# **Supplementary Information**

Rate-determining step in the self-assembly process of supramolecular coordination capsules

Yuya Tsujimoto, Tatsuo Kojima and Shuichi Hiraoka\*

Department of Basic Science, Graduate School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan E-mail: chiraoka@mail.ecc.u-tokyo.ac.jp

#### Contents

| General information and materials                                                                       | ····S2  |
|---------------------------------------------------------------------------------------------------------|---------|
| • Synthesis of tris-monodentate ligand 2                                                                | ····S2  |
| • <i>n-k</i> Map for the assembly of an octahedron-shaped $M_6L_8$ molecular capsule (Fig. S1)          | ····S3  |
| • General procedure for the investigation of the assembly process                                       | ····S4  |
| • Determination of the average composition of the fragment species $([Pd_aL_bPy_c]^{2a+})$ in each time | point   |
| (Tables S1-21 and Figs S2 & S3)                                                                         | ····S4  |
| • ESI-TOF mass study for the assembly of $[Pd_6L_8]^{12+}$ (L = 1 or 2) capsules (Figs S4 and S5)       | ····S17 |
| • The structural isomers of $[Pd_6L_8Py_2]^{12+}$ (Fig. S6)                                             | ····S19 |
|                                                                                                         |         |

• Molecular Mechanics investigation of the strain energy of the intermediates in the last step of the self-assembly process (Fig. S7 & Table S3) .....S19

#### **General Information**

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded with tetramethylsilane as the internal standard using a Bruker AV-500 (500 MHz) spectrometer. Electrospray ionization time-of-flight (ESI-TOF) mass spectra were obtained using a Waters Xevo G2 Tof mass spectrometer. Melting points were determined using a SCINICS SMP-300 instrument. Column chromatography was performed using SiO<sub>2</sub> [Merck, silica gel 60 for column chromatography (230-400 mesh ASTM)].

#### Materials

Unless otherwise noted, all solvents and reagents were obtained from commercial suppliers (TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., KANTO Chemical Co., Ltd., and Sigma-Aldrich Co.) and were used as received.

#### Synthesis of tris-monodentate ligand 2

Tris-monodentate ligand 2 was synthesized from  $3^1$  in two steps (Scheme S1).

Scheme S1. Synthetic route of tris-monodentate ligand 2



#### Synthesis of 4<sup>2</sup>

To the suspension of **3** (1.00 g, 1.00 mmol) in THF (10 mL) was added a pentane solution of *t*-BuLi (6 eq) at -98 °C. After removal of the cooling bath, the reaction mixture was stirred for 1 h. Then the reaction was quenched by the addition of D<sub>2</sub>O (3 mL) at room temperature. The mixture was partitioned between water and CHCl<sub>3</sub>, and the aqueous layer was extracted with CHCl<sub>3</sub> (50 mL  $\times$  3). The combined extracts were dried over anhydrous MgSO<sub>4</sub> and the solvent was removed in vacuo to afford **4** (690 mg, 89%) as a colorless solid, which was used in the next step without further purification. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K):  $\delta$  6.98 (dd, *J* = 6.6, 1.8 Hz, 6H), 6.91 (d, *J* = 8.1 Hz, 6H), 6.77 (d, *J* = 8.2 Hz, 6H), 6.66 (dd, *J* = 6.6, 1.8 Hz, 6H).

#### Synthesis of 2

In a sealed flask, **4** (743 mg, 0.964 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos) (23.7 mg, 6 mol%), Pd(OAc)<sub>2</sub> (6.84 mg, 3 mol%), K<sub>3</sub>PO<sub>4</sub> (1.23 g, 5.78 mmol), 3-pyridylboronic acid (533 mg, 4.34 mmol), H<sub>2</sub>O (10 mL) and toluene (10 mL) were added. The mixture was stirred for 10 h at 90 °C. The mixture was partitioned between water and CH<sub>2</sub>Cl<sub>2</sub>, and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL  $\times$  3). The combined extracts were dried over anhydrous MgSO<sub>4</sub> and the solvent was removed in vacuo. Silica-gel column chromatography (CHCl<sub>3</sub>/MeOH = 100/1) afforded **2** (154 mg, 21%) as a colorless solid. m.p. >300 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K):  $\delta$  8.68 (d, *J* = 2.1 Hz, 3H), 8.49 (dd, *J* = 4.7, 1.5 Hz, 3H), 7.71 (dt, *J* = 8.0, 1.9 Hz, 3H), 7.25 (dd, *J* = 7.4, 4.8 Hz, 3H), 7.13 (d, *J* = 8.3 Hz, 6H), 6.95 (d, *J* = 8.3 Hz, 6H), 6.89 (s, 12H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 298 K):  $\delta$  148.25, 140.76, 140.72, 140.29, 140.06, 136.30, 134.47, 134.03, 132.27, 131.51, 126.94, 125.35, 123.46 (13 signals; One signal was not observed because of overlapping. The signal for the carbon attached to the deuterium was not observed because of negative NOE effects and splitting.); HRMS (ASAP): Calcd. for [M]<sup>+</sup> C<sub>57</sub>H<sub>36</sub>D<sub>3</sub>N<sub>3</sub> required 768.3379, found 768.3341.



Fig. S1 *n-k* Map for the assembly of octahedron-shaped  $M_6L_8$  molecular capsules. The (n, k) values for species from  $M_1L_1Py_3$  to  $M_6L_8$  (155 species) are plotted as crosshairs in red. The  $M_xL_yPy_z$  complex is depicted as (x, y, z).

#### General procedure for the investigation of the assembly process

To a NMR tube, panel molecule, **1**, (0.99 mg, 1.2 µmol), 1,3,5-trimethoxybenzene (0.05 mg, 0.3 mmol), CD<sub>3</sub>CN (310 µL) and CD<sub>2</sub>Cl<sub>2</sub> (100 µL) were added. The self-assembly was started by the addition of a solution of PdPy<sub>4</sub>·(OTf)<sub>2</sub> (0.66 mg, 0.92 mmol) in CD<sub>3</sub>CN (50 µL), and then the assembly process was monitored by <sup>1</sup>H NMR spectroscopy (500 MHz) with a 5-minute interval at 298 K. The quantities of **1**,  $[PdPy_4]^{2+}$ ,  $[Pd_6\mathbf{1}_8]^{12+}$  and Py were quantified by the integral of each <sup>1</sup>H signal against the signal of the internal standard (1,3,5-trimethoxybenzene). The (*n*, *k*) values were obtained from the data thus obtained, and were plotted in the *n*-*k* map to obtain Fig. 2b. The quantities of **1**,  $[PdPy_4]^{2+}$ ,  $[Pd_6\mathbf{1}_8]^{12+}$  and Py and the (*n*, *k*) values at each time are listed in Tables S2-S11. In order to evaluate the reproducibility and validity, the same experiment was repeated ten times (Fig. S2). The investigation of the self-assembly for  $[Pd_6\mathbf{2}_8]^{12+}$  was carried out in the same way. Selected <sup>1</sup>H NMR spectra are shown in Fig. 3b. The  $(Pd_x\mathbf{2}_yPy_z)_{ave}$  and (*n*, *k*) values at each time are listed and plotted in Tables S12-S21 and Fig. S3.

