Near Infra-Red emitting Ru(II) complexes of tridentate ligands: electrochemical and photophysical consequences of strong donor ligand with large bite angles

Amlan K. Pal,^a Scolastica Serroni,^b Nelsi Zaccheroni,^{*,c} Sebastiano Campagna,^{*,b} and Garry S. Hanan^{*,a}

^aDépartement de Chimie, Université de Montréal, Montréal, Québec, H3T 1J4, Canada

^bDipartimento di Chimica «G. Ciamician», Università di Bologna, 40126 Bologna, Italia

^cDipartimento di Scienze Chimiche, Università di Messina, 98166 Messina, Italia

Electronic Supporting Information

Materials and Instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded in CD₃CN at room temperatutre (r.t.) on Bruker AV400 (400 MHz) and Bruker AV700 (700 MHz) spectrometers for ¹H NMR and at 100 and 175 MHz for ¹³C NMR respectively, as mentioned in the experimental. Chemical shifts are reported in part per million (ppm) relative to residual solvent protons (1.94 ppm for CD₃CN, 7.26 ppm for CDCl₃) and the carbon resonance (118.69 ppm for CD₃CN, 77.00 ppm for CDCl₃) of the solvent.

Absorption spectra were measured in deaerated acetonitrile at r.t. on a Cary 500i UV-Vis-NIR Spectrophotometer. Corrected fluorescence emission spectra (450 W Xe lamp) in the IR range were obtained with a modular UV-VIS-NIR spectrofluorimeter Edinburgh Instrument, equipped with an Edinburgh Instruments Ge detector (for the 800–1600 nm spectral range). Corrections for instrumental response, inner filter effects and phototube sensitivity were performed. The luminescence quantum yield of **1** and **2** were calculated¹ by optical dilution method recording the emission spectra of the degassed solution in acetonitrile and of a solution of cyanine IR-125 in dimethylsulfoxide ($\Phi = 0.23$)² as the reference. Luminescence lifetimes were determined by time-correlated single-photon-counting (TCSPC) with an Edinburgh EPL-405 spectrometer (light pulse: picosecond pulse diode laser, pulse width 500 ps at 405 nm). Due to poor spectrometer response and weak signal to noise ratio at 77 K the excited-state lifetime measurements of complexes **1-4** were not possible.

Electrochemical measurements were carried out in argon-purged purified acetonitrile at room temperature with a BAS CV50W multipurpose equipment interfaced to a PC. The working electrode was a glassy carbon electrode. The counter electrode was a Pt wire, and the pseudo-

reference electrode was a silver wire. The reference was set using an internal 1 mM ferrocene/ferrocinium sample at 395 mV vs. SCE in acetonitrile. The concentration of the compounds was about 1 mM. Tetrabutylammonium hexafluorophosphate (TBAP) was used as supporting electrolyte and its concentration was 0.10 M. Cyclic voltammograms were obtained at scan rates of 100 mV/s. The criteria for reversibility were the separation of 60 mV between cathodic and anodic peaks, the close to unity ratio of the intensities of the cathodic and anodic currents, and the constancy of the peak potential on changing scan rate. Experimental uncertainties are as follows: absorption maxima, ± 2 nm; molar absorption coefficient, 10%; redox potentials, ± 10 mV.

Hydrated ruthenium trichloride, 1,3,4,6,7,8-Hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine, 2bromopyridine, 2,6-dibromopyridine and potassium hexafluorophosphate were purchased from Aldrich Chemicals. The ligands Ph-tpy, Tolyl-tpy and the complexes [Ru(Ph-tpy)Cl₃], [Ru(*p*-Tolyl-tpy)Cl₃], [Ru(Br-Ph-trz)Cl₃], [Ru(*'*Bu-Ph-trz)Cl₃] starting materials were synthesized following similar literature procedures.^{3,4a}

2,4-dipyrid-2'-yl-6-(p-tert-butyl)-1,3,5-triazine (L2)

The ligand 2,4-dipyrid-2'-yl-6-(*p-tert*-butyl)-1,3,5-triazine was synthesized using a modified literature procedure.^{4b,c} To a stirred solution of HNMe₂ (2 M in THF, 8.37 mL, 16.59 mmol) in anhydrous Et₂O (150 mL) was added *n*-BuLi (1.6 M in hexanes, 10.41 mL, 16.59 mmol), dropwise, under an inert atmosphere. The mixture was stirred for 30 min until a white suspension formed and *p-tert*-butylbenzonitrile (2.4 g, 15.08 mmol) was added. Stirring was continued for 1 h at room temperature followed by the addition of 2-cyanopyridine (3.14 g, 30.16 mmol). Stirring was continued for 16 h after which time the reaction was diluted with a 5 : 1 mixture of

water–EtOH (250 mL : 50 mL, v/v) and the solution was heated to remove the Et₂O. The white precipitate thus formed was collected by filtration and washed with EtOH (10 mL) and Et₂O (2x25 mL) and dried under vacuum to afford **L2** as a white powder. The compound was crystallized from EtOH-H₂O. Yield = 3.6 g (65%). ¹H NMR (DMSO-*d*₆, 400 MHz); 1.37 (s, 9H), 7.64-7.76 (m, 4H), 8.13 (td, J^{td} = 8.0, 2.0 Hz, 2H), 8.65 (d, J^d = 8.0 Hz, 2H), 8.74 (d, J^d = 8.0 Hz, 2H), 8.91 (d, J^d = 4.0 Hz, 2H). ¹³C NMR (DMSO-*d*₆, 100 MHz); 171.7, 171.1, 156.3, 152.9, 150.1, 137.4, 132.4, 128.7, 126.7, 125.8, 124.7, 34.8, 30.8. HRMS (ESI), m/z: 184.59777 [M+2H⁺]²⁺ (C₂₃H₂₃N₅ requires 184.59712), 368.18809 [M+H⁺]⁺ (C₂₃H₂₂N₅ requires 368.18697), 390.16982 [M+Na⁺]⁺ (C₂₃H₂₁N₅Na requires 390.16892). Anal. Calc for C₂₃H₂₁N₅ : C, 75.18; H, 5.76; N, 19.06. Found: C, 74.96; H, 5.81; N, 18.94.

$[Ru(p-Tolyl-tpy)(L1)](PF_6)_2(2)$

A mixture of [Ru(*p*-Tolyl-tpy)Cl₃] (100 mg, 0.188 mmol) and 4-ethylmorpholine (10 drops) in nitrogen-degassed *n*-butanol (60 mL) was heated at 80 °C for half an hour to give a dark brown-red suspension. After cooling the mixture to ambient temperature, **L1** (70 mg, 0.197 mmol) was added to the suspension and the resulting mixture was refluxed for 16 h under a nitrogen atmosphere. After 16 h, the dark purple mixture was cooled to ambient temperature and was evaporated to dryness. The resulting solid was purified by chromatography on silica using a mixture of 7/1 (v/v) acetonitrile/saturated aq. KNO₃ to afford the pure complex **2** as a purple solid. The nitrate salt was metathesized to the PF₆ salt by addition of saturated aqueous KPF₆ solution to the aquous solution of the compound. Crystals suitable for X-ray crystallography were grown by diffusion of diethyl ether into a moderately concentrated solution of the complex in acetone. Yield = 120 mg (60%). ¹H NMR (CD₃CN, 700 MHz); 8.67 (s, 2H) 8.54 (d, J^d = 8.0 Hz, 2H), 8.14 (t, J^t = 8.0 Hz, 1H), 8.04 (d, J^d = 6.0 Hz, 2H), 7.98 (m, 4H), 7.46 (m, 6H), 4.03 (m,

2H), 3.19 (m, 2H), 3.04 (m, 4H), 2.76 (m, 3H), 2.46 (s, 3H), 2.31 (m, 2H), 2.09 (m, 2H), 1.67 (m, 2H), 1.44 (m, 2H), 1.19 (m, 3H), 0.84 (m, 2H). ¹³C NMR (CD₃CN, 175 MHz); 159.8, 158.7, 155.9, 154.1, 153.8, 143.7, 140.9, 140.8, 137.1, 135.3, 130.9, 128.0, 126.8, 123.9, 120.5, 112.8, 49.6, 48.8, 48.4, 43.8, 23.3, 23.1, 21.2. HRMS (ESI), m/z: 923.24348 [M-PF₆]⁺ (C₄₁H₄₄N₁₀RuPF₆ requires 923.24302), 389.14029 [M-2PF₆]²⁺ (C₄₁H₄₄N₁₀Ru requires 389.13915). Anal. Calc for C₄₁H₄₄N₁₀RuP₂F₁₂ : C, 46.11; H, 4.15; N, 13.12. Found: C, 46.13; H, 4.11; N, 13.01.

