α -CH Acidity of Alkyl-B(C₆F₅)₂ Compounds – the Role of Stabilized Borata/alkene Formation in Frustrated Lewis Pair Chemistry

Philip Moquist,[†] Guo-Qiang Chen,[†] Christian Mück-Lichtenfeld, Kathrin Bussmann, Constantin G. Daniliuc, Gerald Kehr, and Gerhard Erker*

Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany

†these authors contributed equally to this work

Supporting Information

General Procedure. All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. NMR spectra were recorded on a Agilent DD2- 500 MHz (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F: 470 MHz, ¹¹B: 160 MHz, ³¹P: 202 MHz) and on a Agilent DD2- 600 MHz (¹H: 600 MHz, ¹³C: 151 MHz, ¹⁹F: 564 MHz, ¹¹B: 192 MHz, ³¹P: 243 MHz). ¹H NMR and ¹³C NMR: chemical shifts are given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shifts are given relative to CFCl₃ ($\delta = 0$, external reference), ¹¹B NMR: chemical shifts are given relative to H₃PO₄ (85% in D₂O) ($\delta = 0$, external reference). NMR assignments were supported by additional 2D NMR experiments. Elemental analyses were performed on a Elementar Vario El III. IR spectra were recorded on a Varian 3100 FT-IR (Excalibur Series). MRMs was recorded on GTC Waters Micromass (Manchester, UK).

X-Ray crystal structure analyses. Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods Enzymol.* **1997**, *276*, 307-326); absorption correction, Denzo (Z. Otwinowski, D.

Borek, W. Majewski, W. Minor, *Acta Crystallogr.* **2003**, *A59*, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112-122) and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and *w*R² values are given for all reflections. *Exceptions and special features*: The n-Butyl group at N1 atom is disordered over two positions. Several restraints (SADI, SIMU, ISOR and SAME) were used in order to improve refinement stability. For the compound **17b** a disordered half dichloromethane molecule and for the compound **17c** one badly disordered dichloromethane molecule were found in the asymmetrical unit and could not be satisfactorily refined. The program SQUEEZE (A. L. Spek J. Appl. Cryst., 2003, 36, 7-13) was therefore used to remove mathematically the effect of the solvents. The quoted formula and derived parameters are not included the squeezed solvent molecules.

Materials. Chlorodimesitylphosphane [Bartlett, R. A.; Olmstead, M. M.; Power, P. P.; Siegel, G. A. *Inorg. Chem.* **1987**, *26*, 1941-1946.], B(C₆F₅)₃ (1) [(a) Wang, C.; Erker, G.; Kehr, G.; Wedeking, K.; Fröhlich, R. *Organometallics*, **2005**, *24*, 4760–4773. (b) Massey, A. G.; Park, A. J. *J. Organomet. Chem.* **1964**, *2*, 245–250. (c) Massey, A. G.; Park, A. J.; Stone, F. G. A. *Proc. Chem. Soc.* **1963**, 212.], HB(C₆F₅)₂ [(a) D. J. Parks, W. E. Piers, G. P. A. Yap, *Organometallics* **1998**, *17*, 5492; (b) D. J. Parks, R.E. v. H. Spence and W. E. Piers, *Angew. Chem. Int. Ed. Engl.* 1995, **34**, 809.] and HPMes₂ [Bartlett, R. A.; Olmstead, M. M.; Power, P. P.; Sigel, G. A. *Inorg. Chem.*, 1987, **26**, 1941-1946.] were prepared according to the literature. **10a** and **10b** were synthesized by a modified procedure of K. A. Fallis, G. K. Anderson, N. P. Rath, *Organometallics*, **1992**, *11*, 885-888.

1-Indenyldimesitylphosphane (4a)

Indene (1.16 g, 10.0 mmol) and Et₂O (40 mL) were added to a 100 mL Schlenk flask. The solution was cooled to 0 °C and *n*-BuLi (6.25 mL, 1.6 M in hexane, 10 mmol) was added. The yellow solution was stirred for 30 min and Mes₂PCl (3.04 g, 10.0 mmol, 0.5 M solution in Et₂O) was added and the reaction was stirred at 0 °C for 1.5 h. The cloudy suspension was filtered to remove LiCl and then concentrated in vacuo at 0 °C. The obtained residue was

washed with pentane to give compound **4a** as a white powder (2.55 g, 66% yield), which could be stored indefinitely at -36 °C. **MS:** exact mass calcd. for $C_{27}H_{29}P^+H^+$: 385.2085 found: 385.2085. **Anal.** calc. for $C_{27}H_{29}P$: C, 84.34; H, 7.60. Found: C, 83.35; H, 7.39.