# Determination of the average composition of the fragment species, $[Pd_aL_bPy_c]^{2a+}$ , in each time point

The amounts of L,  $[Pd(Py)_4]^{2+}$ ,  $[Pd_6L_8]^{12+}$  and Py at each time point during the self-assembly process were quantified by <sup>1</sup>H NMR measurements in the presence of 1,3,5-trimethoxybenzene as an internal standard.



Table S1. The quantities of each component of the above scheme

| Time | L           | $[PdPy_4]^{2+}$ | $[Pd_6L_8]^{12+}$ | Ру             |  |
|------|-------------|-----------------|-------------------|----------------|--|
| 0    | $l_0$       | $m_0$           | 0                 | 0              |  |
| t    | $l_{\rm t}$ | m <sub>t</sub>  | n <sub>t</sub>    | 0 <sub>t</sub> |  |

At time *t*, the quantities of  $Pd^{2+}$  ion, panel molecule, **L** and Py in the average composition of the fragmentary species,  $(Pd_a L_b Py_c)_{ave}$ , are expressed by equations (3) – (5).

| $a = m_0 - m_t - 6 \cdot n_t$         | (3) |
|---------------------------------------|-----|
| $b = l_0 - l_t - 8 \cdot n_t$         | (4) |
| $c = 4 \cdot m_0 - 4 \cdot m_t - o_t$ | (5) |

where  $l_o$  and  $m_o$  are the quantities for L and  $[PdPy_4]^{2+}$ , respectively at time = 0 and  $l_t$ ,  $m_t$ ,  $n_t$  and  $o_t$  are the quantities for L,  $[PdPy_4]^{2+}$ ,  $[Pd_6L_8]^{12+}$  and Py, respectively at time = t (Supplementary Table S1).

Then, the (n, k) values for  $(Pd_a L_b Py_c)_{ave}$  at each time point were determined by equations (1) and (2) in the main text. The date obtained by ten experiments for the self-assembly of  $[Pd_6 1_8]^{12+}$  and  $[Pd_6 2_8]^{12+}$  are listed in Tables S2-S11 and S12-S21, respectively.

|            | 1      | $[\mathrm{Pd}_{6}1_{8}]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)                         | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.170  | 0                              | 0.878                          | 0      |       |       |
| 5          | 0.329  | 0.008                          | 0.242                          | 2.066  | 2.436 | 0.781 |
| 10         | 0.284  | 0.016                          | 0.198                          | 2.430  | 2.571 | 0.772 |
| 15         | 0.228  | 0.025                          | 0.163                          | 2.646  | 2.591 | 0.764 |
| 20         | 0.206  | 0.043                          | 0.146                          | 2.781  | 2.723 | 0.762 |
| 25         | 0.191  | 0.053                          | 0.139                          | 2.862  | 2.860 | 0.753 |
| 30         | 0.179  | 0.060                          | 0.133                          | 2.916  | 2.884 | 0.759 |
| 35         | 0.154  | 0.066                          | 0.112                          | 2.984  | 2.873 | 0.761 |
| 40         | 0.149  | 0.070                          | 0.112                          | 3.011  | 2.855 | 0.755 |
| 45         | 0.140  | 0.073                          | 0.104                          | 3.024  | 2.879 | 0.755 |
| 50         | 0.130  | 0.077                          | 0.097                          | 3.078  | 2.880 | 0.757 |
| 55         | 0.125  | 0.079                          | 0.094                          | 3.092  | 2.881 | 0.753 |
| 60         | 0.124  | 0.082                          | 0.093                          | 3.092  | 2.859 | 0.754 |
| 70         | 0.117  | 0.087                          | 0.086                          | 3.105  | 2.857 | 0.749 |
| 80         | 0.099  | 0.089                          | 0.073                          | 3.173  | 2.871 | 0.756 |
| 90         | 0.096  | 0.091                          | 0.073                          | 3.186  | 2.880 | 0.757 |
| 180        | 0.072  | 0.105                          | 0.054                          | 3.267  | 2.879 | 0.758 |
| 360        | 0.060  | 0.112                          | 0.045                          | 3.308  | 2.864 | 0.756 |

**Table S2.** The quantities of **1**,  $[Pd_6\mathbf{1}_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_6\mathbf{1}_8]^{12+}$  (1st run)

**Table S3.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (2nd run)

|            | 1      | $[Pd_61_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|-------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)            | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.125  | 0                 | 0.847                          | 0      |       |       |
| 5          | 0.311  | 0.023             | 0.218                          | 2.133  | 2.513 | 0.779 |
| 10         | 0.257  | 0.029             | 0.186                          | 2.511  | 2.851 | 0.765 |
| 15         | 0.225  | 0.046             | 0.164                          | 2.619  | 2.848 | 0.766 |
| 20         | 0.209  | 0.057             | 0.150                          | 2.687  | 2.866 | 0.771 |
| 25         | 0.203  | 0.061             | 0.145                          | 2.714  | 2.882 | 0.774 |
| 30         | 0.181  | 0.066             | 0.130                          | 2.795  | 2.908 | 0.771 |
| 35         | 0.161  | 0.073             | 0.120                          | 2.835  | 2.851 | 0.762 |
| 40         | 0.153  | 0.077             | 0.111                          | 2.876  | 2.885 | 0.770 |
| 45         | 0.140  | 0.080             | 0.105                          | 2.916  | 2.889 | 0.762 |
| 50         | 0.126  | 0.085             | 0.094                          | 2.957  | 2.872 | 0.762 |
| 55         | 0.123  | 0.088             | 0.093                          | 2.970  | 2.881 | 0.759 |
| 60         | 0.122  | 0.092             | 0.088                          | 2.970  | 2.857 | 0.777 |
| 70         | 0.120  | 0.098             | 0.092                          | 2.997  | 2.915 | 0.756 |
| 80         | 0.107  | 0.103             | 0.081                          | 3.024  | 2.849 | 0.762 |
| 90         | 0.099  | 0.105             | 0.075                          | 3.051  | 2.858 | 0.764 |

