60^{\circ} \mathrm{C}$ for 1 d . After cooling, the mixture was poured into water $(100 \mathrm{~mL})$. The solids were collected and washed with water. Recrystallization from ethanol (500 mL) provided $\mathbf{1 1}(11.2 \mathrm{~g}, 80 \%)$ as tan needles. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 4 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.29$ $(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 162.08,141.75,141.14,140.77,133.72,129.21$, $129.05,128.82,128.30,128.17,103.14,61.36,14.08$; HRMS (ES+) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Br}$ $(\mathrm{M}+\mathrm{H})^{+} 366.9462$, found 366.9454 .

Diester 12. In a dry glass pressure vessel, 2-ethoxycarbonylbenzeneboronic acid (581 mg , $2.99 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(25 \mathrm{mg}, 0.027 \mathrm{mmol})$, SPhos ($22 \mathrm{mg}, 0.054 \mathrm{mmol}$), anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}(1.15$ $\mathrm{g}, 5.44 \mathrm{mmol}), \mathbf{1 1}(1.00 \mathrm{~g}, 2.72 \mathrm{mmol})$ and toluene $(10 \mathrm{~mL})$ were combined. The mixture was sparged with nitrogen (10 min). The vessel was sealed and brought to $100^{\circ} \mathrm{C}$ for 16 h . Upon cooling to rt the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then filtered. The organics were washed with brine and dried over MgSO_{4}. Removal of volatiles under reduced pressure provides the title compound in quantitative yield. This material can be used directly or purified by silica gel chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) (v/v) to give a yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 8.01(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.58$, $162.35,141.73,141.01,140.94,134.82,134.78,134.28,131.91,131.07,130.61,130.55,129.17$, 128.61, 128.44, 128.21, 127.88, 127.84, 61.23, 61.09, 14.10, 13.71; HRMS (ES+) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~S}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 437.0881$, found 437.0875 .

Indeno[2,1-b] indeno[1', 2':4,5]thieno[2,3-d]thiophene-6,12-dione (13). To a solution of 12 $(0.98 \mathrm{~g}, 2.25 \mathrm{mmol})$ in ethanol (100 mL) was added aqueous $\mathrm{KOH}(12 \mathrm{mmol}, 1.5 \mathrm{M})$. The reaction was heated at reflux for 16 h then cooled to rt . The volume was reduced in vacuo (to 20 mL) and acidified with conc. HCl . The diacid was collected, washed with water and dried. To a suspension of the diacid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added DMF (5 drops). Oxalyl chloride (1.0
$\mathrm{mL}, 11.2 \mathrm{mmol}$) was added dropwise via syringe. The reaction was stirred at rt for 3 h then the volatiles were removed in vacuo. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{AlCl}_{3}(3.0 \mathrm{~g}, 22.3 \mathrm{mmol})$ was added as a solid. The reaction was allowed to warm to rt and stir for 16 h . The dark solution was poured onto ice and the precipitate was collected by filtration. Successive washes with water and acetone gave the title compound ($630 \mathrm{mg}, 79 \%$) as a magenta solid. Limited solubility hindered acquisition of NMR spectra; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}: 370,490$, 522 (sh) nm; HRMS (EI+) calcd for $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 343.9966$, found 343.9959.

DI2T-TIPSE. To a solution of (triisopropylsilyl)acetylene ($527 \mathrm{mg}, 2.9 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added n-butyllithium ($2.6 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) dropwise. In a separate flask, $13(200 \mathrm{mg}, 0.58 \mathrm{mmol})$ was suspended in THF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The (triisopropylsilyl)ethynyllithium solution was transferred to the dione suspension via syringe then sonicated for 10 min . After quenching with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the organics were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried over MgSO_{4}. The volume was reduced in vacuo and passed through a short plug of silica, eluting with EtOAc. Volatiles were removed under reduced pressure. Toluene (15 mL) was added and the flask was rigorously degassed under dynamic vacuum. Finely ground $\mathrm{SnCl}_{2}(250 \mathrm{mg}, 1.25 \mathrm{mmol})$ was added and the reaction was stirred for 3 h. The mixture was passed through a plug of silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$. Evaporation of the volatiles provided the title compound ($260 \mathrm{mg}, 66 \%$) as a dark blue solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{td}, J$ $=7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 42 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.07,147.30,146.98$, 139.43, 129.62, 128.82, 125.51, 122.65, 120.76, 114.77, 105.47, 99.95, 18.76, 11.30; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\varepsilon): 267$ (22100), 444 (13100), 477 (11800), 652 (br, 15100) nm; HRMS (ES+) calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~S}_{2} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$674.2893, found 674.2892.

3,5-Dibromodithieno[3,2-b:2',3'-d]thiophene. In a 3-neck flask, tetrabromodithieno[3,2$\left.b: 2^{\prime}, 3^{\prime}-d\right]$ thiophene ${ }^{1}(2.7 \mathrm{~g}, 5.3 \mathrm{mmol})$ in glacial $\mathrm{AcOH}(150 \mathrm{~mL})$ was brought to reflux. Zn powder ($3.44 \mathrm{~g}, 53 \mathrm{mmol}$) was added to the suspension. The reaction was refluxed for a further 30 min and then hot filtered through a fritted funnel. The solution was allowed to cool to rt , then the crude product was precipitated by the addition of water. The solids were collected by filtration. Recrystallization from chloroform provided the title compound as colorless needles ($450 \mathrm{mg}, 24 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 7.31$ (s); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) δ $142.74,130.84,123.16,103.90$. These spectroscopic data correspond to previously reported data. ${ }^{2}$