¹**H NMR (500 MHz, 299 K, CD₂Cl₂):** δ = 7.43 (m, 1H, 4-H), 7.26 (m, 1H, 5-H), 6.98 (m, 1H, 6-H), 6.97 (m, 1H, 3-H), 6.87 (m, 2H, *m*-Mes^a), 6.83 (m, 2H, *m*-Mes^b), 6.64 (m, 1H; 7-H), 6.63 (m, 1H, 2-H), 5.27 (m, 1H, 1-H), 2.38 (d, ³J_{PH} = 1.5 Hz, 6H, *o*-CH₃^{Mes,b}), 2.30 (s, 3H, *p*-CH₃^{Mes,a}), 2.253 (s, 3H, *p*-CH₃^{Mes,b}), 2.248 (m, 6H, *o*-CH₃^{Mes,a}).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 145.1$ (d, ${}^{3}J_{PC} = 1.3$ Hz, C3a), 145.0 (d, ${}^{2}J_{PC} = 12.5$ Hz, C7a), 144.0 (d, ${}^{2}J_{PC} = 15.6$ Hz, *o*-Mes^a), 142.4 (d, ${}^{2}J_{PC} = 16.0$ Hz, *o*-Mes^b), 139.2 (*p*-Mes^a), 138.1 (*p*-Mes^b), 137.6 (d, ${}^{2}J_{PH} = 8.3$ Hz, C2), 132.8 (d, ${}^{1}J_{PC} = 33.2$ Hz, *i*-Mes^b), 132.1 (d, ${}^{3}J_{PC} = 7.3$ Hz, C3), 132.0 (d, ${}^{2}J_{PC} = 31.7$ Hz, *i*-Mes^a), 130.6 (d, ${}^{3}J_{PC} = 2.7$ Hz, *m*-Mes^b), 130.3 (d, ${}^{3}J_{PC} = 3.8$ Hz, *m*-Mes^a), 126.9 (d, ${}^{5}J_{PC} = 1.3$ Hz, C5), 125.2 (d, ${}^{3}J_{PC} = 5.2$ Hz, C7), 124.8 (d, ${}^{4}J_{PC} = 1.3$ Hz, C6), 121.6 (C4), 47.5 (d, ${}^{1}J_{PC} = 27.1$ Hz, C1), 23.2 (d, ${}^{3}J_{PC} = 14.8$ Hz, *o*-CH₃^{Mes,b}), 23.0 (d, ${}^{3}J_{PH} = 15.3$ Hz, *o*-CH₃^{Mes,a}), 21.1 (*p*-CH₃^{Mes,a}), 20.9 (*p*-CH₃^{Mes,b}).

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = -14.5 (v_{1/2} \sim 2 \text{ Hz}).$

³¹P NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = -14.5 (v_{1/2} \sim 20 \text{ Hz}).$

¹H, ¹H GCOSY (500/500 MHz, 299 K, CD₂Cl₂)[selected traces]: $\delta^{1}H/\delta^{1}H = 7.26 / 7.43$, 6.98 (5-H / 4-H, 6-H), 6.98 / 7.26, 6.64 (6-H / 5-H, 7-H), 6.87 / 2.30, 2.25 (*m*-Mes^a / *p*-CH₃^{Mes,a}, *o*-CH₃^{Mes,a}), 6.83 / 2.38, 2.25 (*m*-Mes^b / *o*-CH₃^{Mes,b}, *p*-CH₃^{Mes,b}).

¹H{¹H} TOCSY (500 MHz, 299 K, CD₂Cl₂)[selected experiment]: $\delta^{1}H_{ir}/\delta^{1}H_{res} = 5.27 / 6.97$, 6.63 (1-H / 3-H, 2-H).

¹H, ¹³C GHSQC (500/126 MHz, 299 K, CD₂Cl₂): δ^{1} H/ δ^{13} C = 7.43 / 121.6 (C4), 7.26 / 126.9 (C5), 6.98 / 124.8 (C6), 6.97 / 132.1 (C3), 6.87 / 130.3 (*m*-Mes^a), 6.83 / 130.6 (*m*-Mes^b), 6.64 / 125.2 (C7), 6.63 / 137.6 (C2), 5.27 / 47.5 (C1), 2.38 / 23.2 (*o*-CH₃^{Mes,b}), 2.30 / 21.1 (*p*-CH₃^{Mes,a}), 2.253 / 20.9 (*p*-CH₃^{Mes,b}), 2.248 / 23.0 (*o*-CH₃^{Mes,a}).

¹H, ¹³C GHMBC (500/126 MHz, 299 K, CD₂Cl₂)[selected traces]: δ^{1} H/ δ^{13} C = 7.43 / 145.0, 132.1, 124.8 (4-H / C7a, C3, C6), 6.64 / 145.1, 126.9, 47.5 (7-H / C3a, C5, C1), 2.38 / 142.4, 132.8, 130.6 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *i*-Mes^b, *m*-Mes^b), 2.30 / 139.2, 130.3 (*p*-CH₃^{Mes,a} / *p*-Mes^a, *m*-Mes^a), 2.253 / 138.1, 130.6 (*p*-CH₃^{Mes,b} / *p*-Mes^b, *m*-Mes^b), 2.248 / 144.0, 132.0, 130.3 (*o*-CH₃^{Mes,a} / *o*-Mes^a, *i*-Mes^a).

S4

3-Indenyldimesitylphosphane (4b)

A solution of indenyllithium (244 mg, 2.0 mmol) in Et₂O (10 mL) and a solution of Mes₂PCl (609 mg, 2.0 mmol) in Et₂O (10 mL) were prepared separately. The flasks were cooled to 0 °C and the Mes₂PCl solution was transferred to the indenyllithium solution. Then the reaction mixture was stirred for 1h and the LiCl was removed by filtration. Alumina (50 mg, 0.4 mmol, Activity III) was added to the solution and stirred for 1 h at r.t. The alumina was removed by filtering through Celite and the solvent of the filtrate was removed in vacuo. The resulting powder was washed with pentane (3 mL) to give compound **4b** (450 mg, 49%) as a white powder. **MS:** exact mass calcd. for $C_{27}H_{29}P^+H^+$: 385.2085 found: 385.2084 **Anal.** calc. for $C_{27}H_{29}P$: C, 84.34; H, 7.60. Found: C, 83.40; H, 7.53.

