Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

Gauging Metal Lewis Basicity of Zerovalent Iron Complexes via Metal-Only Lewis Pairs

Holger Braunschweig,*,[□] Rian D. Dewhurst,[□] Florian Hupp,[□] Christina Kaufmann,[□] Ashwini K. Phukan,^{□,‡} Christoph Schneider,[□] Qing Ye[□]

^IInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany [‡]Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India

Discussion of the synthesis of pentacoordinate [Fe(CO)₄L] and [Fe(CO)₃L₂] precursor complexes.

The complexes [Fe(CO)₄L] (**1b**: L = PMe₃; **1c**: L = CN*t*Bu) and [Fe(CO)₃L₂] (**1d**: L = PMe₃; **1e**: L = IMe = 1,3dimethylimidazol-2-ylidene; **1f**: L = CN*t*Bu), intended for use as precursors in this study, have been previously reported in the literature.¹⁻⁴ However, for the synthesis of the carbene-containing complex **1e**, the literature description was modified slightly, through the use of three equivalents of the carbene ligand IMe per equivalent of iron pentacarbonyl. The ¹H NMR of **1e** exhibited two singlet signals (δ = 3.57 and 6.05) due to the high symmetry of the molecule. Single crystals suitable for X-ray diffraction analysis could be obtained by cooling **1e** in a toluene solution, to -30°C. The structure shows trigonal bipyramidal geometry with the IMe ligands at apical positions (Figure S1).

Fig S1. Molecular structures of **1e** and **1g** in the solid state. Thermal ellipsoids set to 50% probability level. Hydrogen atoms and ellipsoids of methyl groups are omitted for clarity. Selected bond lengths [Å] and angles [°] for **1e**: Fe-C3 1.9819(18), C3'-Fe-C3 168.00(12). For **1g**: Fe-B1 1.841(3), Fe1-B2 1.838(3), B1-B2 2.119(3); B1-Fe-B2 70.34(10), Fe-B1-N1 174.17(19), Fe-B2-N2 172.86(19).

In order to prepare the iron bis(borylene) complex $[(OC)_3Fe\{BN(SiMe_3)_2\}_2]$ (**1g**), the well-established intermetallic borylene transfer⁵ protocol was applied. The reaction of $[Fe(CO)_5]$ with the borylene source $[(OC)_5Mo=BN(SiMe_3)_2]$ (2 eq.) led to near-quantitative formation of the expected product **1g** as was indicated by new ¹¹B and ¹H NMR resonances at δ 84 and 0.27 ppm, respectively. Single crystals suitable for X-ray diffraction analysis were obtained in a 65% yield upon fractional crystallization. The overall geometry of **1g** is analogous to the previously published iron bis(borylene) $[(OC)_3Fe(BDur)\{BN(SiMe_3)_2\}]$ (**A**),⁶ adopting a strongly distorted trigonal bipyramidal geometry (Figure 3). However, the B-B interaction in **1g** is significantly weaker than that in $[(OC)_3Fe(BDur)\{BN(SiMe_3)_2\}]$, which is indicated by both the elongated B-B separation (**1g**: 2.119(3) Å; **A**: 1.982(3) Å), but also a more downfield ¹¹B NMR resonance for the aminoborylene nucleus (**1g**: 84; **A**: δ 78). These data are consistent with the borylene ligands in **1g** being more "borylene-like" than in the mixed derivative **A**.

General Information: All syntheses were performed under an inert atmosphere of dry argon using standard Schlenk techniques or in a glovebox (MBraun). Pentane, hexane, benzene, toluene, THF and CH_2Cl_2 were dried by distillation over potassium (benzene, toluene) or Na/K alloy (hexane, THF) or phosphorus pentoxide (CH_2Cl_2) under argon and stored over activated molecular sieves (4 Å). CD₃CN, C₆D₆ and CD₂Cl₂ were degassed by several *freeze-pump-thaw* cycles and stored over molecular sieves (4 Å). The NMR spectra were recorded on a Bruker AV 400 (¹H: 400 MHz, ¹³C: 100 MHz, ¹¹B: 128 MHz, ³¹P: 162) and/or a Bruker Avance 500 FT-NMR spectrometer (¹H: 500 MHz, ¹¹B: 160 MHz, ¹³C {¹H}: 126 MHz). Chemical shifts are given in ppm and are referenced to external TMS (¹H, ¹³C), [BF₃·OEt₂] (¹¹B{¹H}) or 85% H₃PO₄ (³¹P{¹H}). Coupling constants are given in Hz. Elemental analysis were obtained from an Elementar Vario MICRO cube instrument. Infrared spectra were measured on a JASCO FT/IR-6200 spectrometer. The light source for photochemical experiments was a Hg/Xe arc lamp (400–550 W) equipped with IR filters, irradiating at 210–600 nm. PMe₃,¹ 1,3-dimethylimidazol-2-ylidene,⁷ [Fe(CO)₄(CN*t*Bu)],² [Fe(CO)₃(CN*t*Bu)₂],² [Fe(CO)₄(PMe₃)],³ [Fe(CO)₃(PMe₃)₂],¹ [(OC)₅Mo=BN(SiMe₃)₂]⁸ were prepared according to literature procedures. [Fe(CO)₅] was purchased from Aldrich and *tert*-butylisocyanide from Fluka, both were used without further purification.

Synthesis of $[(OC)_5Fe \rightarrow GaCl_3]$ (2a): GaCl₃ (44.9 mg, 0.26 mmol) was added to a benzene solution (20 mL) of $[Fe(CO)_5]$ (0.03 mL, 50.0 mg, 0.26 mmol). The mixture was shaken, causing an immediate precipitation of a white solid. The mixture was filtered and washed with benzene (3 × 5 mL) and pentane (3 × 5 mL). The residue was recrystallized from CH₂Cl₂/pentane to give 2a (69 mg, 0.18 mmol, 72%) as a white solid. IR (CD₂Cl₂): 2086, 2022, 1986 (v_{CO}) cm⁻¹. ¹³C {¹H} NMR (100 MHz, CD₂Cl₂, 297 K): δ = 211.15 (CO). Elemental analysis (%) calcd. for C₅Cl₃FeGaO₅: C 16.14; Found: C 15.96.