Diester 14. In a dry glass pressure vessel, 3,5 -dibromodithieno $\left[3,2-b: 2^{\prime}, 3^{\prime}-d\right]$ thiophene (450 $\mathrm{mg}, 1.27 \mathrm{mmol}$), 2-ethoxycarbonylbenzeneboronic acid ($754 \mathrm{mg}, 3.18 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(12 \mathrm{mg}$, 0.013 mmol), SPhos ($24 \mathrm{mg}, 0.05 \mathrm{mmol}$), anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{~g}, 5.1 \mathrm{mmol})$ and toluene (15 mL) were combined and sparged with nitrogen (10 min). The vessel was sealed and brought to $100{ }^{\circ} \mathrm{C}$ for 24 h . Upon cooling to rt the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then filtered. The organics were washed with brine and dried over MgSO_{4}. Removal of volatiles under reduced pressure provided the title compound in quantitative yield. This material can be used directly or purified by silica gel chromatography (20% EtOAc/hexanes) (v/v) to give a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58-7.54 (m, 4H), 7.50-7.42 (m, 2H), 7.23 $(\mathrm{s}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.76$, $142.24,135.53,135.00,131.73,131.27,130.42,130.40,130.18,128.25,122.45,61.13,13.75$; HRMS (ES+) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~S}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 493.0602$, found 493.0601 .

Diindenodithieno[3,2-b:2',3'-d]thiophene-3,13-dione (15). To a solution of 14 (0.50 g , $2.25 \mathrm{mmol})$ in ethanol $(100 \mathrm{~mL})$ was added aqueous $\mathrm{KOH}(14.3 \mathrm{mmol}, 1.4 \mathrm{M})$. The reaction was heated at reflux for 16 h then cooled to rt . The volume was reduced in vacuo (to 15 mL) and acidified with conc. HCl . The diacid was collected, washed with water and dried. To a suspension of the diacid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added DMF (5 drops). Oxalyl chloride (0.35 $\mathrm{mL}, 11.2 \mathrm{mmol}$) was added dropwise via syringe. The reaction was stirred at rt for 3 h then the volatiles were removed in vacuo. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{AlCl}_{3}(1.0 \mathrm{~g}, 22.3 \mathrm{mmol})$ was added as a solid and the reaction was stirred for 1 h . The dark solution was poured onto ice and the precipitate was collected by filtration. Successive washes with water and acetone gave the title compound ($328 \mathrm{mg}, 81 \%$) as a red solid. Limited solubility hindered acquisition of NMR spectra; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }: 296,481,514 \mathrm{~nm}$; HRMS (EI+) calcd for $\mathrm{C}_{22} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{3}\left(\mathrm{M}^{+}\right) 399.9686$, found 399.9700 .

DI3T-TIPSE. To a solution of (triisopropylsilyl)acetylene ($227 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added n-butyllithium ($1.12 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes) dropwise. In a separate flask, 15 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) was suspended in THF (25 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. The (triisopropylsilyl)ethynyllithium solution was transferred to the dione suspension via syringe then sonicated for 10 min . After quenching with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the organics were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried over MgSO_{4}. The volume was reduced in vacuo and passed through a short plug of silica, eluting with EtOAc. Volatiles were removed under reduced pressure. Toluene (15 mL) was added and the flask was rigorously degassed under dynamic vacuum. Finely ground $\mathrm{SnCl}_{2}(250 \mathrm{mg}, 1.25 \mathrm{mmol})$ was added and the reaction was stirred for 10
min. The mixture was passed through a plug of silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$. Evaporation of the volatiles provided the title compound ($131 \mathrm{mg}, 72 \%$) as a deep purple solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 42 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.91,146.56,143.92,142.96$, $138.51,129.20,128.52,125.08,122.04,120.72,113.17,105.36,100.45,18.78,11.34$; UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon): 256$ (32300), 320 (8000), 513 (27600), 553 (39400), 683 (19600), 740 (sh, $16600) \mathrm{nm} ;$ HRMS (ES+) calcd for $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{~S}_{3} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{H})^{+} 731.2691$, found 731.2711 .

Fig. S1 Comparison of the electronic absorption spectra of DI1T-TIPSE and DI2T-TIPSE with the analogous indeno[2,1-c]fluorene and fluoreno[3,4-c]fluorene cores.

X-ray Crystallography

General. Diffraction intensities for DI1T-TIPSE, DI2T, DI1T-TESE, 9 and 13 were collected at 100(2) K and for DI3T at 150(2) K on a Bruker Apex 2 CCD diffractometer with a micro-focus $I \mu S$ source using $\mathrm{CuK} \alpha$ radiation $\lambda=1.54178 \AA$ or a sealed X-ray tube with a triumph monochromator, $\mathrm{MoK} \alpha$ radiation $\lambda=0.71073 \AA$ (9 only). Absorption corrections were applied by SADABS. ${ }^{3}$ Structures were solved by direct methods and Fourier techniques and refined on F^{2} using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. All H atoms were refined in calculated positions in a rigid group model. The Flack parameter for non-centrosymmetrical structure of 9 is $0.00(15)$. The structures of DI2T and DI1T-TESE have two symmetrically independent molecules. One of terminal $-i-\mathrm{Pr}$ groups in DI3T is disordered over two positions in ratio 42/58. X-ray diffraction from crystals of DI2T, DI1T-TESE and 13 at high angles were very weak; even with a strong Incoatec $I \mu S \mathrm{Cu}$ source we could collected data only up to $2 \theta_{\max }=114.98^{\circ}, 120.0^{\circ}$ and 132.0°, respectively. All calculations were performed by the Bruker SHELXTL (v. 6.10) package. ${ }^{4}$

Fig. S2 Additional views of the pairwise arrangement for DI1T-TIPSE.

Fig. S3 Pairwise slipped stack of DI1T-TESE.

Fig. S4 Expanded packing view of dione 9.

Fig. S5 Expanded packing view of dione 13.