$[Ru(Br-Ph-dpt)(L1)](PF_6)_2(3)$

A mixture of Ru(Br-Ph-dpt)Cl₃ (100 mg, 0.167 mmol) and 4-ethylmorpholine (10 drops) in nitrogen-degassed n-butanol (60 mL) was heated at 80 °C for half an hour to give a dark brownred suspension. After cooling of the mixture to ambient temperature, L1 (62 mg, 0.175 mmol) was added to the suspension and the resulting mixture was refluxed for 16 h under a nitrogen atmosphere. After 14 h, the dark purple mixture was cooled to ambient temperature and was evaporated to dryness. The resulting solid was purified by chromatography on silica using a mixture of 7/1 (v/v) acetonitrile/saturated aq. KNO₃ to afford the pure complex **3** as a purple solid. The nitrate salt was metathesized to the PF₆ salt by addition of saturated aqueous KPF₆ solution to the aqueous solution of the compound. Crystals suitable for X-ray crystallography were grown by diffusion of diethyl ether into a moderately concentrated solution of the complex in acetone. Yield = 90 mg (47%). ¹H NMR (CD₃CN, 700 MHz); 9.04 (d, J^d = 7.0 Hz, 2H), 8.49 (d, J^d = 8.0 Hz, 2H), 8.23 (m, 3H), 8.20 (t, J^t = 7.0 Hz, 2H), 7.89 (d, J^d = 8.0 Hz, 2H), 7.73 (t, J^t = 7.0 Hz, 2H), 7.58 (d, J^d = 8.0 Hz, 2H), 4.12 (d, J^d = 14.0 Hz, 2H), 3.22 (m, 2H), 3.08 (t, J^t = 13.0 Hz, 2H), 3.01 (m, 2H), 2.73 (m, 4H), 2.34 (m, 2H), 2.12 (m, 2H), 1.47 (m, 2H), 1.18 (m, 4H), 0.78 (m, 2H). ¹³C NMR (CD₃CN, 175 MHz); 172.9, 162.3, 155.6, 155.4, 155.3, 154.3,

141.7, 137.9, 135.8, 133.4, 131.2, 129.9, 127.9, 127.6, 113.0, 49.4, 48.9, 48.2, 44.0, 23.2, 23.1. HRMS (ESI), m/z: 989.12744 [M-PF₆]⁺ ($C_{38}H_{39}N_{12}BrRuPF_6$ requires 989.12838), 422.08339 [M-2PF₆]²⁺ ($C_{38}H_{39}N_{12}BrRu$ requires 422.08183). Anal. Calc for $C_{38}H_{39}N_{12}BrRuP_2F_{12}$: C, 40.22; H, 3.46; N, 14.81. Found: C, 40.08; H, 3.45; N, 14.54.

$[Ru(^{t}Bu-Ph-dpt)(L1)](PF_{6})_{2}(4)$

A mixture of Ru('Bu-Ph-dpt)Cl₃ (100 mg, 0.174 mmol) and 4-ethylmorpholine (10 drops) in nitrogen-degassed n-butanol (60 mL) was heated at 80 °C for half an hour to give a dark brownred suspension. After cooling of the mixture to ambient temperature, L1 (65 mg, 084 mmol) was added to the suspension and the resulting mixture was refluxed for 16 h under a nitrogen atmosphere. After 16 h, the dark purple mixture was cooled to ambient temperature and was evaporated to dryness. The resulting solid was purified by chromatography on silica using a mixture of 7/1 (v/v) acetonitrile/saturated aq. KNO₃ to afford the pure complex 4 as a purple solid. The nitrate salt was metathesized to the PF_6 salt by addition of saturated aqueous KPF_6 solution to the aquous solution of the compound. Crystals suitable for X-ray crystallography were grown by diffusion of diethyl ether into a moderately concentrated solution of the complex in acetone. Yield = 110 mg (60%). ¹H NMR (CD₃CN, 700 MHz); 9.02 (d, J^d = 8.0 Hz, 2H), 8.85 (d, J^d = 8.0 Hz, 2H), 8.22 (t, J^t = 8.0 Hz, 1H), 8.17 (m, 4H), 7.77 (d, J^d = 8.0 Hz, 2H), 7.72 (t, J^t = 6.0 Hz, 2H), 7.56 (d, J^d = 8.0 Hz, 2H), 4.11 (d, J^d = 16.0 Hz, 2H) 3.13-2.76 (m, 8H), 2.34 (m, 2H), 2.12 (m, 2H), 1.50 (m, 2H), 1.44 (s, 9H), 1.21 (m, 6H), 0.81 (m, 2H). ¹³C NMR (CD₃CN, 175 MHz); 172.9, 163.8, 157.8, 155.8, 155.6, 155.5, 154.3, 141.6, 137.8, 133.8, 129.8, 129.6, 127.5, 127.2, 118.2, 113.0, 49.5, 48.9, 48.30, 44.0, 35.8, 31.2, 23.2, 23.1. HRMS (ESI), m/z: 967.27643 [M-PF₆]⁺ (C₄₂H₄₈N₁₂Ru PF₆ requires 967.28047), 411.15951 [M-2PF₆]²⁺

 $(C_{42}H_{48}N_{12}Ru \text{ requires } 411.15787)$. Anal. Calc for $C_{42}H_{48}N_{12}Ru_1P_2F_{12}$: C, 45.37; H, 4.35; N, 15.12. Found: C, 45.38; H, 4.38; N, 15.04.

Crystallographic Section

Diffraction data were collected on a Bruker SMART 6000 with Montel 200 monochromator, equipped with a rotating anode source for Cu K α radiation. The diffraction quality of the crystals were checked, revealing in some cases poor diffraction with a large amount of diffuse scattering, signaling extensive crystal disorder. Cell refinement and data reduction were done using APEX2.⁵ Absorption corrections were applied using SADABS.⁶ Structures were solved by direct methods using SHELXS97 and refined on F^2 by full-matrix least squares using SHELXL97.⁷ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropic on calculated positions using a riding model. For complexes 1 and 4, during the refinement of the structure, electron density peaks were located and were believed to be six severely disordered solvated acetone molecules, and a total of one disordered water and eight disordered acetone molecules, respectively (by counting the number of electrons suppressed). All the attempts made to model the solvent molecules were not successful and they were removed using the SQUEEZE routine from PLATON,⁸ which resulted in a significant improvement of R1 factor by ~3.5% in all the squeezed structures. For compound 1, the highest difference peak is located 1.09 Å from atom F4 and the deepest hole is 0.51 Å from atom F1A. In addition, three peaks of density ~ 2 to 1 e/Å^3 were present essentially due to the quality of the crystal employed, which was the best available, and is believed due to the frequent discrete positional disorder of the freely rotating anions (see .cif file for more details). The structure of 2 and 4 also showed that the guanidine moiety is positionally disordered over two positions. The disorder was modelled as two components [$\sim 0.58:0.42$ for 2 and $\sim 0.60:0.40$ for 4] and refined anisotropically. In complexes 1

and **4** positional disorders in anion or solvent molecules were observed, and they were resolved in the aforesaid way. Some atomic displacement restraints were applied among the disorder components to model the anion positions in **1** but not applicable for the cation structure.

Figure S1. Packing diagram of ligand L1 along crystallographic *a*-axis. Colour code: carbon: grey, nitrogen: slate blue; C-H and N-H intermolecular interactions: cyan dashed.

Figure S2. Perspective views of complexes 1–4, as cations only, with complete labeling. Ellipsoids correspond to a 50% probability level. Hydrogen atoms, anions, solvent molecules and disordered components of 2 and 4 are omitted for clarity.