|            | 1      | $[\mathrm{Pd}_{6}1_{8}]^{12+}$ | $[PdPy_4]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------------------|-----------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)                         | (µmol)          | (µmol) | п     | k     |
| 0          | 1.134  | 0                              | 0.851           | 0      |       |       |
| 5          | 0.315  | 0.014                          | 0.223           | 2.079  | 2.465 | 0.769 |
| 10         | 0.261  | 0.020                          | 0.193           | 2.309  | 2.563 | 0.754 |
| 15         | 0.240  | 0.038                          | 0.178           | 2.565  | 2.804 | 0.754 |
| 20         | 0.209  | 0.046                          | 0.155           | 2.687  | 2.840 | 0.753 |
| 25         | 0.186  | 0.054                          | 0.140           | 2.768  | 2.853 | 0.749 |
| 30         | 0.168  | 0.060                          | 0.125           | 2.795  | 2.789 | 0.753 |
| 35         | 0.165  | 0.064                          | 0.118           | 2.822  | 2.811 | 0.763 |
| 40         | 0.147  | 0.072                          | 0.110           | 2.916  | 2.889 | 0.749 |
| 45         | 0.136  | 0.076                          | 0.104           | 2.930  | 2.833 | 0.746 |
| 50         | 0.125  | 0.081                          | 0.096           | 2.970  | 2.842 | 0.743 |
| 55         | 0.118  | 0.084                          | 0.090           | 2.970  | 2.773 | 0.744 |
| 60         | 0.113  | 0.087                          | 0.088           | 3.011  | 2.840 | 0.741 |
| 70         | 0.100  | 0.093                          | 0.079           | 3.038  | 2.779 | 0.737 |
| 80         | 0.095  | 0.096                          | 0.075           | 3.065  | 2.810 | 0.736 |
| 90         | 0.088  | 0.099                          | 0.072           | 3.105  | 2.868 | 0.726 |

**Table S4.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (3rd run)

**Table S5.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (4th run)

|            | 1      | $[Pd_6 1_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.134  | 0                  | 0.851                          | 0      |       |       |
| 5          | 0.323  | 0.012              | 0.230                          | 2.039  | 2.450 | 0.767 |
| 10         | 0.268  | 0.017              | 0.198                          | 2.471  | 2.826 | 0.755 |
| 15         | 0.229  | 0.040              | 0.167                          | 2.619  | 2.835 | 0.757 |
| 20         | 0.203  | 0.053              | 0.148                          | 2.741  | 2.893 | 0.757 |
| 25         | 0.167  | 0.060              | 0.127                          | 2.822  | 2.838 | 0.747 |
| 30         | 0.161  | 0.066              | 0.120                          | 2.862  | 2.873 | 0.751 |
| 35         | 0.153  | 0.070              | 0.114                          | 2.903  | 2.905 | 0.752 |
| 40         | 0.147  | 0.073              | 0.109                          | 2.916  | 2.885 | 0.753 |
| 45         | 0.126  | 0.078              | 0.095                          | 2.970  | 2.859 | 0.748 |
| 50         | 0.122  | 0.082              | 0.093                          | 2.984  | 2.849 | 0.744 |
| 55         | 0.113  | 0.086              | 0.087                          | 3.011  | 2.845 | 0.743 |
| 60         | 0.114  | 0.089              | 0.090                          | 3.011  | 2.843 | 0.737 |
| 70         | 0.111  | 0.092              | 0.084                          | 3.038  | 2.887 | 0.748 |
| 80         | 0.099  | 0.095              | 0.076                          | 3.065  | 2.851 | 0.744 |
| 90         | 0.099  | 0.098              | 0.076                          | 3.078  | 2.894 | 0.742 |

|            | 1      | $[\mathrm{Pd}_{6}1_{8}]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)                         | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.161  | 0                              | 0.874                          | 0      |       |       |
| 5          | 0.333  | 0.012                          | 0.245                          | 2.201  | 2.614 | 0.761 |
| 10         | 0.274  | 0.020                          | 0.201                          | 2.430  | 2.680 | 0.760 |
| 15         | 0.235  | 0.043                          | 0.174                          | 2.700  | 2.866 | 0.759 |
| 20         | 0.200  | 0.057                          | 0.149                          | 2.849  | 2.930 | 0.758 |
| 25         | 0.195  | 0.068                          | 0.147                          | 2.862  | 2.916 | 0.756 |
| 30         | 0.180  | 0.071                          | 0.135                          | 2.903  | 2.902 | 0.759 |
| 35         | 0.156  | 0.076                          | 0.119                          | 2.957  | 2.851 | 0.753 |
| 40         | 0.147  | 0.080                          | 0.114                          | 2.997  | 2.877 | 0.748 |
| 45         | 0.130  | 0.083                          | 0.102                          | 3.051  | 2.882 | 0.745 |
| 50         | 0.127  | 0.086                          | 0.102                          | 3.078  | 2.930 | 0.741 |
| 55         | 0.119  | 0.087                          | 0.093                          | 3.092  | 2.900 | 0.749 |
| 60         | 0.110  | 0.089                          | 0.088                          | 3.105  | 2.858 | 0.743 |
| 70         | 0.107  | 0.095                          | 0.085                          | 3.132  | 2.899 | 0.745 |
| 80         | 0.101  | 0.099                          | 0.083                          | 3.159  | 2.920 | 0.736 |
| 90         | 0.095  | 0.103                          | 0.079                          | 3.173  | 2.900 | 0.735 |

**Table S6.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (5th run)

**Table S7.** The quantities of **1**,  $[Pd_6\mathbf{1}_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_6\mathbf{1}_8]^{12+}$  (6th run)

|            | 1      | $[Pd_61_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|-------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)            | (µmol)                         | (µmol) | п     | k     |
| 0          | 1.152  | 0                 | 0.861                          | 0      |       |       |
| 5          | 0.331  | 0.017             | 0.241                          | 2.066  | 2.420 | 0.756 |
| 10         | 0.257  | 0.021             | 0.194                          | 2.336  | 2.522 | 0.744 |
| 15         | 0.219  | 0.034             | 0.164                          | 2.525  | 2.585 | 0.744 |
| 20         | 0.214  | 0.050             | 0.156                          | 2.741  | 2.864 | 0.753 |
| 25         | 0.185  | 0.060             | 0.137                          | 2.849  | 2.889 | 0.747 |
| 30         | 0.172  | 0.065             | 0.129                          | 2.876  | 2.858 | 0.742 |
| 35         | 0.154  | 0.069             | 0.117                          | 2.916  | 2.825 | 0.739 |
| 40         | 0.154  | 0.073             | 0.110                          | 2.916  | 2.812 | 0.754 |
| 45         | 0.140  | 0.078             | 0.104                          | 2.957  | 2.791 | 0.743 |
| 50         | 0.130  | 0.081             | 0.098                          | 2.997  | 2.811 | 0.738 |
| 55         | 0.123  | 0.084             | 0.095                          | 3.024  | 2.827 | 0.735 |
| 60         | 0.124  | 0.088             | 0.095                          | 3.024  | 2.815 | 0.735 |
| 70         | 0.113  | 0.094             | 0.086                          | 3.065  | 2.811 | 0.732 |
| 80         | 0.105  | 0.097             | 0.079                          | 3.105  | 2.872 | 0.738 |
| 90         | 0.104  | 0.100             | 0.079                          | 3.105  | 2.839 | 0.731 |