Cyclic Voltammetry

All electrochemical experiments were conducted in a traditional 3-electrode geometry using a Solartron 1287 potentiostat. Electrolyte solutions (0.1 M) were prepared from HPLC-grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anhydrous $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$, and the solutions were freeze-pump-thaw degassed (3x) prior to analysis. Cyclic voltammetry was conducted under a nitrogen atmosphere. The working electrode was a glassy carbon electrode (3-mm diameter), with a Pt-coil counter electrode and Ag wire pseudo reference. The ferrocene/ ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple was used as an internal standard following each experiment. Potential values were re-referenced to SCE using a value of 0.46 (V vs. SCE) for the $\mathrm{Fc} / \mathrm{Fc}^{+}$couple in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. When necessary, potentials were re-referenced to NHE using SCE $=-0.24$ (V vs. NHE). LUMO and HOMO levels were approximated using SCE $=-4.68 \mathrm{eV}$ vs. vacuum. ${ }^{5}$ Cyclic voltammetry experiments were conducted at sweep rates of 50 (reported), 75,100 and $125 \mathrm{mV} \mathrm{s}^{-1}$. All scan rates show quasi-reversible kinetics with no alteration of peak splitting with scan rate. $\mathrm{E}_{1 / 2}$ values were calculated assuming $\mathrm{E}_{1 / 2} \approx \mathrm{E}^{0}=\left(\mathrm{E}_{\text {anodic }}\right.$ $\left.+\mathrm{E}_{\text {cathodic }}\right) / 2$ based on these observations for reversible couples; for irreversible couples the E^{0} value is estimated as the potential at peak current. The $\mathrm{E}_{\mathrm{a}, \mathrm{c}}$ peak splitting of the $\mathrm{Fc} / \mathrm{Fc}^{+}$couple was similar to that of the analyte ($\sim 100 \mathrm{mV}$). The anodic peak current increases linearly with the square root of the scan rate in the range 50 to $125 \mathrm{mV} \mathrm{s}^{-1}$, indicating a diffusion-controlled process. Analyte concentrations were ca. 1-5 mM.

Electronic Paramagnetic Resonance

Experimental details. An apparatus (Fig. S6) was constructed from borosilicate glass and dried in a $100^{\circ} \mathrm{C}$ oven. The apparatus was then cooled to rt under nitrogen and approximately 0.05 mg of DI[n]T was collected on a melting point capillary that was open on both ends and deposited at point A. Potassium metal was added at point B and then opening C was sealed with an oxygen/natural gas torch. Vacuum was pulled (ca. 10^{-6} torr) and K metal was sublimed with a Bunsen burner, resulting in a metal mirror inside D. The apparatus was then sealed at point E. Dry THF (approx. 1 mL) from a NaK still was directly distilled through the vacuum system to A and the apparatus was sealed at point F . Controlled exposure to the potassium mirror resulted in formation of $\mathrm{DI}[\mathrm{n}] \mathrm{T}$ radical anion, from which the EPR spectra in Figs. S5-S7 were obtained. The EPR spectra were collected on a Bruker EMX-080 spectrometer.

Fig. S6 Apparatus used for generation of anion radical.

EPR Computational Details. To determine the hyperfine coupling constants for the hydrogen and silicon nuclei coupled with the anion radical, the EPR spectra were simulated with the EasySpin ${ }^{6}$ package utilizing MATLAB code. ${ }^{7}$ DFT calculations were performed for the gas phase molecules using Gaussian09 Revision C. 01^{8} and the results were used to assign the HFCC and carbon spin density locations (Table S1). These computations were carried out at the UB3W91/6-311++G(2df,2pd)//UCAM-B3LYP/6-31++G(d,p) level of theory.

Fig. S7 EPR spectrum of DI1T ${ }^{-}$.

Fig. S8 EPR spectrum of DI2T ${ }^{-}$.

Table S1 Hyperfine Coupling Constants and
Carbon spin densities (ρ_{c}).

	DI1T	DI2T	DI3T
$\mathrm{C}(\mathrm{A})$	0.034	0.022	0.024
$\mathrm{C}(\mathrm{B})$	0.012	0.016	0.014
$\mathrm{C}(\mathrm{C})$	0.044	0.029	0.028
$\mathrm{C}(\mathrm{D})$	0.004	0.010	0.010
$\mathrm{C}(\mathrm{E})$	0.112	0.103	0.094
$\mathrm{H}(\mathrm{A})$	0.95	0.63	0.63
$\mathrm{H}(\mathrm{B})$	0.35	0.46	0.38
$\mathrm{H}(\mathrm{C})$	1.25	0.82	0.77
$\mathrm{H}(\mathrm{D})$	0.11	0.28	0.27
Si	2.00	1.92	1.88
Q_{H}	28.1	28.2	26.6
$\mathrm{Q}_{\text {Si }}$	17.9	18.6	20

\qquad

Fig. S9 EPR spectrum of DI3T ${ }^{-}$.

Geometry Calculations

DFT calculations were performed for gas phase molecules using the Gaussian09 Revision C.01. ${ }^{8}$ Harmonic frequency analyses, performed at the same level of theory as the minimization, were used to confirm minimized structures.