Synthesis of *cis*-[(Me₃P)(OC)₄Fe→GaCl₃] (2b): GaCl₃ (43.3 mg, 0.25 mmol) was added to a benzene solution (20 mL) of [Fe(CO)₄(PMe₃)] (50.0 mg, 0.21 mmol). The mixture was shaken, causing an immediate precipitation of a white solid. The mixture was filtered and washed with benzene (3 × 5 mL) and pentane (3 × 5 mL). The residue was recrystallized from CH₂Cl₂/pentane to give **2b** (76 mg, 0.18 mmol, 90%) as a white solid. IR (CH₂Cl₂): 2107, 2063, 2034, 1926 (v_{CO}) cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 297 K): $\delta = 1.93$ (d, ²*J*_{HP} = 11.5 Hz, 9H, C*H*₃). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 297 K): $\delta = 20.07$, (d, ¹*J*_{CP} = 35.5 Hz, 3C, *C*H₃), 201.63 (CO), 201.89 (CO). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 297 K): $\delta = 9.75$ (s). Elemental analysis (%) calcd. for C₇H₉Cl₃FeGaO₄P: C 20.02; H 2.16. Found: C 19.36, H 2.27.

Synthesis of *cis*-[(*t*BuNC)(OC)₄Fe→GaCl₃] (2c): A procedure similar to that used for the preparation of 2b was applied by using [Fe(CO)₄(CN*t*Bu)] (30.0 mg, 0.12 mmol) and 1.1 equiv of GaCl₃ (23.1 mg, 0.13 mmol) to yield 2c (54 mg, 0.09 mmol, 78%) as a light yellow solid. IR (CH₂Cl₂): 2217 (v_{CN}), 2127, 2071, 2019, 1994 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 297 K): $\delta = 1.60$ (s, 9H, *t*Bu). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 297 K): $\delta = 29.76$ (*C*H₃), 62.80 (*C*(CH₃)₃), 200.90 (*C*O), 210.98 (*C*O). Elemental analysis (%) calcd. for C₉H₉Cl₃FeGaO₄N: C 25.31; H 2.12; N 3.28. Found: C 25.20; H 2.18; N 3.23. Synthesis of *mer,trans*-[(Me₃P)₂(OC)₃Fe→GaCl₃] (2d): A procedure similar to that used for the preparation of 2b was applied by using [Fe(CO)₃(PMe₃)₂] (30.0 mg, 0.10 mmol) and 1.2 equiv of GaCl₃ (21.7 mg, 0.12 mmol) to provide 2d (35 mg, 0.07 mmol, 72%) as a white solid. IR (CH₂Cl₂): 2051, 1990, 1930 (v_{CO}) cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 297 K): $\delta = 1.86$ (d, ²*J*_{HP} = 9.41 Hz, 18H, *CH*₃). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 297 K): $\delta = 20.30-20.85$ (m, 6C, *C*H₃), 206.22 (*C*O), 206.46 (*C*O), 206.70 (*C*O); ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 297 K): $\delta = 11.84$ (s). Elemental analysis (%) calcd. for C₉H₁₈Cl₃FeGaO₃P₂: C 23.09; H 3.88. Found: C: 23.33; H 3.79.

Synthesis of *mer,trans*-[(Me₃P)₂(OC)₃Fe→GaBr₃] (3d): A procedure similar to that used for the preparation of 2b was applied by using [Fe(CO)₃(PMe₃)₂] (20.0 mg, 0.07 mmol) and 1.1 equiv of GaBr₃ (23.3 mg, 0.08 mmol) to provide 3d (31 mg, 0.05 mmol, 76%) as a white solid. IR (CH₂Cl₂): 2051, 1992 (v_{CO}) cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂, 297 K): $\delta = 1.90$ (d, ²*J*_{H-P} = 9.04 Hz, 18H, C*H*₃), ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 297 K): $\delta = 20.14-2046$ (m, 6C, *C*H₃), 207.40 (CO), 207.64 (CO), 207.88 (CO); ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 297 K): $\delta = 12.23$ (s). Elemental analysis (%) calcd. for C₉H₁₈Br₃FeGaO₃P₂: C 17.97; H 3.02. Found: C 18.44; H 3.07.

Synthesis of $[Fe(CO)_3(IMe)_2]$ (1e): A solution of $[Fe(CO)_5]$ (0.35 mL, 510 mg, 2.60 mmol) in 40 mL of thf was treated with 1,3-dimethylimidazol-2-ylidene (556 mg, 5.72 mmol). The reaction mixture was refluxed overnight and the orange solution was separated from the black solid by filtration. Volatiles were removed under vacuum and the resulting crude was recrystallized from toluene/pentane to yield 1e (384 mg, 1.16 mmol, 44%) as an orange solid. IR (CH₃CN): 1812 (v_{CO}) cm⁻¹. ¹H NMR (400 MHz, C₆D₆, 297 K): $\delta = 3.57$ (s, 12H, CH₃), 6.05 (s, 4H, CH_{Imid}). ¹³C{¹H} NMR (100 MHz, C₆D₆, 297 K): $\delta = 39.34$, (CH₃), 122.02 (CH_{Imid}), 195.25 (Fe-*C_{Carbene}*), 223.08 (CO). Elemental analysis (%) calcd. for C₁₃H₁₆FeN₄O₃: C 47.01; H 4.86; N 16.87. Found: C 46.40; H 4.94; N 16.13.

Synthesis of *mer,cis*-[(IMe)₂(OC)₃Fe→GaCl₃] (2e): A procedure similar to that used for the preparation of 2b was applied by using [Fe(CO)₃(IMe)₂] (30.0 mg, 0.09 mmol) and 1.1 equiv of GaCl₃ (17.5 mg, 0.10 mmol) to provide 2e (36 mg, 0.07 mmol, 78%) as a light orange solid. IR (CH₃CN): 2048, 1970, 1918 (v_{CO}) cm⁻¹. ¹H NMR (400 MHz, CD₃CN, 297 K): $\delta = 3.47$ (s, 6H, CH₃), 3.52 (s, 6H, CH₃), 7.14 (s, 2H, CH_{*lmid*}), 7.18 (s, 2H, CH_{*lmid*}). ¹³C{¹H} NMR (100 MHz, CD₃CN, 297 K): $\delta = 37.66$ (CH₃), 38.64 (CH₃), 124.57 (CH_{*lmid*}), 125.14 (CH_{*lmid*}), 173.00 (Fe-C_{Carbene}), 176.59 (Fe-C_{Carbene}), 210.00 (CO), 210.86 (CO). Elemental analysis (%) calcd. for C₁₃H₁₆Cl₃FeGaO₃N₄: C 30.72; H 3.17; N 11.02. Found: C 31.16; H 3.43; N 11.02.