Compound		Bond Length			Angle		
1		Obs.	Calc.		Obs.	Calc.	
		(X-ray)	(DFT)		(X-ray)	(DFT)	
	N1-Ru1	2.0646 (0.0024)	2.12887	N1-Ru1-N3	159.28 (0.10)	157.256	
	N2-Ru1	1.9462 (0.0024)	1.98758	N4-Ru1-N10	173.83 (0.10)	172.513	
	N3-Ru1	2.0761 (0.0025)	2.12874				
	N4-Ru1	2.0711 (0.0025)	2.13996				
	N7-Ru1	2.0720 (0.0025)	2.11279				
	N10-Ru1	2.0919 (0.0026)	2.13997				
	N4-C40	1.3050 (0.0039)	1.31063				
	N5-C40	1.3498 (0.0043)	1.36487				
	N6-C40	1.4072 (0.0040)	1.40913				
	N10-C33	1.3102 (0.0043)	1.31062				
	N9-C33	1.3430 (0.0045)	1.36485				
	N8-C33	1.3998 (0.0043)	1.40917				
2	N1-Ru1	2.0859 (0.0019)	2.12784	N1-Ru1-N3	158.89 (0.08)	157.238	
	N2-Ru1	1.9307 (0.0018)	1.98638	N4-Ru1-N10	172.68 (0.07)	171.592	
	N3-Ru1	2.0722 (0.0019)	2.12795				
	N4-Ru1	2.0947 (0.0019)	2.13422				
	N7-Ru1	2.0707 (0.0018)	2.11501				
	N10-Ru1	2.0639 (0.0018)	2.13415				
	N4-C29	1.3080 (0.0030)	1.31024				
	N5-C29	1.3502 (0.0030)	1.36492				
	N6-C29	1.3842 (0.0030)	1.40789				
	N10-C41	1.3042 (0.0029)	1.31024				
	N9-C41	1.3434 (0.0029)	1.36494				

Table S1. Comparison of bond distances and angles in 1-4 from X-ray and DFT studies

	N8-C41	1 4044	1 40794			
	110-041	(0.0028)	1.40774			
3	N1-Ru1	2 0789	2 10617	N1-Ru1-N5	157 19	157 189
	ivi itui	(0.0029)	2.10017		(0.15)	157.105
	N2-Ru1	1 9247	1 91497	N9-Ru1-N12	171 51	171 637
	112 1111	(0.0028)	1.91197		(0.13)	171.057
	N5-Ru1	2.0876	2.07686		(*****)	
		(0.0027)				
	N6-Ru1	2.0688	2.06985			
		(0.0028)				
	N9-Ru1	2.0874	2.09241			
		(0.0029)				
	N12-Ru1	2.0628	2.06290			
		(0.0029)				
	N9-C31	1.3082	1.31015			
		(0.0058)				
	N8-C31	1.3563	1.34625			
		(0.0060)				
	N7-C31	1.3778	1.38473			
		(0.0059)				
	N12-C38	1.3040	1.30261			
		(0.0054)				
	N11-C38	1.3433	1.34104			
		(0.0055)	1 400.22			
	N10-C38	1.4041	1.40823			
	NI D 1	(0.0052)	2 1 5 2 0 0		156.20	154.042
4	NI-Kul	2.0897	2.15308	NI-KuI-N5	156.29	154.942
	N2 D.,1		1.07509	NG D., 1 N12		171 400
	INZ-KUI	(0.0022)	1.97308	INO-KUI-INIZ	(0.08)	1/1.400
	N5_Ru1	(0.0022)	2 15333		(0.08)	
	ing-itur	(0.0020)	2.13335			
	N6-Ru1	2 0784	2 13330			
	No-Kui	(0.0020)	2.15557			
	N9-Ru1	2.0857	2 11261			
	ity itui	(0.0021)	2.11201			
	N12-Ru1	2.0888	2.13352			
		(0.0020)				
	N12-C30	1.3075	1.31100			
		(0.0032)				
	N11-C30	1.3396	1.36403			
		(0.0031)				
	N10-C30	1.3945	1.40833			
		(0.0032)				
	N6-C42	1.2966	1.31096			
		(0.0032)				
	N7-C42	1.3481	1.36409			
		(0.0032)				
	N8-C42	1.3988	1.40847			
		(0.0032)				

Compounds	λ_{max} , nm ($\epsilon \ge 10^3$, M ⁻¹ cm ⁻¹)							
L1	228(29.0)	311(12.8)						
L2	245(9.7)	285(20.9)						
1	225(44.7)	244(39.3)	289(45.9)	317(23.1)	379(10.5)	541(8.8)	622(5.6)	
2	225(44.8)	247(39.7)	288(45.1)	313(27.9)	383(11.3)	538(9.4)	620(6.2)	
3	244(33.3)	291(35.3)	380(7.0)	411(8.6)	560(11.8)	740(3.8)		
4	243(29.1)	288(27.8)	373(6.7)	405(7.0)	558(9.3)	740(3.0)		
$[Ru(tpy)_2]^{2+}$		270(40.9)	307(66.7)	$475(15.3)^{a}$				
[Ru(Br-Ph-		282(53.5)	301(59.6)	$476(21.7)^{b}$				
$dpt)(tpy)]^{2+}$								
$[Ru(Br-Ph-dpt)_2]^{2+}$		279(50.9)	295(50.6)	$491(27.5)^{b}$				

Table S2. Spectroscopic and photophysical data in CH₃CN solutions for Ligands L1, L2 and complexes 1–4.

^{*a*}from ref 9, ^{*b*}from ref 10

DFT Calculations:

Table S3. MO composition of [1]²⁺ in singlet (*S*=0) ground state (b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

MO	Energy (eV)	Approximate Composition (%)				
		Ru	Ph-tpy	hpp		
LUMO+5	-0.99	1	1	98		
LUMO+4	-1.25	3	95	2		
LUMO+3	-1.36	1	99	0		
LUMO+2	-1.43	4	2	94		
LUMO+1	-2.27	2	98	0		
LUMO	-2.46	9	88	2		
НОМО	-5.37	57	18	25		
HOMO-1	-5.37	61	10	29		
HOMO-2	-5.86	84	10	6		
HOMO-3	-6.56	2	1	97		
HOMO-4	-6.69	5	26	70		
HOMO-5	-6 85	13	22	66		

Figure S3. Kohn-Sham molecular orbital sketches for $[1]^{2+}$ in (S=0) ground state

state	energy	λ/n	$\lambda/nm (\epsilon x 10^3 M^{-1} cm^{-1})$	f	Major	Character
	(eV)	m	[expt.]		transition(s)	
58	5.03	246	244 (39.3)	0.2525	H-3->L+5 (68%)	Hpp (n/π) to
						Hpp (n/π^*)
41	4.44	279	289 (45.9)	0.3477	H-7->L+1 (61%),	Ph-tpy(π) to
					H-8->L+1 (13%)	Ph-tpy(π^*)
29	4.02	308	317 (23.1)	0.2449	H-7->L (51%)	Ph-tpy(π) to
						Ph-tpy(π^*)
11	3.34	371	379 (10.5)	0.0632	H-1->L+3 (92%)	Ru($d\pi$) to Ph-
						tpy(π^*)
						(major) +
						hpp(n/ π) to
						Ph-tpy(π^*)
						(minor)
2	2.20	562	541 (8.8)	0.0444	H->L (64%),	Ru($d\pi$) to Ph-
					H-1->L+1 (20%),	tpy(π^*) +
					H-2->L (10%)	(major) +
						hpp(n/ π) to
						Ph-tpy(π^*)
						(minor)
1	2.01	616	622 (5.6)	0.0117	H-1->L (94%)	Ru($d\pi$) to Ph-
						tpy(π^*) +
						(major) +
						hpp(n/ π) to
						Ph-tpy(π^*)
						(minor)

MO	Energy (eV)	Approximate Composition (%)				
		Ru	Tolyl-tpy	hpp		
LUMO+5	-1.01	1	1	99		
LUMO+4	-1.22	3	95	1		
LUMO+3	-1.35	1	98	1		
LUMO+2	-1.44	3	2	95		
LUMO+1	-2.26	2	97	1		
LUMO	-2.45	9	88	3		
НОМО	-5.34	57	19	24		
HOMO-1	-5.35	62	10	28		
HOMO-2	-5.85	83	11	6		
HOMO-3	-6.58	4	3	93		
HOMO-4	-6.61	1	63	36		
HOMO-5	-6.88	9	29	63		

Table S5. MO composition of $[2]^{2+}$ in singlet (S=0) ground state (b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

Figure S4. Kohn-Sham molecular orbital sketches for $[2]^{2+}$ in (S=0) ground state

Table S6. Selected transitions from TD-DFT calculations of $[2]^{2+}$ in the singlet ground state(b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N], CPCM (CH₃CN)).

state	energy (eV)	λ/nm	$\lambda/nm (\epsilon x 10^3 M^{-1} cm^{-1})$ [expt.]	f	Major transition(s)	Character
59	5.04	246	247 (39.7)	0.2134	H-10->L+1 (46%) H-5->L+3 (24%)	Tolyl-tpy(π) to Tolyl- tpy(π^*) (major) + hpp (n/ π) to Tolyl- tpy(π^*) (minor)
41	4.44	279	288 (45.1)	0.3339	H-8->L+1 (41%), H-7->L+1 (19%), H-9->L (16%)	Tolyl-tpy(π) to Tolyl- tpy(π^*) (major) + hpp (n/ π) to Tolyl- tpy(π^*) (minor)
32	4.06	305	313 (27.9)	0.1566	H-7->L (34%), H-6->L+1 (33%), H-8->L (20%)	Tolyl-tpy(π) to Tolyl- tpy(π^*) (major) + hpp (n/ π) to Tolyl- tpy(π^*) (minor)
10	3.31	375	383 (11.3)	0.0631	H->L+3 (93%)	Ru($d\pi$) to Tolyl-tpy(π^*) (major) + hpp(n/π) to Tolyl-tpy(π^*) (minor)
2	2.19	565	538 (9.4)	0.0485	H->L (63%), H- 1->L+1 (22%)	Ru($d\pi$) to Tolyl-tpy(π^*) (major) + hpp(n/π) to Tolyl-tpy(π^*) (minor)
1	2.00	620	620 (6.2)	0.0119	H-1->L (94%)	Ru($d\pi$) to Tolyl-tpy(π^*) (major) + hpp(n/π) to Tolyl-tpy(π^*) (minor)