Cartesian Coordinates

DI1T Neutral
 UCAM-B3LYP/6-31G(d,p)

Zero-point correction=	0.448804 (Hartree/Particle)
Thermal correction to Energy=	0.481967
Thermal correction to Enthalpy=	0.482911
Thermal correction to Gibbs Free Energy=	0.379259
Sum of electronic and zero-point Energies=	-2058.703728
Sum of electronic and thermal Energies=	-2058.670565
Sum of electronic and thermal Enthalpies=	-2058.669621
Sum of electronic and thermal Free Energies=	-2058.773273
NIMAG =0	

C	1.93558	4.11556	-0.00060
C	1.82260	2.73673	0.00025
C	3.21007	4.68787	-0.00134
C	2.98224	1.92787	0.00039
C	4.24123	2.49387	-0.00043
C	4.34546	3.88761	-0.00129
H	5.12629	1.86635	-0.00056
H	5.32724	4.34978	-0.00197
H	1.05689	4.74990	-0.00074
H	3.31141	5.76782	-0.00203
C	2.58279	0.49782	0.00128
C	0.67455	1.82696	0.00094
C	1.22605	0.46961	0.00151
C	3.48230	-0.59110	0.00156
S	-0.00314	-0.78434	0.00212
C	-1.23106	0.47082	0.00153
C	-0.67827	1.82761	0.00099
C	-1.82548	2.73845	0.00041
C	-2.58779	0.50027	0.00113
C	-2.98589	1.93067	0.00049

C	-1.93713	4.11738	-0.00020
C	-4.24428	2.49795	-0.00002
C	-3.21106	4.69094	-0.00073
C	-4.34721	3.89178	-0.00064
H	-1.05782	4.75087	-0.00025
H	-3.31135	5.77098	-0.00121
H	-5.12994	1.87126	0.00010
H	-5.32855	4.35489	-0.00105
C	-3.48759	-0.5882	0.00093
C	4.26800	1.51855	0.00153
Si	5.44268	2.93551	-0.00042
C	-4.27192	-1.51704	0.00060
Si	-5.43894	-2.94056	-0.00053
C	-6.63740	-2.73204	1.43019
C	-4.44445	-4.51988	0.20022
C	-6.36728	-2.95221	-1.63294
C	4.87476	-4.17921	-1.28695
C	5.44532	-3.71522	1.70780
C	7.15304	-2.28615	-0.42501
H	-3.88452	-4.51898	1.13918
H	-3.72743	-4.64272	-0.61587
H	-5.10247	-5.39445	0.20288
H	-6.11060	-2.70409	2.38770
H	-7.34853	-3.56343	1.46294
H	-7.21065	-1.80570	1.33711
H	3.86916	-4.54664	-1.06559
H	5.54809	-5.04165	-1.31499
H	4.85564	-3.73611	-2.28617
H	4.45105	-4.08030	1.97859
H	5.75677	-2.99762	2.47150
H	6.13549	-4.56399	1.74364
H	7.16412	-1.81134	-1.40976
H	7.88358	-3.10100	-0.43824
H	7.49054	-1.54744	0.30704
H	-6.93524	-2.02873	-1.77418
H	-7.07292	-3.78810	-1.67030
H	-5.68142	-3.05482	-2.47804

DI1T Radical Anion

UCAM-B3LYP/6-31++G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=
0.444806 (Hartree/Particle)
0.478102
0.479046
0.375054
-2058.828161
-2058.794866

NIMAG $=0$

C	1.94799	4.11942	0.00310
C	1.83308	2.73021	0.00100
C	3.21242	4.70462	0.00361
C	3.01300	1.92490	-0.00045
C	4.27089	2.52068	-0.00017
C	4.36507	3.91079	0.00198
H	5.16532	1.90406	-0.00199
H	5.34346	4.38340	0.00221
H	1.06232	4.74584	0.00427
H	3.30306	5.78712	0.00523
C	2.62682	0.51601	-0.00248
C	0.70015	1.82703	-0.00023
C	1.23578	0.50367	-0.00224
C	3.50917	-0.57731	-0.00251
S	0.00000	-0.74381	-0.00407
C	-1.23578	0.50367	-0.00223
C	-0.70015	1.82703	-0.00023
C	-1.83308	2.73021	0.00101
C	-2.62682	0.51601	-0.00246
C	-3.01300	1.92490	-0.00043
C	-1.94799	4.11942	0.00311
C	-4.27088	2.52067	-0.00015
C	-3.21241	4.70462	0.00363
C	-4.36507	3.91079	0.00201
H	-1.06232	4.74584	0.00428
H	-3.30306	5.78711	0.00525
H	-5.16532	1.90406	-0.00196
H	-5.34345	4.38340	0.00224

C	-3.50917	-0.57731	-0.00250
C	4.28847	-1.52013	-0.00336
Si	5.42442	-2.93673	0.00093
C	-4.28847	-1.52012	-0.00335
Si	-5.42442	-2.93673	0.00093
C	-5.70944	-3.54927	1.76173
C	-4.69630	-4.34160	-1.02205
C	-7.08060	-2.42031	-0.73782
C	4.69622	-4.34167	-1.02191
C	5.70953	-3.54918	1.76176
C	7.08056	-2.42037	-0.73794
H	-3.72561	-4.65081	-0.62244
H	-4.54105	-4.02936	-2.05921
H	-5.35811	-5.21507	-1.02284
H	-4.76626	-3.85770	2.22313
H	-6.39345	-4.40553	1.77888
H	-6.13788	-2.75819	2.38493
H	3.72557	-4.65085	-0.62221
H	5.35804	-5.21514	-1.02270
H	4.54089	-4.02948	-2.05908
H	4.76637	-3.85757	2.22323
H	6.13802	-2.75806	2.38489
H	6.39354	-4.40544	1.77892
H	6.95664	-2.07507	-1.76888
H	7.78968	-3.25584	-0.74047
H	7.52492	-1.60041	-0.16514
H	-7.52495	-1.60041	-0.16493
H	-7.78971	-3.25579	-0.74040
H	-6.95674	-2.07492	-1.76874

DI1T Dianion

UCAM-B3LYP/6-31++G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
0.442213 (Hartree/Particle)
0.475713
0.476657
0.372411
-2058.797119