|            | 1      | $[\mathrm{Pd}_{6}1_{8}]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)                         | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.143  | 0                              | 0.854                          | 0      |       |       |
| 5          | 0.320  | 0.014                          | 0.209                          | 1.917  | 2.224 | 0.790 |
| 10         | 0.274  | 0.023                          | 0.192                          | 2.336  | 2.603 | 0.765 |
| 15         | 0.262  | 0.046                          | 0.189                          | 2.525  | 2.770 | 0.757 |
| 20         | 0.232  | 0.051                          | 0.170                          | 2.660  | 2.854 | 0.751 |
| 25         | 0.214  | 0.056                          | 0.158                          | 2.727  | 2.876 | 0.749 |
| 30         | 0.185  | 0.061                          | 0.136                          | 2.822  | 2.885 | 0.748 |
| 35         | 0.161  | 0.065                          | 0.119                          | 2.889  | 2.876 | 0.746 |
| 40         | 0.144  | 0.069                          | 0.110                          | 2.943  | 2.878 | 0.738 |
| 45         | 0.148  | 0.075                          | 0.107                          | 2.943  | 2.891 | 0.752 |
| 50         | 0.138  | 0.079                          | 0.102                          | 2.970  | 2.878 | 0.744 |
| 55         | 0.126  | 0.084                          | 0.096                          | 3.011  | 2.884 | 0.737 |
| 60         | 0.118  | 0.086                          | 0.089                          | 3.038  | 2.887 | 0.737 |
| 70         | 0.112  | 0.089                          | 0.084                          | 3.065  | 2.907 | 0.739 |
| 80         | 0.104  | 0.094                          | 0.079                          | 3.078  | 2.858 | 0.733 |
| 90         | 0.099  | 0.095                          | 0.075                          | 3.092  | 2.859 | 0.735 |

**Table S8.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (7th run)

**Table S9.** The quantities of **1**,  $[Pd_6\mathbf{1}_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_6\mathbf{1}_8]^{12+}$  (8th run)

|            | 1      | $[Pd_61_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|-------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)            | (µmol)                         | (µmol) | п     | k     |
| 0          | 1.269  | 0                 | 0.955                          | 0      |       |       |
| 5          | 0.358  | 0.010             | 0.243                          | 2.282  | 2.456 | 0.785 |
| 10         | 0.283  | 0.021             | 0.195                          | 2.700  | 2.684 | 0.775 |
| 15         | 0.229  | 0.051             | 0.165                          | 2.930  | 2.699 | 0.765 |
| 20         | 0.194  | 0.062             | 0.144                          | 3.105  | 2.794 | 0.758 |
| 25         | 0.167  | 0.072             | 0.127                          | 3.213  | 2.825 | 0.755 |
| 30         | 0.158  | 0.079             | 0.115                          | 3.267  | 2.859 | 0.763 |
| 35         | 0.146  | 0.086             | 0.107                          | 3.294  | 2.826 | 0.764 |
| 40         | 0.128  | 0.092             | 0.095                          | 3.375  | 2.881 | 0.762 |
| 45         | 0.125  | 0.092             | 0.090                          | 3.389  | 2.893 | 0.767 |
| 50         | 0.113  | 0.096             | 0.083                          | 3.402  | 2.828 | 0.763 |
| 55         | 0.108  | 0.099             | 0.079                          | 3.443  | 2.890 | 0.766 |
| 60         | 0.104  | 0.101             | 0.078                          | 3.443  | 2.856 | 0.761 |
| 70         | 0.095  | 0.105             | 0.072                          | 3.483  | 2.887 | 0.758 |
| 80         | 0.087  | 0.109             | 0.065                          | 3.497  | 2.843 | 0.763 |
| 90         | 0.080  | 0.115             | 0.063                          | 3.537  | 2.887 | 0.749 |

|            | 1      | $[\mathrm{Pd}_{6}1_{8}]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)                         | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.143  | 0                              | 0.861                          | 0      |       |       |
| 5          | 0.376  | 0.011                          | 0.270                          | 2.052  | 2.634 | 0.773 |
| 10         | 0.276  | 0.017                          | 0.206                          | 2.403  | 2.729 | 0.756 |
| 15         | 0.234  | 0.038                          | 0.182                          | 2.606  | 2.800 | 0.746 |
| 20         | 0.218  | 0.048                          | 0.171                          | 2.700  | 2.860 | 0.741 |
| 25         | 0.204  | 0.054                          | 0.163                          | 2.768  | 2.904 | 0.737 |
| 30         | 0.188  | 0.065                          | 0.152                          | 2.835  | 2.932 | 0.734 |
| 35         | 0.184  | 0.068                          | 0.146                          | 2.849  | 2.929 | 0.739 |
| 40         | 0.170  | 0.070                          | 0.133                          | 2.862  | 2.862 | 0.745 |
| 45         | 0.168  | 0.076                          | 0.132                          | 2.889  | 2.904 | 0.743 |
| 50         | 0.158  | 0.079                          | 0.127                          | 2.903  | 2.853 | 0.737 |
| 55         | 0.153  | 0.082                          | 0.122                          | 2.943  | 2.919 | 0.740 |
| 60         | 0.143  | 0.083                          | 0.116                          | 2.957  | 2.870 | 0.734 |
| 70         | 0.131  | 0.087                          | 0.108                          | 2.997  | 2.881 | 0.732 |
| 80         | 0.125  | 0.091                          | 0.104                          | 3.024  | 2.898 | 0.728 |
| 90         | 0.122  | 0.092                          | 0.102                          | 3.024  | 2.859 | 0.724 |

**Table S10.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (9th run)

**Table S11.** The quantities of 1,  $[Pd_61_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_61_8]^{12+}$  (10th run)

|            | 1      | $[Pd_6 1_8]^{12+}$ | $\left[\text{PdPy}_4\right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|-----------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                            | (µmol) | n     | k     |
| 0          | 1.224  | 0                  | 0.908                             | 0      |       |       |
| 5          | 0.370  | 0.010              | 0.244                             | 2.079  | 2.374 | 0.78  |
| 10         | 0.290  | 0.018              | 0.194                             | 2.417  | 2.514 | 0.766 |
| 15         | 0.255  | 0.042              | 0.176                             | 2.687  | 2.651 | 0.759 |
| 20         | 0.230  | 0.051              | 0.161                             | 2.876  | 2.815 | 0.751 |
| 25         | 0.203  | 0.061              | 0.136                             | 2.984  | 2.854 | 0.762 |
| 30         | 0.180  | 0.066              | 0.121                             | 3.065  | 2.869 | 0.757 |
| 35         | 0.167  | 0.073              | 0.116                             | 3.105  | 2.863 | 0.748 |
| 40         | 0.158  | 0.078              | 0.107                             | 3.146  | 2.885 | 0.754 |
| 45         | 0.151  | 0.082              | 0.099                             | 3.159  | 2.858 | 0.761 |
| 50         | 0.145  | 0.085              | 0.093                             | 3.186  | 2.871 | 0.764 |
| 55         | 0.137  | 0.090              | 0.087                             | 3.213  | 2.869 | 0.765 |
| 60         | 0.127  | 0.093              | 0.083                             | 3.254  | 2.894 | 0.756 |
| 70         | 0.113  | 0.097              | 0.074                             | 3.294  | 2.879 | 0.752 |
| 80         | 0.111  | 0.102              | 0.071                             | 3.308  | 2.891 | 0.757 |
| 90         | 0.099  | 0.104              | 0.062                             | 3.335  | 2.861 | 0.756 |
| 180        | 0.080  | 0.114              | 0.045                             | 3.402  | 2.867 | 0.768 |
| 360        | 0.069  | 0.123              | 0.041                             | 3.443  | 2.876 | 0.758 |