¹H NMR (500 MHz, 299 K, CD₂Cl₂): $\delta = 7.49$ (m, 1H, 7-H), 7.36 (m, 1H, 4-H), 7.25 (m, 1H, 5-H), 7.22 (m, 1H, 6-H), 6.84 (m, 4H, *m*-Mes), 6.10 (m, 1H, 2-H), 3.41 (m, 2H, 1-H), 2.26 (s, 6H, *p*-CH₃^{Mes}), 2.23 (m, 12H, *o*-CH₃^{Mes}).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 147.9$ (d, ${}^{2}J_{PC} = 29.3$ Hz, C3a), 144.5 (d, ${}^{3}J_{PC} = 6.4$ Hz, C7a), 143.4 (d, ${}^{2}J_{PC} = 15.5$ Hz, *o*-Mes), 140.7 (d, ${}^{1}J_{PC} = 13.8$ Hz, C3), 138.6 (*p*-Mes), 138.5 (d, ${}^{2}J_{PC} = 1.9$ Hz, C2), 130.2 (d, ${}^{1}J_{PC} = 15.2$ Hz, *i*-Mes), 130.1 (d, ${}^{3}J_{PH} = 3.8$ Hz,

m-Mes), 126.7 (C5), 125.2 (C6), 124.0 (d, ${}^{4}J_{PC} = 1.4$ Hz, C7), 121.3 (d, ${}^{3}J_{PC} = 7.1$ Hz, C4), 40.1 (d, ${}^{3}J_{PC} = 2.0$ Hz, C1), 22.4 (d, ${}^{3}J_{PC} = 15.6$ Hz, *o*-CH₃^{Mes}), 21.0 (*p*-CH₃^{Mes}).

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = -42.3 (v_{1/2} \sim 1 \text{ Hz})$

³¹P NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = -42.3 (v_{1/2} \sim 20 \text{ Hz})$

¹H{¹H} TOCSY (500 MHz, 299 K, CD₂Cl₂)[selected experiments]: $\delta^{1}H_{ir}/\delta^{1}H_{res} = 7.49 / 7.36, 7.25, 7.22 (7-H / 4-H, 5-H, 6-H), 6.84 / 2.26, 2.23 ($ *m*-Mes /*p*-,*o*-CH₃^{Mes}), 3.41 / 6.10 (1-H / 2-H).

¹H, ¹³C GHSQC (500/126 MHz, 299 K, CD₂Cl₂): δ^{1} H/ δ^{13} C = 7.49 / 124.0 (C7), 7.36 / 121.3 (C4), 7.25 / 126.7 (C5), 7.22 / 125.2 (C6), 6.84 / 130.1 (*m*-Mes), 6.10 / 138.5 (C2), 3.41 / 40.1 (C1), 2.26 / 21.0 (*p*-CH₃^{Mes}), 2.23 / 22.4 (*o*-CH₃^{Mes}).

¹H, ¹³C GHMBC (500/126 MHz, 299 K, CD₂Cl₂)[selected traces]: δ^{1} H/ δ^{13} C = 7.49 / 147.9, 126.7 (7-H / C3a, C5), 7.36 / 144.5, 125.2 (4-H / C7a, C6), 3.41 / 147.9, 144.5, 140.7, 138.5 (1-H / C3a, C7a, C3, C2), 2.26 / 138.6, 130.1 (*p*-CH₃^{Mes} / *p*-Mes, *m*-Mes), 2.23 / 143.4, 130.2, 130.1 (*o*-CH₃^{Mes} / *o*-Mes, *i*-Mes, *m*-Mes).

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0

Figure S4: ¹H NMR (500 MHz, 299 K, CD₂Cl₂) of compound **4b**

Caution: Isocyanates are toxic and must be handled with due care.

Compound **4a** (38.4 mg, 0.1 mmol) was added to a solution of 9-BBN dimer (13.6 mg, 0.055 mmol) in toluene (1 mL) at r.t. Then the reaction mixture was heated at 75 °C for 8 h. After the reaction mixture was cooled to r.t. *n*-BuNC (8.3 mg, 0.1 mmol) was added. The resulting light yellow solution was stirred at r.t. for 1 h followed by the removal of all volatiles in vacuo. The obtained sticky oil was dissolved in pentane (5 mL) and the solvent was removed in vacuo. This procedure was repeated until a white solid was formed indicating complete removal of the toluene. Then the solid was washed with cold pentane (1 mL) and dried in vacuo to give compound **5** (60.2 mg, 56 %) as a white powder. Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane into a solution of compound **5** in CH₂Cl₂ at -36 °C. **Anal.** calc. for C₄₀H₅₃N₁B₁P₁: C, 81.48; H, 9.06; N, 2.38. Found: C, 77.82; H, 9.22; N, 2.03.

¹H NMR (600 MHz, 299 K, CD₂Cl₂): $\delta = 7.27$ (d, ³*J*_{HH} = 7.5 Hz, 1H, 4-H), 6.97 (tm, ³*J*_{HH} = 7.5 Hz, 1H, 5-H), 6.77 (m, 2H, *m*-Mes^a), 6.72 (m, 2H, *m*-Mes^b), 6.61 (tm, ³*J*_{HH} = 7.5 Hz, 1H, 6-H), 6.09 (d, ³*J*_{HH} = 7.5 Hz, 1H, 7-H), 4.66 (m, 1H, 1-H), 3.38 (2H), 1.28 (2H), 1.08 (2H), 0.76 (3H)(each m, Bu^{NC}), 2.95 (m, 1H, 3-H), 2.38, 2.18 (each m, each 1H, 2-H), 2.34 (s, 3H, *o*-CH₃^{Mes,a}), 2.23 (s, 3H, *p*-CH₃^{Mes,b}), 2.22 (s, 3H, *p*-CH₃^{Mes,a}), 2.05 (s, 3H, *o*-CH₃^{Mes,b}), 2.02/1.70, 1.97/1.56, 1.88/1.74, 1.86/1.52, 1.82/1.71, 1.74/1.55 (each m, each 1H, CH₂^{9-BBN})², 1.39, 0.85 (each br, each 1H, CH^{9-BBN}), [¹ from the ghsqc experiment].