MO	Energy (eV)	Approximate Composition (%)				
		Ru	Br-Ph-dpt	hpp		
LUMO+5	-1.31	1	96	3		
LUMO+4	-1.44	3	96	1		
LUMO+3	-1.52	1	3	94		
LUMO+2	-1.80	1	99	0		
LUMO+1	-2.90	10	87	3		
LUMO	-2.99	2	97	1		
НОМО	-5.58	53	19	28		
HOMO-1	-5.62	57	9	34		
HOMO-2	-6.09	81	13	6		
HOMO-3	-6.66	2	1	97		
HOMO-4	-6.81	5	33	62		
HOMO-5	-7.05	20	17	63		

Table S7. MO composition of [**3**]²⁺ in singlet (*S*=0) ground state (b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N,Br]).

Figure S5. Kohn-Sham molecular orbital sketches for $[3]^{2+}$ in (S=0) ground state

Table S8. Selected transitions from TD-DFT calculations of [3] ²⁺	in the singlet ground state
(b3lyp/LanL2DZ(f)[Ru], 6-31G**[C,H,N,Br], CPCM (CH ₃ CN)).	

state	energy (eV)	λ/nm	$\lambda/nm (\epsilon x 10^3 M^{-1} cm^{-1})$ [expt.]	f	Major transition(s)	Character
67	5.02	247	244 (33.3)	0.0715	H-1->L+12 (61%)	hpp (n/π) to hpp (n/π^*)
46	4.49	276	291 (35.3)	0.2777	H-11->L (49%), H-10->L (17%)	Br-Ph- dpt(π) to Br-Ph-dpt (π^*)
22	3.57	347	380 (7.0)	0.3221	H-2->L+2 (28%), H-1->L+4 (34%)	Ru($d\pi$) to Br-Ph-dpt (π^*)(major) + hpp(n/ π) to Br-Ph- dpt(π^*)(mi nor)
8	3.15	394	411 (8.6)	0.0985	H->L+2 (93%)	Ru($d\pi$) to Br-Ph-dpt (π^*)(major) + hpp(n/ π) to Br-Ph- dpt(π^*)(mi nor)
6	2.38	520	560 (11.8)	0.2337	H-2->L+1 (44%), H->L+1 (32%)	Ru($d\pi$) to Br-Ph-dpt (π^*)(major) + hpp(n/ π) to Br-Ph- dpt(π^*)(mi nor)
1	1.84	675	740 (3.8)	0.0017	H-1->L+1 (47%), H->L(44%)	Ru($d\pi$) to Br-Ph-dpt (π^*)(major) + hpp(n/ π) to Br-Ph- dpt(π^*)(mi nor)

МО	Energy (eV)	Approximate Composition (%)				
		Ru	tBu-Ph-Trz	hpp		
LUMO+5	-1.23	1	97	1		
LUMO+4	-1.38	3	96	1		
LUMO+3	-1.51	3	2	95		
LUMO+2	-1.71	1	99	1		
LUMO+1	-2.85	12	86	3		
LUMO	-2.98	3	97	1		
НОМО	-5.5	54	20	25		
HOMO-1	-5.53	59	9	32		
HOMO-2	-5.99	81	13	6		
HOMO-3	-6.69	3	1	96		
HOMO-4	-6.79	4	33	64		
HOMO-5	-7.04	19	8	72		

Table S9. MO composition of $[4]^{2+}$ in singlet (S=0) ground state (b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

Figure S6. Kohn-Sham molecular orbital sketches for $[4]^{2+}$ in (S=0) ground state

Table S10. Selected transitions from TD-DFT calculations of $[4]^{2+}$ in the singlet ground state(b3lyp/LanL2DZ(f)[Ru], 6-31G**[C,H,N], CPCM (CH₃CN)).

state	energy	λ/nm	$\lambda/nm (\epsilon x 10^3)$	f	Major	Character
	(ev)		$\begin{bmatrix} M^{-1}cm^{-1} \\ expt. \end{bmatrix}$		transition(s)	
72	5.16	240	243 (29.1)	0.1502	H-4->L+6 (65%)	hpp (n/π) to hpp (π^*) (major) + ^{<i>t</i>} Bu- Ph-dpt (π) to hpp (π^*) (minor)
47	4.56	271	288 (27.8)	0.2940	H-11->L (76%)	^{<i>t</i>} Bu-Ph-dpt(π) to ^{<i>t</i>} Bu-Ph-dpt(π *)
21	3.54	350	373 (6.7)	0.3102	H-2->L+2 (27%), H-1->L+4 (27%), H-2->L+3 (18%)	Ru($d\pi$) to 'Bu-Ph- dpt(π *) (major) + hpp(n/π) to 'Bu-Ph- dpt(π) (minor)
8	3.14	394	405 (7.0)	0.1027	H->L+2 (92%)	Ru($d\pi$) to 'Bu-Ph- dpt(π *) (major) + hpp(n/ π) to 'Bu-Ph- dpt(π) (minor)
6	2.37	523	558 (9.3)	0.2879	H->L+1 (37%), H-2->L+1 (34%)	Ru($d\pi$) to 'Bu-Ph- dpt(π *) (major) + hpp(n/ π) to 'Bu-Ph- dpt(π) (minor)
3	1.84	674	740 (3.0)	0.0419	H->L(53%), H-1->L+1(41%)	Ru($d\pi$) to 'Bu-Ph- dpt(π *) (major) + hpp(n/π) to 'Bu-Ph- dpt(π) (minor)

Figure S7. Corrected emission spectra of complexes 3 and 4 at 77 K in rigid butyronitrile matrix.

Figure S8. Cyclic voltammogram of the complex 1 in dry, degassed acetonitrile.

Table S11. Optimized Atomic coordinates obtained from DFT for $[1]^{2+}$ in singlet ground state(b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	44	0	-0.545664	0.000015	0.000029
2	7	0	-0.125997	-0.992801	-1.835809
3	7	0	1.441919	-0.000293	0.000095
4	7	0	-0.125823	0.992635	1.835781
5	7	0	-0.685039	1.879629	-1.013404
6	7	0	-1.557872	4.078253	-1.035268
7	7	0	-2.632296	2.381660	0.198591
8	7	0	-2.658451	0.000291	-0.000208
9	7	0	-2.632879	-2.381065	-0.198906
10	7	0	-1.559575	-4.077736	1.035804
11	7	0	-0.685736	-1.879521	1.013545
12	6	0	1.215531	-1.205606	-2.029274
13	6	0	1.683070	-1.874469	-3.164219
14	1	0	2.745061	-2.044867	-3.295426
15	6	0	0.783095	-2.310952	-4.132485
16	1	0	1.137914	-2.829022	-5.017247
17	6	0	-0.575421	-2.054084	-3.949415
18	1	0	-1.311835	-2.352853	-4.687259
19	-	0	-0.981762	-1.397838	-2.791368
20	1	0	-2 026384	-1 177505	-2 609378
21	£	0	2 107587	-0 628445	-1 001251
22	6	0	3 500601	-0 648214	-1 013787
22	1	0	4 033544	-1 176265	-1 794746
23	6	0	4 232029	-0 000458	0 000019
25	6	0	3 500739	0.600430	1 013878
25	1	0	1 033778	1 175389	1 79/796
20	I 6	0	2 107723	0 627761	1 001/16
27	6	0	2.107723 1 215752	1 205071	2 020420
20	6	0	1 602242	1 072660	2.029420
29	0	0	1.003342	1.0/3009	3.104492
3U 21		0	2.740070	2.043703	3.290000
22	0	0	0.703302	2.310310	4.132703
32		0	1.138248	2.828196	5.01/553
33	6	0	-0.5/5185	2.053844	3.949446
34		0	-1.311602	2.352/3/	4.68/23/
35	6	0	-0.981583	1.39/818	2.791295
36	l	0	-2.026237	1.177782	2.609166
37	6	0	5.710344	-0.000517	-0.000054
38	6	0	6.427415	0.049301	-1.209224
39	1	0	5.896264	0.124435	-2.153750
40	6	0	7.820229	0.052787	-1.207627
41	1	0	8.359749	0.105880	-2.147907
42	6	0	8.520394	-0.000641	-0.000197
43	1	0	9.605732	-0.000690	-0.000255
44	6	0	7.820349	-0.054003	1.207305