|            | 2      | $[\mathrm{Pd}_{6}2_{8}]^{12+}$ | $\left[\mathrm{PdPy}_{4}\right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------------------|---------------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)                         | (µmol)                                | (µmol) | п     | k     |
| 0          | 1.278  | 0                              | 0.952                                 | 0      |       |       |
| 5          | 0.372  | 0                              | 0.235                                 | 2.133  | 2.354 | 0.791 |
| 10         | 0.301  | 0.024                          | 0.194                                 | 2.444  | 2.377 | 0.781 |
| 15         | 0.281  | 0.035                          | 0.183                                 | 2.633  | 2.501 | 0.779 |
| 20         | 0.256  | 0.045                          | 0.173                                 | 2.876  | 2.712 | 0.767 |
| 25         | 0.248  | 0.052                          | 0.170                                 | 2.903  | 2.691 | 0.764 |
| 30         | 0.233  | 0.063                          | 0.161                                 | 2.984  | 2.719 | 0.763 |
| 35         | 0.214  | 0.067                          | 0.145                                 | 3.011  | 2.655 | 0.766 |
| 40         | 0.205  | 0.073                          | 0.141                                 | 3.051  | 2.658 | 0.763 |
| 45         | 0.203  | 0.078                          | 0.138                                 | 3.092  | 2.708 | 0.767 |
| 50         | 0.196  | 0.082                          | 0.135                                 | 3.119  | 2.700 | 0.763 |
| 55         | 0.194  | 0.087                          | 0.133                                 | 3.146  | 2.721 | 0.764 |
| 60         | 0.182  | 0.090                          | 0.126                                 | 3.173  | 2.692 | 0.759 |
| 70         | 0.176  | 0.095                          | 0.120                                 | 3.200  | 2.690 | 0.766 |
| 80         | 0.170  | 0.098                          | 0.116                                 | 3.227  | 2.698 | 0.766 |
| 90         | 0.167  | 0.102                          | 0.115                                 | 3.240  | 2.692 | 0.764 |
| 180        | 0.157  | 0.119                          | 0.110                                 | 3.308  | 2.665 | 0.754 |
| 360        | 0.160  | 0.132                          | 0.112                                 | 3.335  | 2.682 | 0.773 |

**Table S12.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (1st run)

**Table S13.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (2nd run)

|            | 2      | $[Pd_6 2_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.278  | 0                  | 0.955                          | 0      |       |       |
| 5          | 0.408  | 0                  | 0.253                          | 2.214  | 2.544 | 0.807 |
| 10         | 0.303  | 0.021              | 0.193                          | 2.525  | 2.504 | 0.788 |
| 15         | 0.277  | 0.033              | 0.183                          | 2.646  | 2.518 | 0.780 |
| 20         | 0.263  | 0.042              | 0.178                          | 2.849  | 2.710 | 0.773 |
| 25         | 0.252  | 0.051              | 0.174                          | 2.943  | 2.783 | 0.769 |
| 30         | 0.239  | 0.059              | 0.162                          | 2.970  | 2.744 | 0.775 |
| 35         | 0.221  | 0.067              | 0.150                          | 3.038  | 2.746 | 0.775 |
| 40         | 0.212  | 0.072              | 0.147                          | 3.078  | 2.752 | 0.766 |
| 45         | 0.195  | 0.079              | 0.139                          | 3.132  | 2.745 | 0.760 |
| 50         | 0.195  | 0.081              | 0.136                          | 3.132  | 2.732 | 0.766 |
| 55         | 0.190  | 0.087              | 0.135                          | 3.173  | 2.764 | 0.761 |
| 60         | 0.188  | 0.090              | 0.132                          | 3.173  | 2.739 | 0.764 |
| 70         | 0.178  | 0.096              | 0.124                          | 3.227  | 2.779 | 0.768 |
| 80         | 0.169  | 0.101              | 0.115                          | 3.254  | 2.756 | 0.777 |
| 90         | 0.166  | 0.103              | 0.117                          | 3.267  | 2.755 | 0.764 |
| 180        | 0.155  | 0.123              | 0.111                          | 3.335  | 2.748 | 0.762 |
| 360        | 0.146  | 0.131              | 0.104                          | 3.375  | 2.820 | 0.776 |

|            | 2      | $[Pd_6 2_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                         | (µmol) | п     | k     |
| 0          | 1.260  | 0                  | 0.945                          | 0      |       |       |
| 5          | 0.329  | 0                  | 0.212                          | 2.147  | 2.307 | 0.788 |
| 10         | 0.272  | 0.019              | 0.190                          | 2.349  | 2.261 | 0.766 |
| 15         | 0.243  | 0.029              | 0.176                          | 2.511  | 2.312 | 0.758 |
| 20         | 0.240  | 0.041              | 0.177                          | 2.741  | 2.539 | 0.754 |
| 25         | 0.220  | 0.050              | 0.159                          | 2.822  | 2.531 | 0.760 |
| 30         | 0.219  | 0.059              | 0.157                          | 2.930  | 2.658 | 0.762 |
| 35         | 0.203  | 0.064              | 0.147                          | 3.038  | 2.754 | 0.759 |
| 40         | 0.198  | 0.068              | 0.149                          | 3.038  | 2.715 | 0.749 |
| 45         | 0.196  | 0.074              | 0.149                          | 3.078  | 2.760 | 0.746 |
| 50         | 0.178  | 0.078              | 0.134                          | 3.119  | 2.723 | 0.750 |
| 55         | 0.179  | 0.083              | 0.136                          | 3.132  | 2.736 | 0.745 |
| 60         | 0.175  | 0.086              | 0.131                          | 3.146  | 2.723 | 0.749 |
| 70         | 0.170  | 0.091              | 0.127                          | 3.173  | 2.731 | 0.751 |
| 80         | 0.167  | 0.098              | 0.126                          | 3.200  | 2.735 | 0.746 |
| 90         | 0.163  | 0.100              | 0.123                          | 3.213  | 2.738 | 0.749 |
| 180        | 0.141  | 0.118              | 0.105                          | 3.308  | 2.724 | 0.756 |
| 360        | 0.133  | 0.126              | 0.099                          | 3.348  | 2.725 | 0.756 |