Sum of electronic and thermal Free Energies=
-2058.763620

NIMAG $=0$

C	-1.96138	4.10054	0.01211
C	-1.84371	2.70439	0.00652
C	-3.21726	4.69851	0.01847
C	-3.04402	1.90052	0.00746
C	-4.29859	2.52313	0.01394
C	-4.38387	3.91054	0.01938
H	-5.20058	1.91486	0.01461
H	-5.36013	4.39176	0.02441
H	-1.06942	4.72052	0.01145
H	-3.29776	5.78361	0.02274
C	-2.67242	0.50957	0.00102
C	-0.72161	1.80756	-0.00055
C	-1.24168	0.51219	-0.00370
C	-3.54520	-0.57112	-0.00026
S	0.00252	-0.72847	-0.01276
C	1.24609	0.51285	-0.01205
C	0.72540	1.80793	-0.00535
C	1.84709	2.70530	-0.00535
C	2.67682	0.51087	-0.01663
C	3.04781	1.90205	-0.01225
C	1.96399	4.10152	-0.00014
C	4.30196	2.52549	-0.01386
C	3.21951	4.70024	-0.00180
C	4.38655	3.91291	-0.00865
H	1.07167	4.72096	0.00517
H	3.29943	5.78537	0.00220
H	5.20432	1.91777	-0.01967
H	5.36254	4.39469	-0.01005

C	3.54968	-0.56971	-0.02105
C	-4.33915	-1.51613	-0.00131
Si	-5.47090	-2.89818	-0.00313
C	4.34126	-1.51671	-0.02839
Si	5.46945	-2.90140	0.00762
C	6.97412	-2.59983	-1.10675
C	4.61708	-4.48486	-0.58232
C	6.15385	-3.25367	1.74296
C	-5.25356	-4.01577	1.51347
C	-5.25297	-4.01171	-1.52255
C	-7.26553	-2.28942	-0.00239
H	4.26668	-4.37379	-1.61323
H	3.74198	-4.70303	0.03801
H	5.29410	-5.34677	-0.53729
H	6.66070	-2.46141	-2.14636
H	7.68083	-3.43812	-1.06633
H	7.50346	-1.69155	-0.80001
H	-4.22906	-4.39879	1.56319
H	-5.93945	-4.87200	1.48701
H	-5.43698	-3.45376	2.43487
H	-4.22832	-4.39419	-1.57322
H	-5.43653	-3.44738	-2.44250
H	-5.93853	-4.86825	-1.49835
H	-7.46419	-1.67427	0.88113
H	-7.97161	-3.12884	-0.00306
H	-7.46436	-1.67267	-0.88475
H	6.68105	-2.37674	2.13321
H	6.85063	-4.10176	1.74123
H	5.33797	-3.47963	2.43715

DI2T Neutral

UCAM-B3LYP/6-31G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=
0.463062 (Hartree/Particle)
0.498623
0.499567
0.389852
-2533.040684
-2533.005123

NIMAG $=0$

C	4.07561	3.49564	-0.11229
C	3.20184	2.42553	-0.07788
C	1.80398	2.63860	-0.08716
C	1.28393	3.92068	-0.13100
C	1.18186	1.32102	-0.04381
C	2.17037	4.99840	-0.16571
H	0.21176	4.08979	-0.13835
C	3.54523	4.78691	-0.15638
H	1.78196	6.01058	-0.20021
H	4.21720	5.63849	-0.18375
H	5.14807	3.33146	-0.10499
C	3.47382	0.96806	-0.02864
C	2.26383	0.34784	-0.00955
C	4.75780	0.38065	-0.00730
S	1.69141	-1.31324	0.04584
C	0.03465	-0.72812	0.02395
C	-0.03348	0.73074	-0.02549
S	-1.69023	1.31584	-0.04716
C	-2.26267	-0.34524	0.00830
C	-1.18069	-1.31841	0.04249
C	-1.80276	-2.63600	0.08627
C	-3.20062	-2.42295	0.07732
C	-1.28270	-3.91807	0.13045
C	-3.47262	-0.96550	0.02768
C	-4.07444	-3.49300	0.11253
C	-4.75682	-0.37858	0.00620
C	-2.16916	-4.99576	0.16585
H	-0.21054	-4.08720	0.13761

C	-3.54403	-4.78425	0.15694
H	-5.14691	-3.32878	0.10588
H	-1.78075	-6.00792	0.20066
H	-4.21599	-5.63582	0.18502
C	5.86787	-0.11460	0.01072
Si	7.54086	-0.88138	0.03869
C	7.35853	-2.68171	0.53848
C	8.59984	0.04180	1.28481
C	8.28952	-0.75030	-1.67858
H	7.67699	-1.27178	-2.41887
H	9.29024	-1.19324	-1.69931
H	8.37893	0.29253	-1.99449
H	8.16859	-0.01122	2.28800
H	8.69798	1.09772	1.01872
H	9.60609	-0.38647	1.32941
H	6.90672	-2.77443	1.52967
H	8.33457	-3.17600	0.56758
H	6.72821	-3.22759	-0.16863
C	-5.86751	0.11525	-0.01154
Si	-7.54251	0.87760	-0.03825
C	-7.47622	2.49142	0.91892
C	-8.75046	-0.31375	0.76682
C	-8.02979	1.19393	-1.82393
H	-7.17916	2.32397	1.95761
H	-8.45629	2.97862	0.92488
H	-6.75957	3.18732	0.47460
H	-7.32683	1.87389	-2.31248
H	-9.02566	1.64477	-1.87897
H	-8.05049	0.26505	-2.40012
H	-8.46854	-0.52677	1.80141
H	-8.78962	-1.26437	0.22808
H	-9.76070	0.10721	0.77492

DI2T Radical Anion

UCAM-B3LYP/6-31++G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= NIMAG $=0$