45	1	0	8.359957	-0.107143	2.147531
46	6	0	6.427534	-0.050395	1.209041
47	1	0	5.896471	-0.125471	2.153621
48	6	0	-3.348245	1.170337	0.050467
49	6	0	-4.747245	1.198068	0.013790
50	1	0	-5.279232	2.138914	-0.009551
51	6	0	-5.449020	0.000742	-0.001062
52	1	0	-6.534046	0.000896	-0.001430
53	6	0	-4.747612	-1.196815	-0.015457
54	1	0	-5.279963	-2.137458	0.007572
55	6	0	-3.348583	-1.169566	-0.051243
56	6	0	-3.271660	-3.476228	-0.959430
57	1	0	-2.518399	-3.898114	-1.636251
58	1	0	-4.058349	-3.050662	-1.581165
59	6	0	-3.784006	-4.545603	-0.004833
60	1	0	-4.512594	-4.112064	0.687692
61	1	0	-4.283864	-5.355724	-0.543260
62	6	0	-2.583733	-5.099862	0.752223
63	1	0	-2.893187	-5.553467	1.700507
64	1	0	-2.102096	-5.888222	0.159208
6.5	6	0	-0.391239	-4.570924	1.779657
66	1	0	0.423413	-4.814073	1.083522
67	1	0	-0.683072	-5.496891	2.279690
68	÷	0	0 040204	-3 511660	2 781920
69	1	0	-0.760307	-3 359666	3 514395
70	1	0	0.930867	-3 833960	3 328886
70	- 6	0	0 331589	-2 222815	2 021853
72	1	0	0 414511	-1 386817	2 720554
72	1	0	1 299327	-2 306988	1 512104
73	- 6	0	-1 584556	-2 765697	0 660654
75	6	0	-3 271059	3 476777	0 959209
75	1	0	-2 518006	3 898102	1 636619
70	1	0	-4 058266	3 051268	1 580322
78	6	0	-3 782431	4 546739	0 004756
70	1	0	-1 282251	5 3568/8	0.004730
80	1	0	-1 510812	1 113789	-0 688361
81	É	0	-2 581520	5 100802	-0 751/17
82	1	0	-2.901320	5 555206	-1 699527
02	1	0	-2.090331	5 000510	-1.099527
0.0	I 6	0	-2.099003	J.000JL0 4 571062	-0.137091
04	1	0	-0.309101	4.371003	-1.770011
00	1	0	0.420400	4.013030 5 407202	-1.002502
00		0	-0.660301	3.497293	-2.2/0002
87	0	0	0.041902	3.511833	-2./812/4
88	1	0	-0.758605	3.360364	-3.513858
89	⊥ ⊂	U	0.932/64	3.833862	-3.3280/6
90	6	U	0.332619	2.222704	-2.021441
91	1	U	0.415327	1.386/98	-2.720289
92	⊥ ⊂	U	1.300305	2.306385	-1.511509
93	б	U	-1.583561	2./66106	-0.6604/2

Table S12. Optimized Atomic coordinates obtained from DFT for $[2]^{2+}$ in singlet ground state(b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