Synthesis of fac,cis-[(tBuNC)₂(OC)₃Fe \rightarrow GaCl₃] (2f): A procedure similar to that used for the preparation of 2b was applied by using [Fe(CO)₃(CNtBu)₂] (50.0 mg, 0.16 mmol) and 1.1 equiv of GaCl₃ (31.6 mg, 0.18 mmol) to yield 2f (54 mg, 0.11 mmol, 69%) as a light yellow solid. IR (CH₂Cl₂): 2213, 2200 (v_{CN}), 2088, 2044, (v_{CO}) cm⁻¹. ¹H NMR (500 MHz, CD₂Cl₂, 297 K): $\delta = 1.54$ (s, 1H, tBu) 1.57 (s, 0.4H, tBu). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 297 K): $\delta =$

29.88 (CH₃), 20.90 (CH₃), 61.23 (C(CH₃)₃), 61.35 (C(CH₃)₃), 199.23 (CO), 204.33 (CO). Elemental analysis (%) calcd. for C₁₃H₁₈Cl₃FeGaO₃N₂: C 32.38; H 3.76; N 5.51. Found: C 32.76, H 3.90, N 5.92.

Synthesis of $[(OC)_3Fe{BN(SiMe_3)_2}_2]$ (1g): A hexane solution (16 mL) of $[Fe(CO)_5]$ (0.08 mL, 120 mg, 0.61 mmol) and $[(OC)_5Mo{BN(SiMe_3)_2}]$ (500 mg, 1.22 mmol) was stirred overnight at 40 °C. The resulting light yellow solution was concentrated to ca. 8 mL, and stored at -30 °C overnight, yielding colorless crystals of $[Mo(CO)_6]$. The light-yellow mother liquor was transferred to another flask by cannula, concentrated to ca. 4 mL and stored at -70 °C for 4 d, yielding 1g (190 mg, 0.39 mmol, 65%) as light-yellow needles. IR (solid): 1917, 1886 (v_{CO}) cm⁻¹. ¹H NMR (500 MHz, C₆D₆, 297 K): 0.27 (s, 36H, SiMe_3). ¹³C{¹H} NMR (126 MHz, C₆D₆, 297 K): $\delta = 217.69$ (s, CO), 2.88 (s, CH₃). ¹¹B NMR (160 MHz, C₆D₆, 297 K): $\delta = 84$ (bs). Elemental analysis (%) calcd. for C₁₅H₃₆B₂FeN₂O₃Si₄: C 37.36, H 7.52, N 5.81; found, C 36.94, H 7.10, N 5.44.

Synthesis of *mer,trans*-[{(Me₃Si)₂NB}₂(OC)₃Fe→GaCl₃] (2g): Benzene solutions (0.5 mL respectively) of 1h (10 mg, 0.02 mmol) and GaCl₃ (3.6 mg, 0.02 mmol) were mixed at ambient temperature. The resulting colorless solution was layered with 0.2 mL hexane, and slowly concentrated under vacuum until 2g began to crystallize. The obtained colorless crystals of 2g were washed with pentane (3 × 1 mL) and dried under vacuum (8 mg, 0.012 mmol, 61%). IR (solid): 2073, 2025, 1986 (v_{CO}) cm⁻¹. ¹H NMR (500 MHz, C₆D₆, 297 K): 0.28 (s, 36H, SiMe₃). ¹³C {¹H} NMR (126 MHz, C₆D₆, 297 K): $\delta = 201.00, 206.60$ (s, CO), 2.77 (s, CH₃). ¹¹B NMR (160 MHz, C₆D₆, 297 K): $\delta = 86$ (bs). Elemental analysis (%) calcd. for C₁₅H₃₆B₂Cl₃FeGaN₂O₃Si₄: C 27.37, H 5.51, N 4.26; found, C 26.52, H 5.56, N 4.20.

Transfer reaction of GaCl₃ from $[(OC)_5Fe \rightarrow GaCl_3]$ (2a) to $[(OC)_3Fe(PMe_3)_2]$ (1b): In a J. Young NMR tube 2a (5 mg, 0.01 mmol) and 1b (4 mg, 0.01 mmol) were dissolved in CH₂Cl₂. The ³¹P{¹H} NMR spectra of this solution showed the signals for 2b and no signal of the precursor 1b, indicating complete transfer of the GaCl₃.

Transfer reaction of GaCl₃ from $[(Me_3P)(OC)_4Fe \rightarrow GaCl_3]$ (2b) to $[(OC)_3Fe(PMe_3)_2]$ (1d): In a J. Young NMR tube 2b (10 mg, 0.02 mmol) and 1d (7 mg, 0.02 mmol) were dissolved in CH₂Cl₂. The ³¹P{¹H} NMR spectra of this solution showed signals for 1b and 2d and no signals of the two precursors, indicating complete transfer of the GaCl₃.

Transfer reaction of GaCl₃ from [(Me₃P)₂(OC)₃Fe-GaCl₃] (2d) to [Pt(PCy₃)₂] (4): In a J. Young NMR tube 2d (10 mg, 0.02 mmol) and [Pt(PCy₃)₂] (4) (16 mg, 0.02 mmol) were dissolved in C_6H_5F. An immediate color change from colorless to yellow takes place. The ³¹P{¹H} NMR spectra of this solution showed signals for 1e and [(Cy₃P)₂Pt\rightarrowGaCl₃] (5) and no signals for the two precursors, indicating complete transfer of the GaCl₃.

Crystallographic Details

The crystal data of **1e** were collected on a Bruker D8-QUEST diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **1e**: C₁₃H₁₆FeN₄O₃, M_r = 332.15, yellow block, 0.18×0.06×0.04 mm³, tetragonal space group *P*4₃2₁2, *a* = 7.9922(6) Å, *b* = 7.9922(6) Å, *c* = 23.1283(17) Å, α = 90.00°, β = 90.00°, γ = 90.00°, *V* = 1477.33(19) Å³, *Z* = 4, ρ_{calcd} = 1.493 g·cm⁻³, μ = 1.036 mm⁻¹, *F*(000) = 688, *T* = 100(2) K, *R_I* = 0.0396, *wR²* = 0.0740, 1582 independent reflections [20≤53.6°] and 99 parameters. CCDC 1004633.

The crystal data of **1g** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **1g**: C₁₅H₃₆B₂FeN₂O₃Si₄, M_r = 482.29, colourless plate, 0.20×0.10×0.05 mm³, monoclinic space group $P2_1/n$, a = 8.8462(3) Å, b = 17.0403(6) Å, c = 35.7439(12) Å, $\beta = 90.2270(10)^\circ$, V = 5388.1(3) Å³, Z = 8, $\rho_{calcd} = 1.189$ g·cm⁻³, $\mu = 0.754$ mm⁻¹, F(000) = 2048, T = 100(2) K, $R_I = 0.0521$, $wR^2 = 0.0852$, 10964 independent reflections [20≤52.744°] and 511 parameters. CCDC 1004634.