C	-4.21159	-3.38926	-0.00394
C	-3.31638	-2.32209	-0.00479
C	-1.91111	-2.57068	-0.00592
C	-1.42996	-3.87850	-0.00620
C	-1.25784	-1.28240	-0.00644
C	-2.33681	-4.93529	-0.00538
H	-0.36109	-4.07301	-0.00706
C	-3.71594	-4.69068	-0.00424
H	-1.97135	-5.95801	-0.00561
H	-4.40836	-5.52791	-0.00363
H	-5.28185	-3.20355	-0.00314
C	-3.54674	-0.87917	-0.00471
C	-2.28392	-0.29342	-0.00581
C	-4.80016	-0.24338	-0.00226
S	-1.64880	1.34103	-0.00591
C	-0.00921	0.70770	-0.00633
C	0.00920	-0.70771	-0.00660
S	1.64880	-1.34104	-0.00635
C	2.28391	0.29341	-0.00559
C	1.25784	1.28239	-0.00590
C	1.91111	2.57067	-0.00485
C	3.31637	2.32209	-0.00376
C	1.42996	3.87849	-0.00465
C	3.54674	0.87917	-0.00422
C	4.21158	3.38925	-0.00246
C	4.80016	0.24338	-0.00195
C	2.33681	4.93528	-0.00339
H	0.36108	4.07300	-0.00549

相
0.459072 (Hartree/Particle)
0.494818
0.495763
0.385295
-2533.175198
-2533.139451
-2533.138507
-2533.248975

C	3.71593	4.69067	-0.00229
H	5.28184	3.20354	-0.00169
H	1.97134	5.95800	-0.00325
H	4.40835	5.52790	-0.00132
C	-5.89532	0.30046	0.00009
Si	-7.51188	1.13178	0.00846
C	-7.25687	2.99101	-0.14876
C	-8.42389	0.76311	1.61691
C	-8.55965	0.52167	-1.43529
H	-8.06651	0.73011	-2.38961
H	-9.54154	1.00827	-1.44483
H	-8.71772	-0.55963	-1.37436
H	-7.84865	1.11356	2.47929
H	-8.57984	-0.31324	1.73958
H	-9.40395	1.25313	1.63854
H	-6.65148	3.37340	0.67866
H	-8.21506	3.52251	-0.14385
H	-6.73625	3.23630	-1.07939
C	5.89532	-0.30046	0.00024
Si	7.51189	-1.13177	0.00841
C	7.25690	-2.99096	-0.14934
C	8.42385	-0.76353	1.61699
C	8.55969	-0.52124	-1.43514
H	6.65151	-3.37359	0.67796
H	8.21510	-3.52244	-0.14457
H	6.73630	-3.23599	-1.08004
H	8.06659	-0.72942	-2.38953
H	9.54159	-1.00782	-1.44479
H	8.71774	0.56005	-1.37391
H	7.84860	-1.11425	2.47925
H	8.57977	0.31278	1.73998
H	9.40393	-1.25353	1.63850

DI2T Dianion

UCAM-B3LYP/6-31++G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= NIMAG $=0$

C	4.26785	3.38184	-0.01673
C	3.37813	2.29933	-0.01833
C	1.95863	2.55021	-0.02045
C	1.48655	3.86803	-0.02107
C	1.30352	1.27556	-0.02133
C	2.38848	4.92602	-0.01961
H	0.41642	4.06204	-0.02268
C	3.77505	4.68087	-0.01742
H	2.02113	5.94968	-0.02012
H	4.46863	5.51933	-0.01630
H	5.33993	3.19867	-0.01518
C	3.60419	0.87589	-0.01804
C	2.29996	0.29414	-0.02008
C	4.84110	0.23817	-0.01184
S	1.64345	-1.33004	-0.02079
C	0.00295	-0.68926	-0.02210
C	-0.00294	0.68926	-0.02217
S	-1.64345	1.33004	-0.02095
C	-2.29996	-0.29414	-0.02011
C	-1.30351	-1.27556	-0.02123
C	-1.95863	-2.55021	-0.02025
C	-3.37813	-2.29933	-0.01817
C	-1.48654	-3.86802	-0.02073
C	-3.60418	-0.87588	-0.01803
C	-4.26785	-3.38184	-0.01648
C	-4.84110	-0.23817	-0.01190
C	-2.38847	-4.92601	-0.01917
H	-0.41641	-4.06203	-0.02230

0.456790 (Hartree/Particle)
0.492717
0.493661
0.383872
-2533.159282
-2533.123355
-2533.122411
-2533.232201

C	-3.77505	-4.68087	-0.01703
H	-5.33993	-3.19866	-0.01496
H	-2.02113	-5.94967	-0.01958
H	-4.46863	-5.51933	-0.01583
C	5.94404	-0.31148	-0.00690
Si	7.53776	-1.12707	0.03143
C	7.33030	-2.99939	-0.12974
C	8.47601	-0.78915	1.64397
C	8.66210	-0.54360	-1.37868
H	8.20645	-0.76314	-2.34944
H	9.64427	-1.03093	-1.33945
H	8.81583	0.53934	-1.32618
H	7.90266	-1.14967	2.50394
H	8.63034	0.28624	1.78130
H	9.45725	-1.28012	1.65278
H	6.70855	-3.39030	0.68175
H	8.29894	-3.51276	-0.09911
H	6.83564	-3.25378	-1.07230
C	-5.94404	0.31148	-0.00703
Si	-7.53776	1.12706	0.03139
C	-7.33050	2.99918	-0.13247
C	-8.47485	0.79134	1.64505
C	-8.66307	0.54160	-1.37712
H	-6.70809	3.39120	0.67798
H	-8.29912	3.51256	-0.10172
H	-6.83662	3.25232	-1.07578
H	-8.20817	0.75989	-2.34851
H	-9.64526	1.02889	-1.33780
H	-8.81666	-0.54128	-1.32306
H	-7.90087	1.15302	2.50412
H	-8.62909	-0.28386	1.78395
H	-9.45608	1.28234	1.65392