NumberTypeXYZ1440 -0.773882 -0.000117 -0.000185 270 -0.353309 1.045790 -1.804878 370 1.212502 -0.000742 0.000247 470 -0.354649 -1.046556 1.804631 570 -2.863072 -2.389806 0.106542 870 -2.863072 -2.389806 0.106542 870 -2.8660725 2.391500 -0.107928 1070 -1.7653712 4.027834 1.187598 1170 -0.988375 1.255556 -1.997969 1360 1.456820 1.940963 -3.122848 1560 0.556830 2.399774 -4.080312 1610 0.912178 2.93095 -4.557370 1810 -1.540007 2.468223 -4.625317 1960 -1.209580 -1.75366 -2.567370 2160 3.805360 1.175366 -1.979459 2460 4.006324 -0.00490 0.001466 2560 3.22737 -0.661469 0.998333 2860 0.988453 -1.256936 1.25656 3110 -2.857374 -2.604367 3.25659 3360 0.988453 -1.256361 1.997869	Center	Atomic Number	Atomic	Coordinates (Angstroms)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number		Туре	Х	Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	44	0	-0.773882	-0.000117	-0.000185
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	7	0	-0.353309	1.045790	-1.804878
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	7	0	1.212502	-0.000742	0.000247
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	7	0	-0.354649	-1.046556	1.804631
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	7	0	-0.930902	-1.820646	-1.102864
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	7	0	-1.765263	-4.027989	-1.185942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	7	0	-2.863072	-2.389806	0.106542
970 -2.860725 2.391500 -0.107928 1070 -1.763712 4.027834 1.187598 1170 -0.929779 1.820369 1.102590 1260 0.988375 1.255556 -1.997969 1360 1.456820 1.940963 -3.1224841 1410 2.519565 2.105878 -3.254841 1560 0.556830 2.399774 -4.080312 1610 0.912178 2.930095 -4.957574 1760 -0.802991 2.150107 -3.896221 1810 -1.540007 2.468223 -4.625317 1960 -1.209580 1.475090 -2.749492 2010 -2.255237 1.259865 -2.567370 2160 3.272375 0.673983 -0.994832 2310 3.805360 1.175366 -1.793459 2460 4.006324 -0.000490 0.001486 2560 3.272375 -0.661469 0.980353 2860 0.986853 -1.242898 3.12326 3160 0.553794 -2.401611 4.080114 3210 0.553794 -2.401611 4.987395 3360 -0.255751 -1.260187 2.56692 3410 -1.543344 -2.469381 <td>8</td> <td>7</td> <td>0</td> <td>-2.888895</td> <td>0.000857</td> <td>-0.000872</td>	8	7	0	-2.888895	0.000857	-0.000872
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	7	0	-2.860725	2.391500	-0.107928
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	7	0	-1.763712	4.027834	1.187598
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	7	0	-0.929779	1.820369	1.102590
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6	0	0.988375	1.255556	-1.997969
1410 2.519565 2.105878 -3.254841 1560 0.556830 2.399774 -4.080312 1610 0.912178 2.930095 -4.957574 1760 -0.802991 2.150107 -3.896221 1810 -1.540007 2.468223 -4.625317 1960 -1.209580 1.475090 -2.749492 2010 -2.255237 1.259865 -2.567370 2160 3.273095 0.673983 -0.994832 2310 3.805360 1.175366 -1.793459 2460 4.006324 -0.000490 0.001486 2560 3.272375 -0.675225 0.997068 2610 3.803925 -1.176270 1.796364 2760 1.879570 -0.661469 0.980353 2860 0.986853 -1.256936 1.998333 2960 1.454450 -1.942898 3.123226 3010 2.517053 -2.108367 3.255659 3160 -1.543344 -2.469381 4.624037 3560 -1.2257051 -1.260187 2.566042 3760 5.680143 2.004407 -0.795455 4060 7.595759 1.112925 -0.454418 4110 8.130408 1.992723 </td <td>13</td> <td>6</td> <td>0</td> <td>1.456820</td> <td>1.940963</td> <td>-3.122848</td>	13	6	0	1.456820	1.940963	-3.122848
1560 0.556830 2.399774 -4.080312 1610 0.912178 2.930095 -4.957574 1760 -0.802991 2.150107 -3.896221 1810 -1.540007 2.468223 -4.625317 1960 -1.209580 1.475090 -2.749492 2010 -2.255237 1.259865 -2.567370 2160 1.880313 0.660004 -0.979374 2260 3.273095 0.673983 -0.994832 2310 3.805360 1.175366 -1.793459 2460 4.006324 -0.000490 0.001486 2560 3.272375 -0.675225 0.997068 2610 3.803925 -1.176270 1.796364 2760 1.454450 -1.942898 3.123226 3010 2.517053 -2.108367 3.255659 3160 0.533794 -2.401611 4.080114 3210 -1.543344 -2.469381 4.624037 3560 -1.211568 -1.475835 2.748664 3610 -2.257051 -1.260187 2.566042 3760 6.205040 1.113056 -0.463481 4110 8.130408 1.992723 -0.801054 4260 7.595759 1.112925 </td <td>14</td> <td>1</td> <td>0</td> <td>2.519565</td> <td>2.105878</td> <td>-3.254841</td>	14	1	0	2.519565	2.105878	-3.254841
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	0.556830	2.399774	-4.080312
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1	0	0.912178	2.930095	-4.957574
1810 -1.540007 2.468223 -4.625317 19 60 -1.209580 1.475090 -2.749492 20 10 -2.255237 1.259865 -2.567370 21 60 1.880313 0.660004 -0.979374 22 60 3.273095 0.673983 -0.994832 23 10 3.805360 1.175366 -1.793459 24 60 4.006324 -0.00490 0.001486 25 60 3.272375 -0.675225 0.997068 26 10 3.803925 -1.176270 1.796364 27 60 1.879570 -0.661469 0.980353 28 60 0.986853 -1.256936 1.998333 29 60 1.454450 -1.942898 3.123226 30 10 2.517053 -2.108367 3.255659 31 60 0.908487 -2.932341 4.957395 33 60 -0.805832 -2.151346 3.895410 34 10 -1.241568 -1.475835 2.748664 36 10 -2.257051 -1.260187 2.566042 37 60 5.481594 0.00008 0.001769 38 60 6.205040 1.113056 -0.463481 39 10 5.680143 2.004407 -0.795455 40 60 </td <td>17</td> <td>6</td> <td>0</td> <td>-0.802991</td> <td>2.150107</td> <td>-3.896221</td>	17	6	0	-0.802991	2.150107	-3.896221
1960 -1.209580 1.475090 -2.749492 2010 -2.255237 1.259865 -2.567370 2160 1.880313 0.660004 -0.979374 2260 3.273095 0.673983 -0.994832 2310 3.805360 1.175366 -1.793459 2460 4.006324 -0.000490 0.001486 2560 3.272375 -0.675225 0.997068 2610 3.803925 -1.176270 1.796364 2760 1.879570 -0.661469 0.980353 2860 0.986853 -1.256936 1.998333 2960 1.454450 -1.942898 3.123226 3010 2.517053 -2.108367 3.255659 3160 -0.805832 -2.151346 3.895410 3410 -1.543344 -2.469381 4.624037 3560 -1.211568 -1.475835 2.748664 3610 -2.257051 -1.260187 2.566042 3760 6.205040 1.113056 -0.463481 3910 5.680143 2.004407 -0.795455 4060 7.595759 1.112925 -0.454418 4110 8.130408 1.992723 -0.801054 4260 8.32080 0.00373	18	1	0	-1.540007	2.468223	-4.625317
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	-1.209580	1.475090	-2.749492
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-2.255237	1.259865	-2.567370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	0	1.880313	0.660004	-0.979374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	0	3.273095	0.673983	-0.994832
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	3.805360	1.175366	-1.793459
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	4.006324	-0.000490	0.001486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	6	0	3.272375	-0.675225	0.997068
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	3.803925	-1.176270	1.796364
28600.986853-1.2569361.998333 29 601.454450-1.9428983.123226 30 102.517053-2.1083673.255659 31 600.553794-2.4016114.080114 32 100.908487-2.9323414.957395 33 60-0.805832-2.1513463.895410 34 10-1.543344-2.4693814.624037 35 60-1.211568-1.4758352.748664 36 10-2.257051-1.2601872.566042 37 605.4815940.0000080.001769 38 606.2050401.113056-0.463481 39 105.6801432.004407-0.795455 40 607.5957591.112925-0.454418 41 108.1304081.992723-0.801054 42 607.596793-1.1063740.468847 44 108.132579-1.9814200.825841	27	6	0	1.879570	-0.661469	0.980353
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	6	0	0.986853	-1.256936	1.998333
3010 2.517053 -2.108367 3.255659 31 60 0.553794 -2.401611 4.080114 32 10 0.908487 -2.932341 4.957395 33 60 -0.805832 -2.151346 3.895410 34 10 -1.543344 -2.469381 4.624037 35 60 -1.211568 -1.475835 2.748664 36 10 -2.257051 -1.260187 2.566042 37 60 5.481594 0.000008 0.001769 38 60 6.205040 1.113056 -0.463481 39 10 5.680143 2.004407 -0.795455 40 60 7.595759 1.112925 -0.454418 41 10 8.130408 1.992723 -0.801054 42 60 7.596793 -1.106374 0.468847 44 10 8.132579 -1.981420 0.825841	29	6	0	1.454450	-1.942898	3.123226
31 6 0 0.553794 -2.401611 4.080114 32 1 0 0.908487 -2.932341 4.957395 33 6 0 -0.805832 -2.151346 3.895410 34 1 0 -1.543344 -2.469381 4.624037 35 6 0 -1.211568 -1.475835 2.748664 36 1 0 -2.257051 -1.260187 2.566042 37 6 0 5.481594 0.000008 0.001769 38 6 0 6.205040 1.113056 -0.463481 39 1 0 5.680143 2.004407 -0.795455 40 6 0 7.595759 1.112925 -0.454418 41 1 0 8.130408 1.992723 -0.801054 42 6 0 7.596793 -1.106374 0.468847 44 1 0 8.132579 -1.981420 0.825841	30	1	0	2.517053	-2.108367	3.255659
3210 0.908487 -2.932341 4.957395 33 60 -0.805832 -2.151346 3.895410 34 10 -1.543344 -2.469381 4.624037 35 60 -1.211568 -1.475835 2.748664 36 10 -2.257051 -1.260187 2.566042 37 60 5.481594 0.000008 0.001769 38 60 6.205040 1.113056 -0.463481 39 10 5.680143 2.004407 -0.795455 40 60 7.595759 1.112925 -0.454418 41 10 8.130408 1.992723 -0.801054 42 60 7.596793 -1.106374 0.468847 44 10 8.132579 -1.981420 0.825841	31	6	0	0.553794	-2.401611	4.080114
3360 -0.805832 -2.151346 3.895410 3410 -1.543344 -2.469381 4.624037 3560 -1.211568 -1.475835 2.748664 3610 -2.257051 -1.260187 2.566042 3760 5.481594 0.000008 0.001769 3860 6.205040 1.113056 -0.463481 3910 5.680143 2.004407 -0.795455 4060 7.595759 1.112925 -0.454418 4110 8.130408 1.992723 -0.801054 4260 7.596793 -1.106374 0.468847 4410 8.132579 -1.981420 0.825841	32	1	0	0.908487	-2.932341	4.957395
3410 -1.543344 -2.469381 4.624037 35 60 -1.211568 -1.475835 2.748664 36 10 -2.257051 -1.260187 2.566042 37 60 5.481594 0.000008 0.001769 38 60 6.205040 1.113056 -0.463481 39 10 5.680143 2.004407 -0.795455 40 60 7.595759 1.112925 -0.454418 41 10 8.130408 1.992723 -0.801054 42 60 7.596793 -1.106374 0.468847 44 10 8.132579 -1.981420 0.825841	33	6	0	-0.805832	-2.151346	3.895410
3560 -1.211568 -1.475835 2.748664 3610 -2.257051 -1.260187 2.566042 3760 5.481594 0.000008 0.001769 3860 6.205040 1.113056 -0.463481 3910 5.680143 2.004407 -0.795455 4060 7.595759 1.112925 -0.454418 4110 8.130408 1.992723 -0.801054 4260 7.596793 -1.106374 0.468847 4410 8.132579 -1.981420 0.825841	34	1	0	-1.543344	-2.469381	4.624037
3610 -2.257051 -1.260187 2.566042 37 60 5.481594 0.000008 0.001769 38 60 6.205040 1.113056 -0.463481 39 10 5.680143 2.004407 -0.795455 40 60 7.595759 1.112925 -0.454418 41 10 8.130408 1.992723 -0.801054 42 60 7.596793 -1.106374 0.468847 44 10 8.132579 -1.981420 0.825841	35	6	0	-1.211568	-1.475835	2.748664
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	0	-2.257051	-1.260187	2.566042
38 6 0 6.205040 1.113056 -0.463481 39 1 0 5.680143 2.004407 -0.795455 40 6 0 7.595759 1.112925 -0.454418 41 1 0 8.130408 1.992723 -0.801054 42 6 0 7.596793 -1.106374 0.468847 43 6 0 7.596793 -1.106374 0.468847 44 1 0 8.132579 -1.981420 0.825841	37	6	0	5.481594	0.000008	0.001769
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	6	0	6 205040	1 113056	-0 463481
40 6 0 7.595759 1.112925 -0.454418 41 1 0 8.130408 1.992723 -0.801054 42 6 0 8.320880 0.003373 0.006225 43 6 0 7.596793 -1.106374 0.468847 44 1 0 8.132579 -1.981420 0.825841	39	1	0	5 680143	2 004407	-0 795455
41 1 0 8.130408 1.992723 -0.801054 42 6 0 8.320880 0.003373 0.006225 43 6 0 7.596793 -1.106374 0.468847 44 1 0 8.132579 -1.981420 0.825841	40	÷ 6	0	7 595759	1 112925	-0 454418
42 6 0 8.320880 0.003373 0.006225 43 6 0 7.596793 -1.106374 0.468847 44 1 0 8.132579 -1.981420 0.825841	41	1	0	8 130408	1 992723	-0 801054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	- 6	0	8 320880	1 003373	0 006225
44 1 0 $8.132579 -1.981420$ 0.825841	43	6	0	7 596793	-1 106374	0 468847
	44	1	0 0	8.132579	-1.981420	0.825841