The crystal data of **2a** were collected on a Bruker D8-QUEST diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2a**: C₅Cl₃FeGaO5, M_r = 482.29, colourless plate, 0.214×0.147×0.065 mm³, monoclinic space group *Cc*, a = 9.0504(17) Å, b = 10.731(2) Å, c = 11.634(4) Å, $\beta = 92.431(15)^\circ$, V = 1128.9(5) Å³, Z = 4, 2.189 g·cm⁻³, $\mu = 4.374$ mm⁻¹, *F*(000) = 712, *T* = 100(2) K, $R_I = 0.0137$, $wR^2 = 0.0275$, 2256 independent reflections [2 $\theta \le 53.46^\circ$] and 136 parameters. CCDC 1004635.

The crystal data of **2b** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and graphite monochromated $Mo_{K\alpha}$ radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2b**: C₇H₉Cl₃FeGaO₄P, M_r = 420.03, colourless block, 0.15×0.10×0.08 mm³, orthorhombic space group *Pna2*₁, a = 12.3102(5) Å, b = 8.7578(4) Å, c = 13.2384(5) Å, V = 1427.24(10) Å³, Z = 4, $\rho_{calcd} = 1.955$ g·cm⁻³, $\mu = 3.573$ mm⁻¹,

F(000) = 824, T = 100(2) K, $R_1 = 0.0137$, $wR^2 = 0.0307$, 2907 independent reflections $[20 \le 52.74^\circ]$ and 157 parameters. CCDC 1004636.

The crystal data of **2c** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2c**: C₉H₉Cl₃FeGaNO₄, M_r = 427.09, colourless block, 0.217×0.078×0.077 mm³, monoclinic space group $P2_1/n$, a = 7.2763(3) Å, b = 22.2271(9) Å, c = 9.6226(4) Å, $\beta = 90.5320(10)^\circ$, V = 1556.21(11) Å³, Z = 4, $\rho_{calcd} = 1.823$ g·cm⁻³, $\mu = 3.183$ mm⁻¹, F(000) = 840, T = 100(2) K, $R_I = 0.0227$, $wR^2 = 0.0472$, 3178 independent reflections [20≤52.74°] and 175 parameters. CCDC 1004637.

The crystal data of **2d** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and graphite monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2d**: C₉H₁₈Cl₃FeGaO₃P₂, M_r = 468.09, colourless plate, 0.32×0.09×0.02 mm³, monoclinic space group $P2_1/c$, a = 17.8670(16) Å, b = 13.5823(12) Å, c = 15.9356(14) Å, $\beta = 109.018(3)^\circ$, V = 3656.1(6) Å³, Z = 8, $\rho_{calcd} = 1.701$ g·cm⁻³, $\mu = 2.879$ mm⁻¹, F(000) = 1872, T = 100(2) K, $R_I = 0.0521$, $wR^2 = 0.0954$, 7463 independent reflections [2 $\theta \le 52.74^\circ$] and 355 parameters. CCDC 1004638.

The crystal data of **2e** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and graphite monochromated Mo_{Kα} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2e**: C₁₄H₁₈Cl₅FeGaN₄O₃, M_r = 593.14, colourless needle, 0.26×0.09×0.04 mm³, monoclinic space group $P2_1/c$, a = 8.6242(5) Å, b = 14.4623(8) Å, c = 17.4482(10) Å, $\beta = 98.852(2)^\circ$, V = 2150.3(2) Å³, Z = 4, $\rho_{calcd} = 1.832$ g·cm⁻³, $\mu = 2.572$ mm⁻¹, F(000) = 1184, T = 100(2) K, $R_I = 0.0332$, $wR^2 = 0.0611$, 4394 independent reflections [2 $\theta \le 52.74^\circ$] and 257 parameters. CCDC 1004639.

The crystal data of **2f** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2f**: C₁₃H₁₈Cl₃FeGaN₂O₃, M_r = 482.21, colourless plate, 0.133×0.10×0.02 mm³, orthorhombic space group *Pnma*,

a = 11.8260(8) Å, b = 18.0027(12) Å, c = 9.6374(6) Å, V = 2051.8(2) Å³, Z = 4, $\rho_{calcd} = 1.561$ g·cm⁻³, $\mu = 2.422$ mm⁻¹, F(000) = 968, T = 100(2) K, $R_1 = 0.0285$, $wR^2 = 0.0473$, 2165 independent reflections [2 $\theta \le 52.74^\circ$] and 115 parameters. CCDC 1004640.

The crystal data of **2g** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **2g**: C₁₅H₃₆B₂Cl₃FeGaN₂O₃Si₄, M_r = 658.36, colourless needle, 0.28×0.06×0.05 mm³, orthorhombic space group *Pna2*₁, *a* = 28.6201(15) Å, *b* = 15.3682(8) Å, *c* = 7.0307(4) Å, *V* = 3092.4(3) Å³, *Z* = 4, ρ_{calcd} = 1.414 g·cm⁻³, μ = 1.773 mm⁻¹, *F*(000) = 1352, *T* = 100(2) K, *R_I* = 0.0517, *wR*² = 0.0965, 6247 independent reflections [20≤52.74°] and 292 parameters. CCDC 1004641.

The crystal data of **3d** were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **3d**: C₉H₁₈Br₃FeGaO₃P₂, $M_r = 601.47$, colourless block, $0.28 \times 0.22 \times 0.15$ mm³, orthorhombic space group *Pbca*, a = 17.8212(17) Å, b = 16.5290(17) Å, c = 26.155(3) Å, V = 7704.4(13) Å³, Z = 16, $\rho_{calcd} = 2.074$ g·cm⁻³, $\mu = 8.540$ mm⁻¹, F(000) = 4608, T = 100(2) K, $R_I = 0.0675$, $wR^2 = 0.0993$, 8256 independent reflections [20 \leq 53.7°] and 355 parameters. CCDC 1004642.

References

- 1 M. L. Luetkens, A. P. Sattelberger, H. H. Murray, J. D. Basil, J. P. Fackler, R. D. Jones and D. E. Heaton, *Inorg. Synth.*, 1990, **28**, 305.
- 2 M. O. Albers and N. J. Coville, J. Chem. Soc., Dalton Trans., 1982, 1069.
- 3 S. K. Nayak, G. J. Farrell and T. J. Burkey, *Inorg. Chem.*, 1994, **33**, 2236-2242.
- 4 M. F. Lappert and P. L. Pye, J. Chem. Soc. Dalton Trans., 1977, 2172-2180.
- (a) H. Braunschweig, R. D. Dewhurst and V. H. Gessner, *Chem. Soc. Rev.*, 2013, 42, 3197; (b) H. Braunschweig,
 R. D. Dewhurst and A. Schneider, *Chem. Rev.*, 2010, 110, 3924; (c) C. E. Anderson, H. Braunschweig and R. D. Dewhurst, *Organometallics*, 2008, 27, 6381.
- 6 (a) H. Braunschweig, Q. Ye, A. Damme and K. Radacki, *Chem. Commun.*, 2013, 49, 7593; (b) H. Braunschweig,
 Q. Ye, A. Vargas, R. D. Dewhurst, K. Radacki and A. Damme, *Nature Chem.*, 2012, 4, 563.
- 7 T. B. Rauchfuss, *Inorg. Synth.*, 2010, **35**, 78.