DI3T Neutral

UCAM-B3LYP/6-31G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=
0.476970 (Hartree/Particle)
0.515018
0.515962
0.400435
-3007.373585
-3007.335538
-3007.334594

NIMAG $=0$

C	-6.14426	-2.29908	0.00174
C	-4.89363	-1.70945	0.00162
C	-6.22368	-3.69286	0.00177
C	-5.07472	-4.47804	0.00164
C	-3.72473	-2.50607	0.00140
C	-3.81027	-3.88826	0.00143
C	-4.51073	-0.27776	0.00156
C	-2.59609	-1.58565	0.00107
C	-3.15007	-0.24067	0.00119
C	-5.41514	0.80620	0.00162
S	-1.91719	1.01190	0.00067
C	-1.24379	-1.57253	0.00053
C	-0.67621	-0.23443	0.00028
C	0.67622	-0.23443	-0.00029
C	1.24379	-1.57254	-0.00054
S	0.00000	-2.81411	-0.00001
C	2.59609	-1.58565	-0.00107
C	3.15007	-0.24068	-0.00120
S	1.91720	1.01190	-0.00068
C	3.72473	-2.50607	-0.00140
C	4.89364	-1.70946	-0.00161
C	4.51073	-0.27776	-0.00155
C	5.41514	0.80619	-0.00161
H	-2.91685	-4.50493	0.00128
H	-5.16182	-5.55922	0.00167
H	-7.04067	-1.68783	0.00168
H	-7.19764	-4.17128	0.00184
C	3.81027	-3.88826	-0.00143

C	5.07472	-4.47804	-0.00164
C	6.22368	-3.69287	-0.00175
C	6.14426	-2.29909	-0.00172
H	2.91685	-4.50494	-0.00128
H	5.16182	-5.55922	-0.00166
H	7.19764	-4.17128	-0.00182
H	7.04067	-1.68784	-0.00166
C	6.20350	1.73175	-0.00134
Si	7.38808	3.13985	0.00115
C	-6.20350	1.73175	0.00136
Si	-7.38810	3.13984	-0.00115
C	6.82671	4.39115	1.28349
C	7.40236	3.91793	-1.70792
C	9.09226	2.47852	0.43185
C	-7.40305	3.91739	1.70815
C	-9.09209	2.47863	-0.43275
C	-6.82621	4.39155	-1.28286
H	9.09687	2.00532	1.41742
H	9.82886	3.28788	0.44578
H	9.42627	1.73598	-0.29790
H	5.82513	4.76729	1.05846
H	7.50744	5.24775	1.31167
H	6.80089	3.95047	2.28363
H	8.09990	4.76071	-1.74261
H	6.41219	4.29148	-1.98226
H	7.70993	3.19690	-2.46996
H	-5.82470	4.76758	-1.05732
H	-7.50689	5.24820	-1.31099
H	-6.80003	3.95123	-2.28315
H	-7.71084	3.19612	2.46988
H	-8.10064	4.76013	1.74286
H	-6.41299	4.29091	1.98296
H	-9.42642	1.73590	0.29667
H	-9.09626	2.00567	-1.41844
H	-9.82868	3.28799	-0.44680

DI3T Radical Anion

UCAM-B3LYP/6-31++G(d,p)
Zero-point correction= Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= NIMAG $=0$

C	6.18998	-2.32068	0.00125
C	4.93936	-1.70687	0.00111
C	6.26311	-3.71100	0.00113
C	5.10098	-4.49305	0.00088
C	3.75533	-2.50307	0.00084
C	3.84434	-3.89396	0.00074
C	4.56729	-0.29403	0.00106
C	2.63834	-1.58870	0.00071
C	3.17681	-0.26837	0.00089
C	5.45642	0.79531	0.00115
S	1.93882	0.97404	0.00072
C	1.24775	-1.57160	0.00044
C	0.69588	-0.26928	0.00049
C	-0.69229	-0.26898	0.00021
C	-1.24477	-1.57104	-0.00018
S	0.00121	-2.80299	-0.00006
C	-2.63538	-1.58750	-0.00052
C	-3.17328	-0.26694	-0.00026
S	-1.93469	0.97487	0.00027
C	-3.75276	-2.50143	-0.00104
C	-4.93643	-1.70473	-0.00104
C	-4.56377	-0.29204	-0.00052
C	-5.45289	0.79728	-0.00016
H	2.94626	-4.50545	0.00053
H	5.18084	-5.57607	0.00078
H	7.09342	-1.71772	0.00131
H	7.23494	-4.19651	0.00120
C	-3.84241	-3.89226	-0.00154

0.473045 (Hartree/Particle)
0.511285
0.512229
0.396153
-3007.518003
-3007.479764
-3007.478820
-3007.594896

C	-5.09936	-4.49073	-0.00204
C	-6.26113	-3.70815	-0.00203
C	-6.18740	-2.31784	-0.00153
H	-2.94463	-4.50419	-0.00156
H	-5.17972	-5.57372	-0.00244
H	-7.23318	-4.19321	-0.00243
H	-7.09058	-1.71446	-0.00153
C	-6.23505	1.73653	0.00022
Si	-7.38483	3.14656	0.00125
C	6.23663	1.73618	0.00086
Si	7.38182	3.15018	-0.00096
C	-7.10643	4.20854	-1.52998
C	-7.11081	4.20277	1.53725
C	-9.15536	2.50131	-0.00245
C	8.59216	2.99190	-1.43703
C	8.35441	3.19731	1.61291
C	6.39797	4.74511	-0.18300
H	-9.34573	1.88620	-0.88730
H	-9.87491	3.32761	-0.00199
H	-9.34825	1.88303	0.87963
H	-6.07977	4.58606	-1.56149
H	-7.78528	5.06869	-1.54290
H	-7.27297	3.62882	-2.44297
H	-6.08427	4.58025	1.57305
H	-7.27980	3.61954	2.44756
H	-7.78979	5.06278	1.55160
H	5.82900	4.74885	-1.11761
H	7.05952	5.61851	-0.18338
H	5.68434	4.85983	0.63850
H	9.17031	2.06575	-1.36058
H	9.29665	3.83109	-1.45523
H	8.06123	2.97196	-2.39359
H	8.92847	2.27570	1.75039
H	7.68187	3.29827	2.47015
H	9.05536	4.03957	1.62828