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 154.4$ (d, ${}^{3}J_{PC} = 3.6$ Hz, C9), 144.5 (br d, ${}^{2}J_{PC} = 13.8$ Hz, *o*-Mes^b), 144.1 (d, ${}^{2}J_{PC} = 10.4$ Hz, C8), 142.1 (d, ${}^{2}J_{PC} = 14.0$ Hz, *o*-Mes^a), 138.4 (d, ${}^{4}J_{PC} = 0.8$ Hz, *p*-Mes^b), 138.1 (CN^{Bu})², 137.1 (*p*-Mes^a), 133.7 (d, ${}^{1}J_{PC} = 33.9$ Hz, *i*-Mes^a), 132.9 (d, ${}^{1}J_{PC} = 22.4$ Hz, *i*-Mes^b), 130.5 (d, ${}^{3}J_{PC} = 2.0$ Hz, *m*-Mes^a), 129.4 (d, ${}^{3}J_{PC} = 3.8$ Hz, *m*-Mes^b), 126.3 (d, ${}^{5}J_{PC} = 3.0$ Hz, C5), 125.8 (d, ${}^{3}J_{PC} = 5.1$ Hz, C7), 123.8 (d, ${}^{4}J_{PC} = 2.1$ Hz, C4), 123.6 (d, ${}^{4}J_{PC} = 2.5$ Hz, C6), 43.4 (m), 30.5, 19.6, 13.2 (Bu^{NC}), 41.1 (d, ${}^{1}J_{PC} = 19.4$ Hz, C1), 38.3 (d, ${}^{2}J_{PC} = 23.4$ Hz, C2), 35.2, 35.0, 30.21, 30.15, 25.9, 24.9 (CH₂^{9-BBN}), 34.4 (br, C3), 23.4, 22.7 (br, CH^{9-BBN})¹, 23.0 (d, ${}^{3}J_{PC} = 12.9$ Hz, *o*-CH₃^{Mes,a}), 22.5 (d, ${}^{3}J_{PC} = 15.1$ Hz, *o*-

 $CH_3^{Mes,b}$), 21.0 (*p*- $CH_3^{Mes,b}$), 20.8 (*p*- $CH_3^{Mes,a}$), [¹ from the ghsqc experiment; ² from the ghmbc experiment].

³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂): $\delta = -17.7 (v_{1/2} \sim 15 \text{ Hz}).$

³¹P NMR (243 MHz, 299 K, CD₂Cl₂): $\delta = -17.7$ (m).

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): $\delta = -13.7 (v_{1/2} \sim 300 \text{ Hz}).$

¹¹B NMR (192 MHz, 299 K, CD₂Cl₂): $\delta = -13.7 (v_{1/2} \sim 300 \text{ Hz}).$

65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45

Figure S11: (1) ${}^{31}P{}^{1}H$ and (2) ${}^{31}P$ NMR (243 MHz, 299 K, CD₂Cl₂) of compound 5

Figure S12: (1) ${}^{11}B{}^{1}H{}$ and (2) ${}^{11}B$ NMR (192 MHz, 299 K, CD₂Cl₂) of compound 5

Figure S13: X-ray crystal structure analysis of compound 5. formula C₄₀H₅₃BNP, M = 589.61, colourless crystal, 0.15 x 0.10 x 0.05 mm, a = 14.6590(9), b = 12.4208(4), c = 20.7836(9) Å, $\beta = 108.784(3)$ °, V = 3582.7(3) Å³, $\rho_{calc} = 1.093$ gcm⁻³, $\mu = 0.863$ mm⁻¹, empirical absorption correction (0.881 $\leq T \leq 0.958$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 28433 reflections collected ($\pm h$, $\pm k$, $\pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 6234 independent ($R_{int} = 0.066$) and 4372 observed reflections [$I > 2\sigma(I)$], 422 refined parameters, R = 0.054, $wR^2 = 0.146$, max. (min.) residual electron density 0.20 (-0.23) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Compound 8

1st Experiment:

Compound **4a** (38.4 mg, 0.1 mmol) was added at r.t. to a solution of $HB(C_6F_5)_2$ (69.2 mg, 0.2 mmol) in toluene (1 mL). Then the reaction mixture was stirred for 1 h. The obtained yellow solution was layered with pentane and stored in the freezer at -32 °C for 2 days until a white, amorphous powder precipitated. The liquid was removed and the solid was washed with pentane (3 x 2 mL). Then the solid was dried in vacuo to give compound **8** (60.2 mg, 56 %) as a white powder. **Anal.** calc. for $C_{51}H_{31}B_2F_{20}P_1$: C, 56.91; H, 2.90. Found: C, 56.11; H 2.82,