8 B. Blank, M. Colling-Hendelkens, C. Kollann, K. Radacki, D. Rais, K. Uttinger, G. R. Whittell and H. Braunschweig, *Chem. Eur. J.*, 2007, **13**, 4770.

Table S1: DFT calculated Bond Dissociation Energies (BDE in kcal.mol⁻¹) of the Fe \rightarrow Ga Dative Bond Calculated at the PBE(DFT-D3-BJDAMP)/DZP,TZ2P level of theory. The calculated and experimental (*within parenthesis in italics*) M \rightarrow Ga (M=Fe, Pt) bond lengths are also given for a quick comparison.

Molecule	E _{Pauli}	E _{Elast}	E _{Orb}	E _{Int}	E _{Prep}	BDE	d(Fe-Ga) (Å)
2a	92.52	-65.21	-51.0	-43.75	15.96	-27.80	2.638
2b	130.37	-99.96	-75.61	-72.81	31.48	-41.33	2.510
2c	131.27	-99.78	-75.85	-72.06	26.43	-45.63	2.522
2d	121.25	-91.96	-69.41	-68.49	25.39	-43.10	2.530 (2.497)
2e	166.16	-134.28	-98.92	-101.66	41.14	-60.2	2.444 (2.461)
2f	151.26	-122.0	-92.56	-88.92	32.6	-56.32	2.440 (2.442)
2g	144.64	-114.42	-86.0	-90.0	34.0	-56.0	2.465 (2.464)
2h	173.67	-138.0	-98.86	-109.31	45.1	-64.2	2.459 (2.445)
5	153.71	-120.52	-95.83	-114.0	35.16	-78.84	2.391 (2.402)
7	131.53	-99.10	-73.26	-72.34	27.14	-45.20	2.524

Figure S2. Calculated minimum-energy structures of 1a and 2a.

Figure S3. Calculated minimum-energy structures of 1b and 2b.

Figure S4. Calculated minimum-energy structures of 1c and 2c.

Figure S5. Calculated minimum-energy structures of 1d and 2d.

Figure S6. Calculated minimum-energy structures of 1e and 2e.

Figure S7. Calculated minimum-energy structures of 1f and 2f.

Figure S8. Calculated minimum-energy structures of 1g and 2g.

Figure S9. Calculated minimum-energy structures of 1h and 2h.

Figure S10. Calculated minimum-energy structures of 4 and 5.

Figure S11. Calculated minimum-energy structures of 6 and 7.

Optimized Coordinates of the Calculated MOLP Complexes

Compound 2a

26	-1.285783000	-0.000195000	0.020852000
6	-0.896428000	-1.279473000	1.228808000
8	-0.678425000	-2.110074000	1.960210000
6	-0.882155000	1.283798000	1.219254000
8	-0.652716000	2.115131000	1.946034000
6	-1.154634000	-1.249317000	-1.267620000
8	-1.122309000	-2.019979000	-2.090549000
6	-1.148104000	1.237293000	-1.278634000
8	-1.110994000	1.999146000	-2.109421000
6	-3.064463000	0.007421000	0.205059000
8	-4.188243000	0.011985000	0.323176000
31	1.351725000	-0.001377000	-0.036284000
17	1.885707000	-0.028142000	2.066279000
17	1.895192000	1.846710000	-1.013525000
17	1.905457000	-1.813874000	-1.071412000
Con	npound 2b		
31	1.469169000	-0.265792000	0.047875000
17	2.989087000	1.158072000	-0.572670000
17	1.875037000	-1.106200000	2.019246000
17	1.446459000	-1.931676000	-1.405222000
26	-0.760046000	0.886692000	-0.013737000
15	-1.712016000	-1.138356000	-0.032176000
8	-3.363375000	2.146090000	-0.230285000
6	-2.334874000	1.669685000	-0.149185000
8	-0.255976000	0.498312000	-2.856510000
6	-0.408734000	0.664867000	-1.745395000
8	0.751157000	3.376325000	0.190607000
6	0.201341000	2.393053000	0.097925000
8	-0.822760000	0.393796000	2.847433000
6	-0.727687000	0.622330000	1.739306000
6	-3.361243000	-1.031366000	0.683340000
1	-3.991327000	-0.375478000	0.086596000
1	-3.283402000	-0.624175000	1.691309000
1	-3.808285000	-2.023646000	0.729555000
6	-1.964433000	-1.832938000	-1.663644000
1	-0.989247000	-2.023371000	-2.108713000
1	-2.519205000	-1.130001000	-2.282439000
1	-2.518501000	-2.766403000	-1.570332000
6	-0.956540000	-2.449983000	0.928341000
1	-1.655379000	-3.286685000	0.958185000
1	-0.741475000	-2.101902000	1.935950000
1	-0.025375000	-2.760415000	0.460963000
C			
Con	npound 2c	1 121202000	0.210/01000
20 0	-0.333313000	1.131393000	0.519001000
0	-∠ 404071000	0.00020/000	0.004237000