45	6	0	6.206298	-1.110764	0.471117
46	1	0	5.682418	-2.000836	0.808083
47	6	0	9.827812	-0.006635	-0.017133
48	1	0	10.196953	-0.431961	-0.958499
49	1	0	10.237693	-0.612499	0.795453
50	1	0	10.237157	1.003462	0.066522
51	6	0	0.016728	-2.196546	-2.160827
52	1	0	0.814547	-1.457387	-2.192127
53	1	0	-0.485588	-2.171279	-3.138343
54	6	0	0.576047	-3.590952	-1.894803
55	1	0	1.296597	-3.886591	-2.662673
56	1	0	1.097816	-3.594226	-0.931640
57	6	0	-0.584373	-4.574456	-1.882151
58	1	0	-0.304718	-5.512157	-1.387604
59	1	0	-0.883440	-4.827745	-2,907350
60	6	0	-2.839823	-5.028115	-1.044947
61	1	0	-2 403986	-5 891521	-0 526788
62	1	0	-3 133048	-5 370857	-2 044679
63	-	0	-4 041781	-4 511827	-0 261207
64	1	0	-4 563182	-5 351721	0.201207
65	1	0	-1 75/39/	-1 012789	-0 925058
66	6	0	-3 521302	-3 528395	0.780244
67	1	0	-1 30/586	-3 1/1588	1 /30803
68	1	0	-2 776433	_1 012338	1 /23131
60	L 6	0	-2.770433 -1.012142	-2 720000	-0 766272
70	6	0	-1.012142	-2.730000	-0.700373
70	6	0	-3.379072	-1.10709	-0.027071
71	0	0	-4.9/0200 E E1070E	-1.195712	-0.027071
12		0	-5.513725	-2.1328/3	-0.080945
13	6	0	-5.6/8451	0.002086	-0.003343
74		0	-6.763459	0.002575	-0.004325
75	6	0	-4.9//240	1.199255	0.021691
/6		0	-5.512037	2.136847	0.0/4634
11	6	0	-3.5//993	1.1/3136	-0.010573
/8	6	0	-3.51/080	3.531128	-0./816/8
79		0	-4.299534	3.1454/9	-1.433925
80	l	0	-2.//0/9/	4.015124	-1.4228/1
81	6	0	-4.038573	4.513985	0.259807
82		0	-4.558586	5.354691	-0.207932
83		0	-4.752636	4.014886	0.922042
84	6	0	-2.837515	5.028690	1.045974
85	1	0	-2.400354	5.892391	0.529417
86	1	0	-3.132091	5.370554	2.045608
87	6	0	-0.583543	4.573108	1.885947
88	1	0	-0.883669	4.824863	2.911213
89	1	0	-0.303262	5.511538	1.393144
90	6	0	0.576756	3.589491	1.898240
91	1	0	1.296609	3.883908	2.667230
92	1	0	1.099444	3.594182	0.935581
93	6	0	0.017166	2.194738	2.161743
94	1	0	0.814989	1.455572	2.192443
95	1	0	-0.485796	2.167973	3.138885
96	6	0	-1.810482	2.730351	0.766411

Center Number	Atomic Number	AtomicAtomicNumberType		Coordinates (Angstroms) X Y		
1	35	0	-8.898623	0.103425	-0.209417	
2	44	0	1.308804	0.055589	0.023965	
3	7	0	0.882670	1.153329	1.770456	
4	7	0	-0.601138	-0.063705	0.097415	
5	7	0	-2.634610	0.526029	1.129263	
6	7	0	-2.603097	-0.967413	-0.746190	
7	7	0	0.913819	-1.113919	-1.646515	
8	7	0	3.376583	0.133682	-0.029054	
9	7	0	3.417803	-2.244492	-0.152888	
10	7	0	2.233499	-3.933336	0.936518	
11	7	0	1.568613	-1.695710	1.139283	
12	7	0	3.273680	2.495388	-0.009990	
13	7	0	2.126387	3.953522	-1.425759	
14	7	0	1.348826	1.767836	-1.126022	
15	6	0	-0.392048	-1.561817	-1.682270	
16	6	0	-0.805765	-2.555992	-2.557942	
17	1	0	-1.683897	-2.868187	-2.545668	
18	6	0	0.119719	-3.071196	-3.450438	
19	1	0	-0.119827	-3.769065	-4.019013	
20	6	0	1.394721	-2.551415	-3.496755	
21	1	0	2.005189	-2.857575	-4.129235	
22	6	0	1.752690	-1.571090	-2.591401	
23	1	0	2.611157	-1.211696	-2.638342	
24	6	0	-1.281810	-0.877530	-0.747135	
25	6	0	-3.242679	-0.228328	0.189115	
26	6	0	-1.313427	0.587166	1.057634	
27	6	0	-0.459122	1.289945	2.004005	
28	6	0	-0.961387	1.978024	3.106358	
29	1	0	-1.880153	2.070517	3.229003	
30	6	0	-0.072303	2.516716	4.012757	
31	1	0	-0.380702	2.993310	4.751368	
32	6	0	1.278356	2.338686	3.808242	
33	1	0	1.892288	2.664164	4.428773	
34	6	0	1.714461	1.679232	2.681047	
35	1	0	2.632773	1.593008	2.544834	
36	6	0	-4.704502	-0.195703	0.142200	
37	6	0	-5.394090	-0.833951	-0.865662	
38	1	0	-4.930391	-1.351959	-1.485478	
39	6	0	-6.753920	-0.703831	-0.949398	
40	1	0	-7.234669	-1.106479	-1.635366	
41	6	0	-7.381296	0.007593	-0.042830	
42	6	0	-6.788352	0.638762	0.946402	

Table S13. Optimized Atomic coordinates obtained from DFT for $[3]^{2+}$ in singlet ground state(b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

43	1	0	-7.291626	1.135531	1.549012
44	6	0	-5.422445	0.548208	1.065132
45	1	0	-4.978551	0.980010	1.759044
46	6	0	0.615913	-2.086949	2.178216
47	1	0	0.643216	-1.409637	2.873944
48	1	0	-0.271833	-2.060527	1.789506
49	6	0	0.777927	-3.336172	2.792611
50	1	0	-0.019002	-3.568444	3.297181
51	- 1	0	1,533614	-3.315012	3,402444
52	6	0	1 031747	-4 417178	1 631963
53	1	0	1 182985	-5 300170	2 007859
54	1	0	0 275857	-1 157185	1 025356
55	1 6	0	3 371903	-1 995711	0 805/09
55	0	0	2 725010	-5.052069	1 6000409
50	⊥ 1	0	3.733019	-J.0J2900	1.090045
57		0	3.02/596	-5.729725	0.468396
58	0	0	4.445308	-4.454260	-0.055251
59	1	0	4./18580	-5.202272	-0.610627
60	1	0	5.204367	-4.203051	0.495060
61	6	0	4.090638	-3.305011	-0.937045
62	1	0	4.894572	-2.947000	-1.344664
63	1	0	3.500087	-3.608767	-1.645966
64	6	0	2.371378	-2.620085	0.672773
65	6	0	4.097865	-1.010613	-0.001865
66	6	0	5.474016	-1.009657	0.138306
67	1	0	5.943378	-1.811247	0.191160
68	6	0	6.139175	0.191518	0.198975
69	1	0	7.062839	0.211559	0.305555
70	6	0	5.421719	1.372523	0.100376
71	1	0	5.862218	2.192269	0.105531
72	6	0	4.040633	1.317942	-0.005215
73	6	0	3.886122	3.729815	0.508128
74	1	0	4.612791	3.507235	1.111351
75	1	0	3.226557	4.242746	1.001915
76	6	0	4.411137	4.548745	-0.649710
77	1	0	4.840791	5.354889	-0.319833
78	1	0	5.065774	4.036561	-1.151758
79	6	0	3.244073	4.908674	-1.532926
80	1	0	2.926347	5.793330	-1.292678
81	1	0	3.543994	4.941326	-2.455385
82	6	0	0.914620	4.411969	-2.102965
83	1	0	1.113883	4.568367	-3.040205
84	1	0	0.632595	5.255287	-1.713711
85	-	0	-0.212133	3,415079	-1.995121
86	1	0 0	-0.881419	3.594172	-2.674871
87	± 1	Õ	-0 633614	3 483152	-1 123428
88	- 6	0	0 367941	2 029219	-2 186858
89	1	0	-0 3/1/69	1 366037	-2 151511
90	⊥ 1	0	0.341400	1 969687	-3 055355
91	- 6	0	2 207093	2 721563	-0 901312
	··				