¹**H NMR (500 MHz, 299 K, CD₂Cl₂):** δ = 7.62 (dd, ¹*J*_{PH} = 477.5 Hz, ²*J*_{HH} = 10.7 Hz, 1H, PH), 7.17 (d, ⁴*J*_{PH} = 4.2 Hz, 2H, *m*-Mes^a), 7.10 (d, ⁴*J*_{PH} = 4.3 Hz, 2H, *m*-Mes^b), 6.77 (m, 1H, 6-H), 6.72 (m, 1H, 5-H), 6.65 (m, 1H, 7-H), 5.76 (m, 1H, 4-H), 5.38 (m, 1H, 1-H), 3.30 (br, 1H, B-H-B), 2.71, 2.53 (each m, each 1H, 2-H), 2.52 (s, 6H, *o*-CH₃^{Mes,b}), 2.45 (br s, 6H, *o*-CH₃^{Mes,a}), 2.43 (s, 3H, *p*-CH₃^{Mes,a}), 2.35 (s, 3H, *p*-CH₃^{Mes,b}).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 156.3$ (dm, ³*J*_{PC} = 8.1 Hz, C9), 146.9 (d, *J* = 2.8 Hz, *p*-Mes^a), 146.4 (d, *J* = 2.7 Hz, *p*-Mes^b), 144.6 (d, ²*J*_{PC} = 9.5 Hz, *o*-Mes^a), 143.7 (d, ²*J*_{PC} = 9.2 Hz, *o*-Mes^b), 135.1 (d, ²*J*_{PC} = 2.9 Hz, C8), 132.7 (d, ³*J*_{PC} = 9.5 Hz, *m*-Mes^a), 132.1 (d, ³*J*_{PC} = 10.6 Hz, *m*-Mes^b), 127.2 (d, *J* = 2.8 Hz, C5), 124.2 (br m, C4), 123.2 (C6), 123.1 (d, ³*J*_{PC} = 4.9 Hz, C7), 112.5 (d, ¹*J*_{PC} = 74.9 Hz, *i*-Mes^a), 112.4 (d, ¹*J*_{PC} = 75.2 Hz, *i*-Mes^b), 40.1 (dm, ¹*J*_{PC} = 42.6 Hz, C1), 38.7 (C2), 28.4 (br, C3), 22.43 (br d, ³*J*_{PC} = 6.3 Hz, *o*-CH₃^{Mes,a}), 22.36 (d, ³*J*_{PC} = 7.0 Hz, *o*-CH₃^{Mes,b}), 21.5 (d, *J* = 1.0 Hz, *p*-CH₃^{Mes,a}), 21.3 (d, *J* = 0.9 Hz, *p*-CH₃^{Mes,b}), [C₆F₅ not listed].

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = -2.0 (v_{1/2} \sim 10 \text{ Hz}).$

³¹P NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = -2.0$ (dm, ¹*J*_{PH} ~ 480 Hz).

¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂): $\delta = -16.2 (v_{1/2} \sim 600 \text{ Hz}).$

¹¹B NMR (160 MHz, 299 K, CD₂Cl₂): $\delta = -16.2 (v_{1/2} \sim 600 \text{ Hz}).$

¹⁹**F** NMR (470 MHz, 299K, CD₂Cl₂): $\delta = -125.2$ (m, 1F), -127.2 (m, 1F), -128.4 (br, 2F), -129.3 (br, 2F), -130.7 (m, 1F), -131.5 (m, 1F)(o-C₆F₅), -158.75 (t, ${}^{3}J_{FF} = 19.8$), -158.84 (t,

 ${}^{3}J_{FF} = 19.8$, -159.5 (t, ${}^{3}J_{FF} = 19.6$), -160.0 (t, ${}^{3}J_{FF} = 20.1$)(each 1F, *p*-C₆F₅), -164.7, -165.0 (Σ 6F), -165.7 (1F), -166.3 (1F)(each m, *m*-C₆F₅).

¹H, ¹H GCOSY (500/500 MHz, 299 K, CD₂Cl₂)[selected traces]: δ^{1} H/ δ^{1} H = 7.17 / 2.43 (*m*-Mes^a / *p*-CH₃^{Mes,a}), 7.10 / 2.52, 2.35 (*m*-Mes^b / *o*-CH₃^{Mes,b}), *p*-CH₃^{Mes,b}), 5.38 / 7.62, 2.71, 2.53 (1-H / PH, 2-H, 2-H).

¹H{¹H} TOCSY (500 MHz, 299 K, CD₂Cl₂)[selected experiment]: $\delta^{1}H_{irr}/\delta^{1}H_{res} = 5.76 / 6.77$, 6.72, 6.65 (4-H / 6-H, 5-H, 7-H).

¹H{¹H} **1D-NOESY (500 MHz, 299 K, CD₂Cl₂)**[selected experiment]: $\delta^{1}H_{irr}/\delta^{1}H_{res} = 7.17 / 2.45, 2.43 (m-Mes^{a} / o-CH₃^{Mes,a}, p-CH₃^{Mes,a}).$

¹H, ¹³C GHSQC (500/126 MHz, 299 K, CD₂Cl₂): δ^{1} H/ δ^{13} C = 7.17 / 132.7 (*m*-Mes^a), 7.10 / 132.1 (*m*-Mes^b), 6.77 / 123.2 (C6), 6.72 / 127.2 (C5), 6.65 / 123.1 (C7), 5.76 / 124.2 (C4), 5.38 / 40.1 (C1), 2.71, 2.53 / 38.7 (C2), 2.52 / 22.36 (*o*-CH₃^{Mes,b}), 2.45 / 22.43 (*o*-CH₃^{Mes,a}), 2.43 / 21.5 (*p*-CH₃^{Mes,a}), 2.35 / 21.3 (*p*-CH₃^{Mes,b}).