6	-0.091879000	0.665971000	2.022821000
6	-3.325812000	-1.509948000	-0.844858000
1	-4.097799000	-1.725168000	-1.556111000
7	-2.638086000	-0.321508000	-0.859051000
6	-2.813915000	-2.231145000	0.165488000
1	-3.039979000	-3.216142000	0.520354000
6	-1.679228000	-0.291508000	0.095046000
8	-0.094359000	1.130953000	-2.589338000
6	-0.163839000	1.123230000	-1.456279000
7	-1.827420000	-1.470323000	0.736141000
6	-2.928786000	0.674249000	-1.856382000
1	-2.580133000	1.644356000	-1.532563000
1	-4.004980000	0.718575000	-1.989158000
1	-2.443524000	0.410157000	-2.791603000
6	-1.007887000	-2.016435000	1.786524000
1	0.025655000	-1.720451000	1.669073000
1	-1.036887000	-3.096879000	1.697523000
1	-1.374088000	-1.702517000	2,759242000
6	1.080249000	2.211453000	0.443293000
8	1.986854000	2.882934000	0.529043000
31	1.407585000	-0.610523000	-0.222145000
17	2.907720000	0.291243000	-1.519605000
17	0.318454000	-2.232658000	-1.228907000
17	2.388581000	-1.323509000	1.603751000
Cor	npound 2d		
31	-0.747541000	-1.192769000	0.034176000
17	-2.773900000	-1.931849000	-0.171018000
17	0.514201000	-1.875602000	-1.630237000
17	0.202446000	-1.814441000	1.898899000
26	-0.724670000	1.337009000	-0.007514000
8	-3.636824000	1.194315000	-0.133569000
7	2.160644000	0.511141000	0.068568000
6	-2.509181000	1.241305000	-0.084674000
8	-0.859301000	1.039687000	2.899219000
6	-0.802368000	1.125775000	1.774211000
8	-0.390649000	4.233969000	-0.043150000
6	-0.518442000	3.109377000	-0.029973000
8	-0.595375000	0.902848000	-2.897059000
6	-0.645019000	1.048142000	-1.777586000
6	1.073678000	0.882522000	0.061430000
6	3.427422000	-0.141957000	-0.015725000
6	4.442952000	0.736407000	0.672413000
1	4.491339000	1.710680000	0.188834000
1	5.416957000	0.256652000	0.607504000
1	4.178563000	0.864935000	1.720578000
6	3.735941000	-0.307590000	-1.485702000
1	2.967999000	-0.919685000	-1.952877000
1	4.701520000	-0.801031000	-1.5/7972000
l	3.780053000	0.663524000	-1.976159000
6	3.301482000	-1.484161000	0.664198000
1	3.021397000	-1.359888000	1.707323000
1	4.267870000	-1.982540000	0.601052000

1	2.544173000	-2.086969000	0.169181000
Con	pound 2e		
31	0.000766000	-1.488165000	0.054007000
17	0.001177000	-2.140171000	2.148318000
17	-1.708387000	-2.460800000	-0.973705000
17	1.711033000	-2.458559000	-0.973991000
15	-2.195535000	0.869693000	0.019668000
26	-0.000557000	0.950808000	-0.106774000
8	-0.002067000	3.804771000	-0.522123000
6	-0.001540000	2.673456000	-0.361396000
8	-0.000511000	0.992061000	2.788125000
15	2.194484000	0.871783000	0.020203000
6	-0.000599000	0.934299000	1.648899000
8	0.000752000	0.133547000	-2.895048000
6	-0.000210000	0.436290000	-1.796670000
6	2.852315000	2.458513000	0.566891000
1	3.935716000	2.399576000	0.670561000
1	2.408928000	2.708543000	1.530669000
1	2.595087000	3.237483000	-0.148306000
6	2.902560000	-0.253951000	1.229285000
1	2.762492000	-1.282333000	0.905321000
1	2.400350000	-0.116396000	2.185700000
1	3.967094000	-0.041445000	1.331711000
6	3.043916000	0.561784000	-1.526668000
1	2.764619000	1.335774000	-2.240524000
1	2.734658000	-0.412566000	-1.900541000
1	4.121977000	0.571920000	-1.367052000
6	-2.854698000	2.455817000	0.566454000
1	-2.597661000	3.235081000	-0.148514000
1	-2.411900000	2.705998000	1.530464000
1	-3.938105000	2.396117000	0.669604000
6	-2.902854000	-0.257150000	1.228150000
1	-2.401172000	-0.119290000	2.184785000
1	-2.761482000	-1.285287000	0.903935000
1	-3.967677000	-0.045948000	1.330245000
6	-3.044281000	0.559551000	-1.527558000
1	-4.122406000	0.568747000	-1.368313000
1	-2.734096000	-0.414381000	-1.901727000
1	-2.765373000	1.334056000	-2.241014000
~			
Con	pound 2f		
31	-2.081352000	-0.261940000	-0.080004000
17	-2.888927000	-2.017442000	-1.121189000
17	-2.349067000	1.564121000	-1.315883000
17	-3.201180000	-0.006368000	1.807/585000
6	-0.07/4416000	-2.207009000	0.670158000
8	-0.328530000	-3.288638000	0.918952000
1	1.334547000	1.806943000	-1.213014000
26	0.315981000	-0.533694000	0.283357000
6	0.082947000	-0.81/639000	-1.444642000
8	-0.02/143000	-0.9/4110000	-2.570792000
1	0.045113000	2.466919000	0.342213000

6	0.043407000	-0.091111000	1.969780000
8	-0.071779000	0.192221000	3.068917000
7	2.960776000	-1.667227000	-0.236557000
6	1.282645000	3.177643000	-1.304387000
1	1.804635000	3.715746000	-2.070446000
6	0.553870000	1.342005000	-0.206378000
7	3.130462000	0.197352000	0.769404000
6	2.214113000	-0.703782000	0.350816000
6	-0.920449000	2.569085000	1.404641000
1	-1.487164000	1.655083000	1.506915000
1	-1.626403000	3.349260000	1.139535000
1	-0.424627000	2.793321000	2.346474000
6	2.135491000	1.043284000	-2.133054000
1	2.381927000	0.082303000	-1.704342000
1	3.055653000	1.589817000	-2.318622000
1	1.589068000	0.892364000	-3.060374000
6	0.469979000	3.591317000	-0.316030000
1	0.128556000	4.568496000	-0.038130000
6	4.407228000	-0.180250000	0.427913000
1	5.263785000	0.410098000	0.685493000
6	4.300156000	-1.363405000	-0.207443000
1	5.042604000	-2.016781000	-0.620030000
6	2.844589000	1.433968000	1.451335000
1	2.714779000	2.247130000	0.739155000
1	3.671279000	1.651911000	2.121092000
1	1.941602000	1.317577000	2.034509000
6	2.422900000	-2.849731000	-0.857150000
1	3.238868000	-3.392162000	-1.322429000
1	1.697728000	-2.577617000	-1.616749000
1	1.945223000	-3.479239000	-0.114311000
Cor	npound 2g		
31	-1.042280000	-0.836664000	0.000476000
17	-2.188065000	-1.297074000	1.810266000
17	0.720564000	-2.171381000	-0.005774000
17	-2.196775000	-1.290692000	-1.805673000
26	-0.243146000	1.495512000	0.002759000
8	1.085674000	4.090089000	0.001275000
7	1.227126000	0.192997000	2.269141000
6	0.756879000	0.704539000	1.351188000
8	-2.210319000	1.965223000	-2.093296000
6	0.576172000	3.076682000	0.002770000
6	-1.457656000	1.784484000	-1.266196000
6	1.567050000	-0.544072000	3.443045000
6	0.310260000	-0.627521000	4.279363000
1	-0.029801000	0.369452000	4.555415000
1	0.534779000	-1.195517000	5.180972000
1	-0.474142000	-1.128870000	3.716013000
6	2.661826000	0.208100000	4.159580000
1	3.547071000	0.275843000	3.529485000
1	2.912977000	-0.327674000	5.072495000
1	2.323287000	1.210658000	4.415690000
6	2.021383000	-1.924054000	3.033694000