Table S14. Optimized Atomic coordinates obtained from DFT for $[4]^{2+}$ in singlet ground state(b3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	44	0	-1.348493	0.000183	0.000581
2	7	0	-0.888845	-1.079414	1.805836
3	7	0	0.626580	-0.004275	0.005955
4	7	0	-0.873940	1.077575	-1.802426
5	7	0	-1.505872	1.810089	1.118981
6	7	0	-2.335143	4.018621	1.212590
7	7	0	-3.422842	2.394636	-0.107689
8	7	0	-3.461086	0.005110	-0.006121
9	7	0	-3.435034	-2.384529	0.096563
10	7	0	-2.342875	-4.015666	-1.211278
11	7	0	-1.507773	-1.809496	-1.118164
12	6	0	0.458186	-1.271899	1.986673
13	6	0	0.976348	-1.950228	3.088527
14		0	2.051122	-2.066425	3.168695
15	6	0	0.102336	-2.441409	4.055672
16 17		0	0.480175	-2.9/1399	4.923658
1 /	6	0	-1.265623	-2.222552	3.8904/3
18		0	-1.982946	-2.568064	4.627080
19	6	0	-1./15504	-1.543035	2.759110
20		0	-2.//0423	-1.354499	2.601/01
21	6 7	0	1.323334	-0.653542	0.964003
22		0	2.044104	-0.000729	0.990012
23	6 7	0	3.299833	-0.010804	0.013147
24	1	0	2.002000	0.000230	-0.975751
25	6	0	1.333071	1 263800	-0.940197
20	6	0	1 002479	1 939866	-3 07//87
28	1	0	2 078211	2 051091	-3 148553
29	6	0	0 136213	2.031031	-4 046529
30	1	0	0 521357	2 963396	-4 912308
31	- 6	0	-1 233637	2.222351	-3 889159
32	1	0	-1 945177	2 571121	-4 629827
33	£	0	-1.693040	1.544845	-2.760414
34	1	0	-2.749695	1,361035	-2.609097
35	6	0	4.756211	-0.013801	0.016509
36	6	0	5.473891	-0.695710	1.016920
37	1	0	4.932934	-1.224165	1.793151
38	6	0	6.863208	-0.694925	1.015749
39	1	0	7.380241	-1.230364	1.802273
40	6	0	7.598935	-0.019935	0.025162
41	6	0	6.866833	0.659104	-0.971739
42	1	0	7.395571	1.192362	-1.754305
43	6	0	5.482097	0.667230	-0.983168
44	1	0	4.946587	1.197577	-1.761743

45	6	0	9.133435	-0.000104	-0.004300
46	6	0	9.753916	-0.790021	1.163408
47	1	0	9.470620	-1.847476	1.140516
48	1	0	9.470523	-0.375419	2.136445
49	1	0	10.844453	-0.743896	1.095332
50	6	0	9.621733	-0.627504	-1.334174
51	1	0	10.715623	-0.616684	-1.368716
52	1	0	9.258479	-0.078030	-2,207625
53	1	0	9 291054	-1 666942	-1 426656
54	6	0	9 622284	1 467496	0 082643
55	1	0	10 716167	1 495622	0 059159
56	1	0	9 292093	1 939533	1 013471
57	1	0	9 258506	2 074037	-0 751937
58	6	0	-0 565648	-2 179163	-2 183230
50	1	0	0.000040	_1 /20020	-2 216750
59	1	0	-1 072955	-1.430930 -2.147002	-2.210/30
60		0	-1.072855	-2.14/002	-3.13/9/0
61	0	0	-0.004025	-3.574765	-1.920034
62	1	0	0.712211	-3.865296	-2.702377
63	l	0	0.523660	-3.585269	-0.968/11
64	6	0	-1.164398	-4.558335	-1.915695
65	1	0	-1.468636	-4.806458	-2.940531
66	1	0	-0.882290	-5.498192	-1.426931
67	6	0	-3.416331	-5.017349	-1.070426
68	1	0	-2.979194	-5.881188	-0.554163
69	1	0	-3.709858	-5.358254	-2.070598
70	6	0	-4.617797	-4.502878	-0.285209
71	1	0	-5.141147	-5.344267	0.177499
72	1	0	-5.328851	-3.999096	-0.947135
73	6	0	-4.096264	-3.526342	0.762267
74	1	0	-4.879126	-3.141826	1.414776
75	1	0	-3.352694	-4.015928	1.402370
76	6	0	-2.388154	-2.721339	-0.783205
77	6	0	-4.152183	-1.165367	-0.000988
78	6	0	-5.551069	-1.187947	-0.039609
79	1	0	-6.088501	-2.123948	-0.094044
80	6	0	-6.248702	0.011611	-0.019727
81	1	0	-7.333692	0.014176	-0.025108
82	6	0	-5.545705	1.207886	0.007169
83	1	0	-6.079430	2.146284	0.056353
84	6	0	-4.146580	1.178886	-0.017596
85	6	0	-4.073027	3.540753	-0.776799
86	1	0	-4 851230	3 161242	-1 437771
87	1	0	-3 321293	4 028720	-1 408513
88	6	0	-4 600318	4 516985	0 268073
80	1	0	-5 115546	5 361778	-0 197540
0.0	1	0	-5.210000	1 014750	-0.197340
90		0	-3.319090	4.014/30	1 066141
0.0 1	1	0	-2 050400	J.UZ4ZJU 5 000271	1.U00141 0 557274
92 02	⊥ 1	U	-2.939489	5.0000/L	0.05/3/4
93	⊥ ⊂	U	-3./05610	3.362164	2.064988
94	6	U	-1.161256	4.555027	1.929246
95	Ţ	U	-0.873526	5.496998	1.447916
96	1	0	-1.472816	4.798082	2.953115

97	6	0	-0.003089	3.569073	1.945415
98	1	0	0.708904	3.854901	2.724783
99	1	0	0.530575	3.582512	0.988815
100	6	0	-0.568986	2.173621	2.190870
101	1	0	0.226526	1.431812	2.225655
102	1	0	-1.081620	2.139057	3.162652
103	6	0	-2.381189	2.725520	0.780721

References:

- (a) Parker, C. A. and Rees, W. T. *Analyst* 1960, **85**, 587, (b) Crosby, G. A.; Demas, J. N. *J. Phys. Chem.* 1971, **75**, 991.
- Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Nat. Protocol 2013, 8, 1535.
- 3. Wang, J.; Hanan, G. S. Synlett, 2005, 8, 1251.
- a) Santoni, M.-P.; Pal, A. K.; Hanan, G. S.; Proust, A.; Hasenknopf, B. *Inorg. Chem. Commun.* 2011, 14, 399; b) M. I. J. Polson, E. A. Medlycott, G. S. Hanan, L. Mikelsons, N. J. Taylor, M. Watanabe, Y. Tanaka, F. Loiseau, R. Passalacqua, S. Campagna, *Chem. Eur. J.*, 2004, 10, 3640; c) E. A. Medlycott, K. A. Udachin, G. S. Hanan, *Dalton Trans.*, 2007, 430.
- APEX2 (2007) version 2.4-0; Bruker Molecular Analysis Research Tool. Bruker AXS Inc., Madison, WI 53719-1173.
- Sheldrick, G. M. (1996). SADABS, Bruker Area Detector Absorption Corrections. Bruker AXS Inc., Madison, WI 53719-1173.
- SHELXTL (2001) version 6.12; Bruker Analytical X-ray Systems Inc., Madison, WI 53719-1173.
- 8. Platon (A. L. SPEK, 2003).

- Siemeling, U.; Bruggen, J. V. der; Vorfeld, U.; Neumann, B.; Stammler, A.; Stammler, H.-G.; Brockhinke, A.; Plessow, R.; Zanello, P.; Laschi, F.; Biani, F. F. de; Fontani, M.; Steenken, S.; Stapper, M. and Gurzadyan G. *Chem. Eur. J.*, 2003, 9, 2819.
- 10. Medlycott, E. A.; Hanan, G. S.; Loiseau, F.; Campagna, S. Chem. Eur. J. 2007, 13, 2837.