¹H, ¹³C GHMBC (500/126 MHz, 299 K, CD₂Cl₂)[selected traces]: δ^{1} H/ δ^{13} C = 7.62 / 144.6, 143.7, 112.5, 112.4, 40.1 (PH / *o*-Mes^a, *o*-Mes^b, *i*-Mes^a, *i*-Mes^b, C1), 7.17 / 132.7, 112.5, 22.43, 21.5 (*m*-Mes^a / *m*-Mes^a, *i*-Mes^a, *o*-CH₃^{Mes,a}, *p*-CH₃^{Mes,a}), 7.10 / 132.1, 112.4, 22.36, 21.3 (*m*-Mes^b / *m*-Mes^b, *i*-Mes^b, *o*-CH₃^{Mes,b}, *p*-CH₃^{Mes,b}), 6.65 / 156.3, 127.2, 40.1 (7-H / C9, C5, C1), 5.76 / 135.1, 123.2 (4-H / C8, C6), 2.52 / 143.7, 132.1, 112.4 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *m*-Mes^b, *i*-Mes^b), 2.43 / 146.9, 132.7 (*p*-CH₃^{Mes,a} / *p*-Mes^a, *m*-Mes^a), 2.35 / 146.4, 132.1 (*p*-CH₃^{Mes,b} / *p*-Mes^b, *m*-Mes^b).

Figure S19: (1) ${}^{11}B{}^{1}H{}$ and (2) ${}^{11}B$ 'NMR (160 MHz, 299 K, CD₂Cl₂) of compound **8**

2nd Experiment:

Compound **4b** (38.4 mg, 0.1 mmol) was added at r.t. to a solution of $HB(C_6F_5)_2$ (69.2 mg, 0.2 mmol) in toluene (1 mL). Then the reaction mixture was stirred for 1 h. The obtained yellow solution was layered with pentane and stored in the freezer at -32 °C for 2 days until a white, amorphous powder precipitated. The liquid was removed and the solid was dried in vacuo to give compound **8** (65 mg, 60 %) as a white powder. [the NMR data of compound **8** are consistent with those listed in the 1st experiment]

3rd Experiment:

NMR Scale: Compound **4b** (38.4 mg, 0.1 mmol) was added at r.t. to a solution of $HB(C_6F_5)_2$ (34.6 mg, 0.1 mmol) in CD_2Cl_2 (1 mL). Then the reaction mixture was characterized by NMR experiments:

³¹P{¹H} NMR (121 MHz, 299 K, CD₂Cl₂): $\delta = -2.1$ [dm, ¹J_{PH} = 478.0 Hz, 8 (36 mol%)], -11.8 (br d, ¹J_{PH} ~ 478.4 Hz, unidentified compound (4 mol%)], -39.4 (br d, ¹J_{PH} ~ 400 Hz, unidentified compound (19 mol%)], -42.4 [$v_{1/2} \sim 3$ Hz, 4b (41 mol%)].

NMR (600 MHz, 299 K, CD_2Cl_2) spectrum of isolated compound **4b**. (3) H NMR (300 MHz, 299 K, CD_2Cl_2) spectrum of the reaction of compound **4b** with 1 equivalent HBC₆F₅ in CD_2Cl_2

Figure S21: (1)³¹P{¹H} NMR (121 MHz, 299 K, CD₂Cl₂) spectrum of isolated compound **8**. (2)³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂) spectrum of isolated compound **4b**. (3)³¹P{¹H} NMR (121 MHz, 299 K, CD₂Cl₂) spectrum of the reaction of compound **4b** with 1 equivalent HBC₆F₅ in CD₂Cl₂

Compound 9.

Scheme S7

t-Bu₃P (20.2 mg, 0.1 mmol) was added at r.t. to a solution of compound **8** (107.6 mg, 0.1 mmol) in CD_2Cl_2 (1 mL). Then the reaction mixture was stirred for 1 h. Crystals of compound **9** suitable for the X-ray crystal structure analysis were obtained from the reaction mixture by slow evaporation of CD_2Cl_2 at -36 °C.

Figure S22: **X-ray crystal structure analysis of compound 9**. formula $C_{63}H_{58}B_2F_{20}P_2$, M = 1278.65, pale yellow crystal, 0.54 x 0.36 x 0.22 mm, a = 14.7651(4), b = 17.3362(4), c = 23.4491(3) Å, V = 6002.3(2) Å³, $\rho_{calc} = 1.415$ gcm⁻³, $\mu = 1.566$ mm⁻¹, empirical absorption correction (0.485 $\leq T \leq 0.724$), Z = 4, orthorhombic, space group $P2_12_12_1$ (No. 19), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 29674 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 10182 independent ($R_{int} = 0.035$) and 9853 observed reflections [$I > 2\sigma(I)$], 807 refined parameters, R = 0.033, $wR^2 = 0.081$, max. (min.) residual electron density 0.23 (-0.18) e.Å⁻³, the hydrogens at P1 and B1-B2 atoms were refined freely; others were calculated and refined as riding atoms. Flack parameter: -0.01(1).

Characterization of compound 14.

NMR Scale: Bis(pentafluorophenyl)borane (34.6 mg, 0.1 mmol, 1 eq) and 2- methylbut-1-en-3-yne (7.2 mg, 1.1 mmol, 1.1 eq) were suspended in C_6D_6 (0.5 mL) and stirred for 2 h at room temperature. Then the yellow reaction mixture was transferred into an NMR tube, which was sealed in an argon atmosphere immediately.