1	1.204997000	-2.465151000	2.564126000
1	2.346633000	-2.449363000	3.930560000
1	2.847766000	-1.861722000	2.328422000
7	1.222875000	0.199635000	-2.269872000
6	0.755152000	0.707978000	-1.348850000
8	-2.211387000	1.960005000	2.099159000
6	-1.457977000	1.781855000	1.272214000
6	1.557421000	-0.532092000	-3.448578000
6	0.296589000	-0.611196000	-4.279261000
1	-0.044823000	0.387216000	-4.548428000
1	0.516751000	-1.174446000	-5.184905000
1	-0.485132000	-1.115452000	-3.714797000
6	2.648857000	0.223650000	-4.166371000
1	3.536934000	0.288554000	-3.539972000
1	2.895901000	-0.307732000	-5.082950000
1	2.309014000	1.227371000	-4.416141000
6	2.013685000	-1.913998000	-3.047868000
1	1.199857000	-2.456824000	-2.575864000
1	2.333481000	-2.435550000	-3.948858000
1	2.844268000	-1.854994000	-2.347216000
Cor	npound 2h		
31	-0.074607000	-1.118953000	-0.776904000
17	1.767573000	-1.344222000	-1.975723000
17	-0.534139000	-3.017015000	0.218900000
17	-1.587845000	-0.808190000	-2.366500000
26	0.027927000	0.798198000	0.759052000
14	-3.884951000	-1.157669000	1.025652000
7	-3.129137000	0.358955000	0.394567000
5	-1.832890000	0.599811000	0.587780000
14	-4.033678000	1.350000000	-0.808245000
7	3.170952000	0.374858000	0.456962000
5	1.858540000	0.502728000	0.632173000
14	3.951075000	1.720344000	-0.454468000
14	4.018976000	-1.191142000	0.729239000
8	0.136317000	-1.082200000	2.962949000
6	0.056404000	-0.352712000	2.091803000
8	0.167477000	3.247532000	2.286016000
6	0.089173000	2.270539000	1.703968000
8	0.347253000	2.068881000	-1.826215000
6	0.17/996000	1.564092000	-0.817625000
6	-2.862264000	-1.6/8816000	2.468617000
1	-1.933970000	-2.126/1/000	2.116626000
1	-3.397757000	-2.437912000	3.044077000
l	-2.6310/1000	-0.845791000	3.133599000
6	-3.920446000	-2.442401000	-0.2977/3000
1	-4.8256/4000	-2.383454000	-0.899956000
1	-3.869/90000	-3.429429000	0.166912000
l	-3.055092000	-2.342026000	-0.951/01000
0	-5.599154000	-0.0/0010000	1.544058000
1	-3.383/39000	0.138933000	2.20/2/4000
1	-0.082400000	-1.33 / /94000	2.010543000
1	-0.2111/9000	-0.3/0481000	0.093183000

6	-4.916169000	0.179667000	-1.931542000
1	-4.218876000	-0.552407000	-2.334152000
1	-5.350800000	0.739551000	-2.762652000
1	-5.723171000	-0.343154000	-1.421497000
6	-5.221223000	2.402822000	0.145820000
1	-5.951274000	1.806090000	0.689275000
1	-5.761798000	3.062453000	-0.536936000
1	-4.684912000	3.026399000	0.862596000
6	-2.790565000	2.397265000	-1.682518000
1	-2.197378000	2.977513000	-0.972409000
1	-3.292598000	3.100665000	-2.350357000
1	-2.119652000	1.776060000	-2.273513000
6	2.999656000	3.248914000	-0.015137000
1	2.049513000	3.288800000	-0.546396000
1	3.569265000	4.138666000	-0.293531000
1	2.797326000	3.296940000	1.055992000
6	5.700555000	1.815314000	0.141830000
1	5.735977000	2.004280000	1.214224000
1	6.213682000	2.634602000	-0.366409000
1	6.251087000	0.899766000	-0.064937000
6	3.818963000	1.317447000	-2.246757000
1	4.302632000	0.370011000	-2.478836000
1	4.273411000	2.103152000	-2.854255000
1	2.768568000	1.221250000	-2.522583000
6	5.172976000	-0.891941000	2.148169000
1	5.961514000	-0.185546000	1.894128000
1	5.644016000	-1.833328000	2.440505000
1	4.629086000	-0.507128000	3.011839000
6	4.975131000	-1.625151000	-0.792532000
1	4.301680000	-1.814408000	-1.625779000
1	5.541968000	-2.538631000	-0.595139000
1	5.685112000	-0.850417000	-1.075589000
6	2.752355000	-2.453625000	1.170427000
1	2.082403000	-2.109486000	1.958573000
1	3.251621000	-3.352897000	1.540426000
1	2.148036000	-2.736805000	0.311225000
Con	npound 5		
78	0.079901000	0.183782000	-0.177536000
15	-2.185061000	0.410808000	0.011006000
15	2.305510000	0.280840000	0.138931000
6	3.414973000	-0.702040000	-0.878971000
1	3.347414000	-1.692903000	-0.422590000
6	2.714324000	2.037444000	-0.032946000
1	1.904814000	2.544786000	0.508011000
6	-3.362834000	-0.936673000	-0.277772000
1	-2.779518000	-1.839534000	-0.083535000
6	-3.842264000	-1.011381000	-1.711820000
1	-4.527682000	-0.184905000	-1.910244000
1	-3.001699000	-0.940626000	-2.393012000
6	2.111423000	-1.481689000	2.186883000
1	1.050740000	-1.482198000	1.923668000
1	2.587582000	-2.241558000	1.572636000