**Table S14.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (3rd run)

**Table S15.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (4th run)

|            | 2      | $[Pd_6 2_8]^{12+}$ | $\left[PdPy_4\right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|----------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                     | (µmol) | n     | k     |
| 0          | 1.152  | 0                  | 0.854                      | 0      |       |       |
| 5          | 0.345  | 0                  | 0.193                      | 2.052  | 2.542 | 0.818 |
| 10         | 0.263  | 0.020              | 0.165                      | 2.174  | 2.321 | 0.780 |
| 15         | 0.247  | 0.030              | 0.164                      | 2.471  | 2.631 | 0.766 |
| 20         | 0.227  | 0.038              | 0.152                      | 2.579  | 2.684 | 0.763 |
| 25         | 0.221  | 0.045              | 0.143                      | 2.633  | 2.718 | 0.771 |
| 30         | 0.212  | 0.052              | 0.138                      | 2.673  | 2.716 | 0.770 |
| 35         | 0.205  | 0.057              | 0.135                      | 2.714  | 2.740 | 0.767 |
| 40         | 0.195  | 0.063              | 0.132                      | 2.754  | 2.745 | 0.760 |
| 45         | 0.183  | 0.067              | 0.119                      | 2.781  | 2.705 | 0.769 |
| 50         | 0.182  | 0.073              | 0.120                      | 2.808  | 2.732 | 0.766 |
| 55         | 0.182  | 0.076              | 0.120                      | 2.822  | 2.752 | 0.768 |
| 60         | 0.176  | 0.078              | 0.115                      | 2.835  | 2.734 | 0.768 |
| 70         | 0.171  | 0.084              | 0.110                      | 2.862  | 2.739 | 0.777 |
| 80         | 0.161  | 0.088              | 0.104                      | 2.903  | 2.752 | 0.774 |
| 90         | 0.157  | 0.091              | 0.101                      | 2.916  | 2.735 | 0.776 |
| 180        | 0.133  | 0.114              | 0.088                      | 3.024  | 2.700 | 0.763 |
| 360        | 0.130  | 0.120              | 0.086                      | 3.051  | 2.731 | 0.761 |

|            | 2      | $[Pd_6 2_8]^{12+}$ | $[PdPy_4]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|-----------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)          | (µmol) | n     | k     |
| 0          | 1.134  | 0                  | 0.854           | 0      |       |       |
| 5          | 0.258  | 0                  | 0.168           | 1.944  | 2.220 | 0.783 |
| 10         | 0.238  | 0.023              | 0.166           | 2.214  | 2.335 | 0.771 |
| 15         | 0.222  | 0.033              | 0.157           | 2.336  | 2.382 | 0.770 |
| 20         | 0.212  | 0.044              | 0.156           | 2.538  | 2.599 | 0.762 |
| 25         | 0.202  | 0.052              | 0.150           | 2.673  | 2.758 | 0.760 |
| 30         | 0.194  | 0.059              | 0.142           | 2.700  | 2.746 | 0.764 |
| 35         | 0.181  | 0.065              | 0.132           | 2.754  | 2.756 | 0.766 |
| 40         | 0.172  | 0.070              | 0.127           | 2.781  | 2.738 | 0.763 |
| 45         | 0.165  | 0.076              | 0.123           | 2.822  | 2.759 | 0.761 |
| 50         | 0.159  | 0.079              | 0.118           | 2.835  | 2.738 | 0.763 |
| 55         | 0.158  | 0.083              | 0.118           | 2.849  | 2.748 | 0.762 |
| 60         | 0.156  | 0.086              | 0.115           | 2.862  | 2.752 | 0.766 |
| 70         | 0.151  | 0.090              | 0.113           | 2.876  | 2.719 | 0.766 |
| 80         | 0.144  | 0.095              | 0.107           | 2.916  | 2.767 | 0.769 |
| 90         | 0.146  | 0.100              | 0.109           | 2.916  | 2.746 | 0.769 |
| 180        | 0.133  | 0.117              | 0.102           | 2.984  | 2.708 | 0.771 |

**Table S16.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (5th run)

**Table S17.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (6th run)

|            | 2      | $[Pd_6 2_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.323  | 0                  | 0.992                          | 0      |       |       |
| 5          | 0.352  | 0                  | 0.232                          | 2.295  | 2.363 | 0.783 |
| 10         | 0.323  | 0.021              | 0.225                          | 2.592  | 2.509 | 0.771 |
| 15         | 0.298  | 0.034              | 0.215                          | 2.849  | 2.699 | 0.762 |
| 20         | 0.283  | 0.043              | 0.203                          | 2.930  | 2.724 | 0.764 |
| 25         | 0.266  | 0.051              | 0.196                          | 2.957  | 2.666 | 0.755 |
| 30         | 0.248  | 0.059              | 0.186                          | 3.065  | 2.731 | 0.750 |
| 35         | 0.240  | 0.068              | 0.179                          | 3.119  | 2.760 | 0.753 |
| 40         | 0.225  | 0.073              | 0.167                          | 3.173  | 2.763 | 0.754 |
| 45         | 0.215  | 0.078              | 0.162                          | 3.200  | 2.743 | 0.749 |
| 50         | 0.205  | 0.082              | 0.155                          | 3.227  | 2.724 | 0.747 |
| 55         | 0.197  | 0.088              | 0.147                          | 3.267  | 2.739 | 0.751 |
| 60         | 0.194  | 0.090              | 0.146                          | 3.294  | 2.777 | 0.750 |
| 70         | 0.184  | 0.095              | 0.136                          | 3.335  | 2.780 | 0.754 |
| 80         | 0.178  | 0.098              | 0.135                          | 3.348  | 2.760 | 0.747 |
| 90         | 0.168  | 0.102              | 0.127                          | 3.389  | 2.775 | 0.749 |
| 180        | 0.150  | 0.128              | 0.113                          | 3.483  | 2.758 | 0.750 |
| 360        | 0.145  | 0.136              | 0.109                          | 3.510  | 2.724 | 0.750 |