¹**H NMR** (500 MHz, 299 K, C₆D₆): $\delta = 7.21$ (d, ³*J*_{HH} = 17.4 Hz, 1H, =CH), 6.90 (d, ³*J*_{HH} = 17.4 Hz, 1H, BCH), 5.14 (m, 1H, =CH₂^E), 5.11 (m, 1H, =CH₂^Z), 1.70 (m, 3H, CH₃).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ = 165.2 (=CH), 147.6 (dm, ¹*J*_{FC} ~ 245 Hz, C₆F₅), 143.6 (=CMe), 143.2 (dm, ¹*J*_{FC} ~ 255 Hz, C₆F₅), 137.6 (dm, ¹*J*_{FC} ~ 250 Hz, C₆F₅), 132.8 (br, BCH), 129.0 (=CH₂), 114.0 (br, *i*-C₆F₅), 17.5 (CH₃).

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, C₆D₆): $\delta = 58.8 (v_{1/2} \sim 800 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, C₆D₆): δ = -129.9 (m, 2F, *o*-C₆F₅), -148.4 (tt, ${}^{3}J_{FF}$ = 20.7 Hz, ${}^{4}J_{FF}$ = 4.0 Hz, 1F, *p*-C₆F₅), -161.3 (m, 2F, *m*-C₆F₅), [Δδ¹⁹F_{m,p} = 12.9].

Figure S24: ${}^{13}C{}^{1}H$ NMR (126 MHz, 299 K, CD₂Cl₂) of compound 14

Figure S26: ${}^{11}B{}^{1}H$ NMR (160 MHz, 299 K, C₆D₆) of compound 14

Synthesis of compound 17a.

Θ \oplus (C₆F₅)₂B- -PPh₂

Scheme S9

Bis(pentafluorophenyl)borane (0.346 g, 1.0 mmol, 1 eq) and 2- methylbut-1-en-3-yne (0.072 g, 1.1 mmol, 1.1 eq) were suspended in toluene (5 mL) and stirred for 4 h at room temperature. Then diphenylphosphane (0.186 g, 1.0 mmol, 1 eq) in toluene (5 mL) was added and the reaction mixture was heated at 80 °C for 3 d. Subsequently all volatiles were removed in vacuo and the obtained residue was washed with cold pentane (3×1 mL). After drying in vacuo compound **17a** (0.442 g, 0.74 mmol, 74 %) was obtained as a white solid. Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a dichloromethane solution of compound **17a** at -35 °C. **IR** (KBr): $v / \text{ cm}^{-1} = 3069$, 3027, 2963, 2930, 1642, 1518, 1457, 1378, 1285, 1100, 984, 742, 692. **M.p.**: 184 °C. **Anal. Calc.** for C₂₉H₁₈BF₁₀P: C: 58.22; H: 3.03. Found: C: 58.41; H: 2.82.

¹**H NMR** (500 MHz, 299 K, CD₂Cl₂): δ = 7.51 (m, 2H, *p*-Ph), 7.35 (m, 4H, *m*-Ph), 7.26 (m, 4H, *o*-Ph), 6.09 (dt, ⁴*J*_{PH} = 5.4 Hz, ³*J*_{HH} = 5.3 Hz, 1H, HC=), 2.98 (d, ²*J*_{PH} = 13.3 Hz, 2H, PCH₂), 2.13 (dd, ³*J*_{PH} = 23.0 Hz, ³*J*_{HH} = 4.2 Hz, 2H, BCH₂), 1.76 (m, 3H, CH₃).

¹H{³¹P} NMR (500 MHz, 299 K, CD₂Cl₂)[selected resonances]: $\delta = 6.09$ (t, ³*J*_{HH} = 5.3 Hz, 1H, HC=), 2.98 (s, 2H, PCH₂), 2.13 (d, ³*J*_{HH} = 4.2 Hz, 2H, BCH₂).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 148.5$ (dm, ¹*J*_{FC} ~ 240 Hz, C₆F₅), 139.7 (dm, ¹*J*_{FC} ~ 250 Hz, C₆F₅), 137.3 (dm, ¹*J*_{FC} ~ 250 Hz, C₆F₅), 132.8 (d, ²*J*_{PC} = 7.9 Hz, *o*-Ph), 132.1 (d, ³*J*_{PC} = 12.3 Hz, HC=), 132.0 (d, ⁴*J*_{PC} = 2.8 Hz, *p*-Ph), 129.0 (d, ³*J*_{PC} = 10.0 Hz, *m*-Ph), 127.4 (d, ¹*J*_{PC} = 53.5 Hz, *i*-Ph), 125.2 (d, ²*J*_{PC} = 5.6 Hz, =CMe), 119.8 (br, *i*-C₆F₅), 27.7 (d, ¹*J*_{PC} = 35.5 Hz, PCH₂), 26.1 (d, ³*J*_{PC} = 6.9 Hz, CH₃), 21.7 (br, BCH₂).

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, CD₂Cl₂): δ = -13.6 (br d, ¹*J*_{PB} ~ 70 Hz).

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = 1.3$ (1:1:1:1 q, partial relaxed ¹*J*_{PB} ~ 70 Hz). ¹⁹F NMR (470 MHz, 299 K, CD₂Cl₂): $\delta = -129.2$ (m, 2F, *o*-C₆F₅), -159.3 (t, ³*J*_{FF} = 20.3 Hz, 1F, *p*-C₆F₅), -165.0 (m, 2F, *m*-C₆F₅), [$\Delta \delta^{19}F_{m,p} = 5.7$].

¹H, ¹H GCOSY (500 MHz / 500 MHz, 299 K, CD₂Cl₂)[selected traces]: δ ¹H / δ ¹H = 7.35 / 7.51, 7.26 (*m*-Ph / *p*-Ph, *o*-Ph), 6.09 / 2.98, 2.13, 1.76 (HC= / PCH₂, BCH₂, CH₃).