DI3T Dianion

UCAM-B3LYP/6-31++G(d,p)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= NIMAG $=0$

C	6.23630	2.32246	-0.00002
C	4.98782	1.68616	-0.00002
C	6.30279	3.70966	-0.00001
C	5.12980	4.48844	-0.00001
C	3.78808	2.48293	-0.00002
C	3.88060	3.87977	-0.00001
C	4.62741	0.29019	-0.00003
C	2.68036	1.57474	-0.00002
C	3.20379	0.27583	-0.00003
C	5.50715	-0.79130	-0.00002
S	1.95893	-0.95867	-0.00003
C	1.25122	1.55585	-0.00002
C	0.71212	0.28281	-0.00003
C	-0.71215	0.28281	-0.00002
C	-1.25125	1.55585	-0.00001
S	-0.00001	2.78121	-0.00001
C	-2.68039	1.57475	-0.00001
C	-3.20383	0.27585	-0.00002
S	-1.95897	-0.95866	-0.00003
C	-3.78810	2.48295	0.00002
C	-4.98785	1.68618	0.00002
C	-4.62745	0.29021	-0.00000
C	-5.50719	-0.79127	-0.00001
H	2.97771	4.48603	-0.00001
H	5.20237	5.57337	-0.00001
H	7.14565	1.72614	-0.00002
H	7.27315	4.20151	-0.00001
C	-3.88062	3.87979	0.00003

0.471050 (Hartree/Particle)
0.509493
0.510437
0.394727
-3007.516246
-3007.477803
-3007.476858
-3007.592569

C	-5.12982	4.48847	0.00005
C	-6.30281	3.70969	0.00005
C	-6.23632	2.32249	0.00004
H	-2.97773	4.48604	0.00003
H	-5.20238	5.57339	0.00006
H	-7.27316	4.20154	0.00007
H	-7.14568	1.72617	0.00004
C	-6.29781	-1.73430	-0.00001
Si	-7.43862	-3.11928	-0.00000
C	6.29778	-1.73432	-0.00002
Si	7.43866	-3.11923	0.00003
C	-7.21031	-4.22179	1.52162
C	-7.21154	-4.22085	-1.52249
C	-9.22451	-2.49378	0.00088
C	7.21083	-4.22142	1.52195
C	9.22451	-2.49359	0.00035
C	7.21131	-4.22115	-1.52216
H	-9.41826	-1.87689	0.88414
H	-9.93767	-3.32673	0.00097
H	-9.41899	-1.87645	-0.88191
H	-6.18709	-4.60834	1.56708
H	-7.89854	-5.07579	1.50656
H	-7.38621	-3.65321	2.44028
H	-7.89976	-5.07487	-1.50742
H	-6.18836	-4.60736	-1.56903
H	-7.38819	-3.65170	-2.44065
H	6.18813	-4.60771	-1.56841
H	7.89956	-5.07514	-1.50703
H	7.38775	-3.65221	-2.44050
H	7.38699	-3.65264	2.44044
H	7.89908	-5.07541	1.50688
H	6.18764	-4.60799	1.56781
H	9.41844	-1.87654	0.88345
H	9.41871	-1.87640	-0.88259
H	9.93774	-3.32649	0.00040

Table S2 Bond distances (\AA) for DI1T-TMSE

bond \#	neutral	radical anion	dianion
1	1.357	1.391	1.431
2	1.456	1.428	1.396
3	1.353	1.400	1.447

Fig. S10 Calculated bond distances upon reduction of DI1T, $\mathrm{R}=$ TMSE.

Table S3 Bond distances (\AA) for DI2T-TMSE

bond \#	neutral	radical anion	dianion
1	1.382	1.393	1.401
2	1.397	1.393	1.389
3	1.391	1.401	1.408
4	1.396	1.393	1.390
5	1.384	1.394	1.400
6	1.414	1.427	1.442
7	1.483	1.461	1.441
8	1.360	1.392	1.428
9	1.456	1.425	1.399
10	1.458	1.444	1.433
11	1.351	1.391	1.432
12	1.461	1.416	1.379

Fig. S11 Calculated bond distances upon reduction of DI2T, R = TMSE.

Fig. S12 Calculated bond distances upon reduction of DI3T, R = TMSE.

References

1 K. Yui, H. Ishida, Y. Aso, T. Otsubo, F. Ogura, A. Kawamoto and J. Tanaka, Bull. Chem. Soc.Jpn., 1989, 62, 1547-1555.

2 J. Frey, A. D. Bond and A. B. Holmes, Chem. Commun., 2002, 2424-2425.
3 G. M. Sheldrick, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, 1998.

4 SHELXTL-6.10 "Program for Structure Solution, Refinement and Presentation" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA.
H. Reiss and A. Heller, J. Phys. Chem., 1985, 89, 4207-4213.

6 S. Stoll and A. Schweiger, J. Magnet. Res., 2006, 178, 42-55.
7 MATLAB; The Mathworks, Inc.
8 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; 2010.

9

 DI1T-TIPSE

GER-2-171-2_H

GER-2-171-2_C

GER-2-089-3_H

11

11

		1																	
30	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	(

12

12

;															
	148	146	144	142	140	138	136	134	132	130	128	126	124	122	12
								m)							

 DI2T-TIPSE

GER-2-119-3_C $\underset{\sim}{\text { Non }}$
 n \cdots \vdots i

 14

M