|            | 2      | $[Pd_6 2_8]^{12+}$ | $[PdPy_4]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|-----------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)          | (µmol) | п     | k     |
| 0          | 1.323  | 0                  | 0.996           | 0      |       |       |
| 5          | 0.368  | 0                  | 0.242           | 2.376  | 2.488 | 0.789 |
| 10         | 0.324  | 0.021              | 0.229           | 2.646  | 2.576 | 0.771 |
| 15         | 0.286  | 0.032              | 0.216           | 2.876  | 2.699 | 0.753 |
| 20         | 0.273  | 0.042              | 0.206           | 2.984  | 2.765 | 0.753 |
| 25         | 0.266  | 0.049              | 0.197           | 3.011  | 2.760 | 0.760 |
| 30         | 0.248  | 0.055              | 0.188           | 3.078  | 2.772 | 0.752 |
| 35         | 0.240  | 0.062              | 0.184           | 3.119  | 2.779 | 0.749 |
| 40         | 0.235  | 0.070              | 0.180           | 3.159  | 2.801 | 0.749 |
| 45         | 0.221  | 0.075              | 0.172           | 3.200  | 2.789 | 0.745 |
| 50         | 0.218  | 0.079              | 0.169           | 3.213  | 2.782 | 0.745 |
| 55         | 0.212  | 0.084              | 0.165           | 3.240  | 2.784 | 0.743 |
| 60         | 0.206  | 0.088              | 0.157           | 3.254  | 2.766 | 0.752 |
| 70         | 0.204  | 0.095              | 0.156           | 3.281  | 2.791 | 0.752 |
| 80         | 0.191  | 0.099              | 0.144           | 3.321  | 2.777 | 0.758 |
| 90         | 0.187  | 0.106              | 0.143           | 3.335  | 2.749 | 0.751 |
| 180        | 0.161  | 0.129              | 0.123           | 3.456  | 2.772 | 0.760 |
| 360        | 0.157  | 0.136              | 0.121           | 3.483  | 2.783 | 0.750 |

**Table S18.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (7th run)

**Table S19.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (8th run)

|            | 2      | $[Pd_6 2_8]^{12+}$ | $\left[ PdPy_{4} \right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|--------------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                         | (µmol) | n     | k     |
| 0          | 1.341  | 0                  | 0.992                          | 0      |       |       |
| 5          | 0.413  | 0                  | 0.233                          | 2.349  | 2.532 | 0.818 |
| 10         | 0.352  | 0.014              | 0.217                          | 2.633  | 2.620 | 0.788 |
| 15         | 0.305  | 0.034              | 0.196                          | 2.808  | 2.607 | 0.775 |
| 20         | 0.283  | 0.044              | 0.187                          | 2.970  | 2.709 | 0.766 |
| 25         | 0.275  | 0.055              | 0.183                          | 3.038  | 2.741 | 0.765 |
| 30         | 0.251  | 0.062              | 0.172                          | 3.119  | 2.744 | 0.754 |
| 35         | 0.241  | 0.069              | 0.164                          | 3.159  | 2.744 | 0.756 |
| 40         | 0.229  | 0.075              | 0.154                          | 3.213  | 2.757 | 0.757 |
| 45         | 0.221  | 0.083              | 0.149                          | 3.240  | 2.740 | 0.758 |
| 50         | 0.212  | 0.087              | 0.146                          | 3.281  | 2.756 | 0.750 |
| 55         | 0.212  | 0.093              | 0.143                          | 3.294  | 2.752 | 0.754 |
| 60         | 0.207  | 0.096              | 0.139                          | 3.321  | 2.780 | 0.758 |
| 70         | 0.198  | 0.101              | 0.131                          | 3.348  | 2.756 | 0.763 |
| 80         | 0.192  | 0.108              | 0.127                          | 3.375  | 2.746 | 0.761 |
| 90         | 0.189  | 0.112              | 0.128                          | 3.389  | 2.733 | 0.750 |
| 180        | 0.164  | 0.136              | 0.108                          | 3.510  | 2.767 | 0.765 |
| 360        | 0.158  | 0.142              | 0.105                          | 3.537  | 2.750 | 0.758 |

|            | 2      | $[Pd_6 2_8]^{12+}$ | $[PdPy_4]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|-----------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)          | (µmol) | n     | k     |
| 0          | 1.350  | 0                  | 1.006           | 0      |       |       |
| 5          | 0.383  | 0                  | 0.227           | 2.363  | 2.442 | 0.805 |
| 10         | 0.332  | 0.022              | 0.210           | 2.687  | 2.562 | 0.789 |
| 15         | 0.287  | 0.034              | 0.200           | 2.916  | 2.655 | 0.761 |
| 20         | 0.268  | 0.045              | 0.191           | 3.038  | 2.713 | 0.755 |
| 25         | 0.244  | 0.052              | 0.179           | 3.132  | 2.731 | 0.747 |
| 30         | 0.238  | 0.062              | 0.174           | 3.186  | 2.755 | 0.745 |
| 35         | 0.230  | 0.069              | 0.168           | 3.227  | 2.767 | 0.746 |
| 40         | 0.225  | 0.075              | 0.164           | 3.254  | 2.770 | 0.746 |
| 45         | 0.209  | 0.081              | 0.154           | 3.321  | 2.793 | 0.741 |
| 50         | 0.207  | 0.086              | 0.151           | 3.335  | 2.791 | 0.744 |
| 55         | 0.202  | 0.090              | 0.146           | 3.348  | 2.772 | 0.747 |
| 60         | 0.200  | 0.098              | 0.145           | 3.375  | 2.796 | 0.745 |
| 70         | 0.194  | 0.103              | 0.140           | 3.389  | 2.766 | 0.748 |
| 80         | 0.186  | 0.110              | 0.135           | 3.429  | 2.783 | 0.743 |
| 90         | 0.178  | 0.111              | 0.129           | 3.456  | 2.788 | 0.742 |
| 180        | 0.165  | 0.130              | 0.117           | 3.524  | 2.776 | 0.745 |
| 360        | 0.150  | 0.140              | 0.107           | 3.578  | 2.742 | 0.742 |

**Table S20.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (9th run)

**Table S21.** The quantities of **2**,  $[Pd_62_8]^{12+}$ ,  $[PdPy_4]^{2+}$  and Py and the (n, k) values at each time point for the assembly of  $[Pd_62_8]^{12+}$  (10th run)

|            | 2      | $[Pd_6 2_8]^{12+}$ | $\left[PdPy_4\right]^{2+}$ | Ру     |       |       |
|------------|--------|--------------------|----------------------------|--------|-------|-------|
| Time (min) | (µmol) | (µmol)             | (µmol)                     | (µmol) | n     | k     |
| 0          | 1.350  | 0                  | 1.006                      | 0      |       |       |
| 5          | 0.389  | 0                  | 0.237                      | 2.349  | 2.444 | 0.800 |
| 10         | 0.329  | 0.021              | 0.210                      | 2.687  | 2.560 | 0.786 |
| 15         | 0.302  | 0.033              | 0.203                      | 2.903  | 2.690 | 0.771 |
| 20         | 0.274  | 0.042              | 0.194                      | 3.024  | 2.723 | 0.755 |
| 25         | 0.266  | 0.052              | 0.189                      | 3.078  | 2.741 | 0.756 |
| 30         | 0.255  | 0.061              | 0.181                      | 3.146  | 2.769 | 0.756 |
| 35         | 0.237  | 0.069              | 0.168                      | 3.213  | 2.774 | 0.755 |
| 40         | 0.228  | 0.073              | 0.160                      | 3.240  | 2.763 | 0.757 |
| 45         | 0.221  | 0.081              | 0.157                      | 3.281  | 2.780 | 0.754 |
| 50         | 0.212  | 0.085              | 0.150                      | 3.308  | 2.771 | 0.755 |
| 55         | 0.203  | 0.091              | 0.143                      | 3.348  | 2.779 | 0.756 |
| 60         | 0.204  | 0.095              | 0.144                      | 3.348  | 2.768 | 0.757 |
| 70         | 0.189  | 0.102              | 0.132                      | 3.402  | 2.767 | 0.758 |
| 80         | 0.184  | 0.107              | 0.128                      | 3.429  | 2.773 | 0.760 |
| 90         | 0.181  | 0.111              | 0.128                      | 3.443  | 2.769 | 0.752 |
| 180        | 0.166  | 0.133              | 0.116                      | 3.524  | 2.761 | 0.761 |
| 360        | 0.150  | 0.145              | 0.106                      | 3.591  | 2.780 | 0.759 |