6	-4.563457000	-2.322669000	-1.916027000
1	-4.894528000	-2.411032000	-2.951546000
1	-3.853011000	-3.131979000	-1.727653000
6	4.866033000	-0.283184000	-0.880144000
1	5.233325000	-0.155295000	0.138688000
1	4.967618000	0.673170000	-1.396894000
6	3 999668000	4 452795000	-0 952718000
1	4 848391000	4 044713000	-1 512009000
1	4 061905000	5 539955000	-1 015611000
6	2 881873000	-0.839622000	-2 292232000
1	1 834411000	-1 138362000	-2 270044000
1	2 932933000	0 126772000	-2 798200000
6	2.552555000	-0 102379000	1 872771000
1	3 739107000	-0.074712000	2 045610000
6	2 612978000	2 458305000	-1 483686000
1	3 432176000	1 999164000	-2 040253000
1	1 679479000	2 088156000	-1 914089000
6	3 705377000	-1 857022000	-3 045058000
1	3 572574000	-2 825913000	-2 558155000
1	3 338612000	-1 951302000	-4 067534000
6	4 022045000	2 493177000	0 576223000
1	4 851673000	2.059666000	0.021613000
1	4 109475000	2 155269000	1 608169000
6	-2 682288000	1 876510000	-0 924042000
1	-2 011669000	2 652147000	-0 535279000
6	-2.435169000	0.910612000	1 738683000
1	-3 503712000	1 039351000	1 926826000
6	2.716372000	3.961946000	-1.588402000
1	2.664712000	4.273509000	-2.632244000
1	1.863669000	4.410965000	-1.068807000
6	-1.833495000	2.591563000	3.475729000
1	-1.298608000	3.524177000	3.661242000
1	-2.887232000	2.765635000	3.716916000
6	-5.289063000	-2.271016000	0.466080000
1	-4.608559000	-3.088617000	0.724591000
1	-6.143155000	-2.324529000	1.142790000
6	1.960583000	0.931277000	2.736801000
1	2.331522000	1.935179000	2.536392000
1	0.902245000	0.912431000	2.458875000
6	4.106925000	4.000922000	0.488501000
1	3.285564000	4.439084000	1.065254000
1	5.040482000	4.353530000	0.928495000
6	5.680893000	-1.321932000	-1.620724000
1	6.735315000	-1.042019000	-1.622129000
1	5.591648000	-2.278809000	-1.097730000
6	-4.101984000	2.322090000	-0.667629000
1	-4.280514000	2.416024000	0.404434000
1	-4.787112000	1.562747000	-1.047651000
6	1.507029000	-0.769234000	4.478761000
1	0.451349000	-0.760837000	4.193742000
1	1.562010000	-1.005411000	5.542301000
6	2.102037000	0.591886000	4.201748000
1	3.164941000	0.580319000	4.464477000

1	1.629133000	1.358779000	4.815687000
6	-5.737011000	-2.435445000	-0.969154000
1	-6.463163000	-1.649922000	-1.206392000
1	-6.240995000	-3.394469000	-1.098199000
6	-1.729932000	2.221668000	2.012966000
1	-0.675313000	2.109832000	1.732633000
1	-2.152004000	3.017610000	1.399980000
6	5.170872000	-1.481036000	-3.036505000
1	5 757682000	-2 233097000	-3 565875000
1	5 303100000	-0 531191000	-3 566732000
6	-4 546324000	-0.966725000	0.666608000
1	-5 205540000	-0 119306000	0.458418000
1	-4 224362000	-0.893241000	1 702551000
6	2 218065000	-1 817640000	3 653756000
1	1 781847000	-2 802219000	3 823673000
1	3 270665000	-2.862219000	3 951086000
6	_1 299025000	1 / 87583000	1 359783000
1	1 38081/000	1.766665000	5 /11330000
1	-1.380814000	1.700005000	1 138806000
6	2 3703/8000	1.762154000	2 /01806000
1	2.015731000	1.017148000	2.401800000
1	-3.013731000	1.01/148000	2.528730000
6	-1.340407000	0.182100000	-2.528759000
1	-1.889404000	-0.182100000	2.034304000
1	-0.833309000	-0.324908000	2.378219000
1	-2.308238000	-1.155098000	2.420222000
1	-4.300384000 5.304601000	3.03/13/000	1 218727000
1	-3.394001000	5.949450000 4 404507000	-1.218/2/000
1	-3./1/90/000	4.404307000	-0.923303000
1	-4.04//28000	2 701105000	-2.847003000
1	-4.713009000	4 486022000	-3.233148000
1	-4.23/402000	4.460022000	-3.340914000
0	-2.013383000	3.094449000	-5.070054000
1	-1.939331000	3.843869000	-2.045666000
l C	-2.400848000	3.025526000	-4.13/61/000
0	-2.024908000	0.191025000	4.088522000
1	-3.085248000	0.308424000	4.336052000
1	-1.033009000	-0.609411000	4./16989000
31 17	-0.025/96000	-2.190133000	-0.445/51000
17	-1.13/65/000	-3.0/0/65000	1.243805000
17	-1.046153000	-2.45984/000	-2.368844000
1/	1.700205000	-3.455546000	-0.393340000
Cor	npound 7		
31	-1.746429000	-0.905970000	-0.480595000
26	-1.001305000	1.209482000	0.677830000
17	-0.101114000	-1.614183000	-1.771266000
17	-2.331510000	-2.427472000	0.951686000
7	1.932092000	0.060052000	0.251096000
5	0.690487000	0.460018000	0.471265000
17	-3.392931000	-0.308551000	-1.777113000
14	2.888807000	1.094223000	-0.882584000
14	2.503797000	-1.584851000	0.737412000
8	-1.040373000	-0.372549000	3.117448000

6	-1.058224000	0.240838000	2.162886000
8	0.093873000	3.670997000	1.748138000
6	-0.362161000	2.711242000	1.347719000
8	-0.631362000	1.827556000	-2.141866000
6	-0.820777000	1.588184000	-1.047950000
6	2.268090000	2.825611000	-0.667549000
1	1.284789000	2.971766000	-1.110759000
1	2.951129000	3.518203000	-1.165221000
1	2.221097000	3.104130000	0.385289000
6	4.649812000	0.969676000	-0.335090000
1	4.752445000	1.313568000	0.693974000
1	5.271756000	1.606079000	-0.968070000
1	5.035221000	-0.045332000	-0.400310000
6	2.577631000	0.453402000	-2.580179000
1	2.949702000	-0.562007000	-2.702484000
1	3.056634000	1.092053000	-3.325214000
1	1.504452000	0.434701000	-2.772526000
6	3.757927000	-1.280919000	2.064831000
1	4.639603000	-0.762586000	1.693105000
1	4.078865000	-2.230821000	2.497777000
1	3.318736000	-0.682384000	2.864451000
6	3.244552000	-2.371394000	-0.759589000
1	2.481070000	-2.491099000	-1.527308000
1	3.620737000	-3.362029000	-0.493894000
1	4.075078000	-1.798297000	-1.166850000
6	1.059879000	-2.520252000	1.387616000
1	0.517288000	-1.976931000	2.160759000
1	1.408478000	-3.454093000	1.836413000
1	0.357920000	-2.772181000	0.595449000
6	-2.774259000	1.560691000	0.707479000
8	-3.881468000	1.780692000	0.748977000