### *n-k* Analysis for the assembly of the $[Pd_6L_8]^{12+}$ (L = 1 or 2) capsules

Ten experiments were conducted for investigating the assembly process of each  $[Pd_6L_8]^{12+}$  capsule (L = 1 or 2). The (n, k) plots for the assembly of  $[Pd_61_8]^{12+}$  and  $[Pd_62_8]^{12+}$  are shown in Supplementary Figures S2a-j and S3a-j, respectively. These results unambiguously confirm the high reproducibility of the measurements. The average (n, k) values from 20 to 360 min for  $[Pd_61_8]^{12+}$  and  $[Pd_62_8]^{12+}$  are shown in Supplementary Figures S2k and S3k, respectively, indicating that the steps from  $[Pd_61_8Py]^{12+}$  and  $[Pd_62_8Py_2]^{12+}$  are the rate-determining steps.



**Fig. S2** *n-k* **Plots for the self-assembly of [Pd\_61\_8]^{12+}.** a - j) *n-k* plots of ten experiments for the assembly of  $[Pd_61_8]^{12+}$ . k) A plot of the average (n, k) value with standard deviations from 20 to 360 min for the ten experiments (a - j).



Fig. S3 *n-k* Plots for the self-assembly of the  $[Pd_62_8]^{12+}$  capsule. a - j) *n-k* plots of ten experiments for the assembly of  $[Pd_62_8]^{12+}$ . k) A plot of the average (n, k) value with standard deviations from 20 to 360 min for the ten experiments (a - j).



Fig. S4 ESI-TOF mass spectrum for the assembly of the  $[Pd_61_8]^{12+}$  capsule measured after 20 min.



Fig. S5 Time-course ESI-TOF mass spectra for the assembly of the  $[Pd_62_8]^{12+}$  capsule (m/z = 1577 - 1604).

## The structural isomers of $[Pd_6L_8Py_2]^{12+}$

 $[Pd_6L_8Py_2]^{12+}$  has nine structural isomers in which the position of the two Pys coordinating to  $Pd^{2+}$  centre(s) is different. The nine structures are shown in Fig. S6.



Fig. S6. Schematic representation of the structural isomers of  $[Pd_6L_8Py_2]^{12+}$ .

# Molecular Mechanics investigation of the strain energy of the intermediates in the last step of the self-assembly process

The present study indicates that the energy barrier of the last step of the assembly of  $[Pd_6I_8]^{12^+}$ , from  $[Pd_6I_8Py_1]^{12^+}$  to  $[Pd_6I_8]^{12^+}$ , is higher than that for the assembly of  $[Pd_62_8]^{12^+}$ . This would be due to the higher strain energy of the transition state (or five-coordinate intermediates) in the last step of the assembly for  $[Pd_6I_8]^{12^+}$ . To support this rationale, we conducted *MM* calculations (Material Studio Ver. 4.0, Universal Force field, Accelrys Software Inc.) of the ground state and the intermediate of the last step, in which one  $Pd^{2^+}$  centre has a square-pyramidal coordination geometry, for  $[Pd_6I_8Py_1]^{12^+}$  and  $[Pd_62^*_8Py_1]^{12^+}$  (2' is the panel molecule in which three deuterium atoms of 2 is replaced with hydrogen atoms) and their valence energies were compared. In addition, to evaluate the effect of the changes in the coordination geometry to the valence energies, *MM* calculations of the mononuclear complexes, a square-planar  $[PdPy_4]^{2^+}$  and a square-pyramidal  $[PdPy_5]^{2^+}$ , were carried out. All the structures are shown in Fig. S7 and the valence energies of the structures are listed in Table S3. It was found that the energy difference between the ground state and the intermediate for  $[Pd_61_8Py_1]^{12^+}$  is larger than that for  $[Pd_62^*_8Py_1]^{12^+}$ , while the energy differences for  $[Pd_62^*_8Py_1]^{12^+}$  and for the mononuclear  $Pd^{2^+}$  complexes are similar to each other. These results suggest that the higher valence energy for  $[Pd_61_8Py_1]^{12^+}$  would arise from the steric effect of the methyl groups in 1.

|                                 | Valence energy (kcal/mol) |                      |                 |  |  |  |
|---------------------------------|---------------------------|----------------------|-----------------|--|--|--|
|                                 | $[Pd_61_8Py]^{12+}$       | $[Pd_62'_8Py]^{12+}$ | $[PdPy_5]^{2+}$ |  |  |  |
| Ground state (square-planar)    | 767.675                   | 705.834              | 5.471           |  |  |  |
| Intermediate (square-pyramidal) | 799.624                   | 719.269              | 18.581          |  |  |  |
| Difference                      | 31.949                    | 13.435               | 13.110          |  |  |  |

Table S3. Valence energies of the ground state and the intermediate for  $[Pd_61_8Py_1]^{12+}$  and  $[Pd_62'_8Py_2]^{12+}$  and a square-planar  $[PdPy_4]^{2+}$  with a free Py and a square-pyramidal  $[PdPy_5]^{2+}$ 



**Fig. S7.** The optimized structures of (a) the ground state  $[Pd_61_8Py_1]^{12+}$ , (b) the intermediate  $[Pd_61_8Py_1]^{12+}$ , (c) the ground sate  $[Pd_62'_8Py_1]^{12+}$ , (d) the intermediate  $[Pd_62'_8Py_1]^{12+}$ , (e)  $[PdPy_4]^{2+}$  with a Py and (f)  $[PdPy_5]^{2+}$ . Colour labels: grey: C, white: H, blue: N, yellow: Pd, green: free pyridine ring in the panel molecule, red: Py in the  $[Pd_6L_8Py_1]^{12+}$  structures.

### References

- [1] R. Rathore and C. L. Burns, Org. Synth., 2005, 82, 30.
- [2] T. Kojima and S. Hiraoka, Org. Lett., 2014, 16, 1024.