¹**H**, ¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ ¹H / δ ¹³C = 7.51 / 132.0 (*p*-Ph), 7.35 / 129.0 (*m*-Ph), 7.26 / 132.8 (*o*-Ph), 6.09 / 132.1 (HC=), 2.98 / 27.7 (PCH₂), 2.13 / 21.7 (BCH₂), 1.76 / 26.1 (CH₃).

¹H, ¹³C GHMBC (500 MHz / 126 MHz, 299 K, CD₂Cl₂)[selected traces]: δ ¹H / δ ¹³C = 7.35 / 132.0, 128.9, 127.4 (*m*-Ph / *p*-, *m*-, *i*-Ph), 2.98 / 132.1, 127.4, 125.2, 26.1 (PCH₂ / HC=, *i*-Ph, =CMe, CH₃), 2.13 / 132.1, 125.2, 119.8 (BCH₂ / HC=, =CMe, *i*-C₆F₅), 1.76 / 132.1, 125.2, 27.7 (CH₃ / HC=, =CMe, PCH₂).

CD₂Cl₂) of compound 17a

Dynamic ¹⁹F NMR:

 $\Delta G^{\ddagger} = RT_{c}(22.96 + \ln(T_{c}/\delta v))$ $T_{c} = \text{coalescence temperature [K]: 243 K (^{19}F, p-BC_{6}F_{5})}$ $\Delta v = \text{chemical shift difference [Hz] (^{19}F, p-BC_{6}F_{5}, 233 K): 390 Hz}$ R = 8.314 J/(mol K); 1 J = 0.239 cal $\Delta G^{\ddagger}[243K, \delta v(233 K) = 390 \text{ Hz}] = 45430 \text{ J/mol} = 10.9 \pm 0.3 \text{ kcal/mol}$

Figure S32: **X-ray crystal structure analysis of compound 17a**. formula C₂₉H₁₈BF₁₀P, M = 598.21, colourless crystal, 0.35 x 0.15 x 0.13 mm, a = 10.0670(7), b = 11.7645(11), c = 13.4704(13) Å, $\alpha = 109.385(3)$, $\beta = 97.336(5)$, $\gamma = 114.390(5)^{\circ}$, V = 1303.9(2) Å³, $\rho_{calc} = 1.524$ gcm⁻³, $\mu = 1.767$ mm⁻¹, empirical absorption correction (0.576 \leq T \leq 0.802), Z = 2, triclinic, space group $P\bar{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 14759 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 4498 independent ($R_{int} = 0.036$) and 4284 observed reflections [$I > 2\sigma(I)$], 371 refined parameters, R = 0.035, $wR^2 = 0.094$, max. (min.) residual electron density 0.30 (-0.23) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Generation of compound 17a-D:

a) Preparation of DPPh₂: ^{*n*}BuLi (10 mL, 1.6 M in hexane, 16 mmol, 1eq) was added to diphenylphosphane (2.98 g, 16 mmol, 1 eq) in Et₂O (40 mL) at -78 °C. The solution was stirred for 1 h at -78 °C and 1 h at room temperature. Then D₂O (degassed, 1 mL) was added at 0°C, and the mixture was stirred vigorously at room temperature for 1 h. After H₂O (degassed, 10 mL) was added to the reaction mixture the organic phase was separated, washed by saturated aqueous NH₄Cl solution (degassed, 10 mL) and dried with MgSO₄. After removal of all volatiles, a mixture of DPPh₂ and HPPh₂ (55/45, [³¹P]) was obtained as a colorless liquid (2.20 g, 11.8 mmol, 74%).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, CD₂Cl₂): δ = -40.2 ($v_{1/2} \sim 2$ Hz, HPPh₂), -41.6 (1:1:1 t, ¹*J*_{PD} = 33.9 Hz, DPPh₂).

³¹**P** NMR (243 MHz, 299 K, CD₂Cl₂): δ = -40.2 (dm, ¹*J*_{PH} = 219.0 Hz, HPPh₂), -41.6 (1:1:1 tm, ¹*J*_{PD} = 33.9 Hz, DPPh₂).

b) Preparation of compound **17a**-D: Following the procedure as described for the preparation of compound **17a**: bis(pentafluorophenyl)borane (103.8 mg, 0.3 mmol, 1 eq) and 2-methylbut-1-en-3-yne (21.8 mg, 0.33 mmol, 1.1 eq) in toluene (2 mL) were stirred for 3 h at room temperature. Then deuterodiphenylphosphane (56.1 mg, 0.3 mmol, 1eq, DPPh₂/HPPh₂ ~ 55:45) in toluene (1 mL) was added to finally give (80 °C for 3 d) a mixture of **17a**-D and **17a** (ca. 50/50, [¹H])(127.1 mg, 0.21 mmol, 71 %) as a white solid.

Synthesis of compound 17b.

Scheme S10

Bis(pentafluorophenyl)borane (0.346 g, 1.0 mmol, 1 eq) and 2- methylbut-1-en-3-yne (0.072 g, 1.1 mmol, 1.1 eq) were suspended in toluene (5 mL) and stirred for 4 h at room temperature. Then dimesitylphosphane (0.270 g, 1.0 mmol, 1 eq) in toluene (5 mL) was added and the reaction mixture was heated at 60 °C for 16 h. Subsequently all volatiles were removed in vacuo and the residue was extracted with pentane (50 mL) *via* filter cannula. The solvent of the solution was removed in vacuo and the obtained solid was washed with cold pentane (3x1 mL). After drying in vacuo compound **17b** (0.477 g, 0.70 mmol, 70 %) was obtained as a light yellow solid. Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a dichloromethane solution of compound **17b** at -35

^oC. **IR** (KBr): \dot{v} / cm⁻¹ = 3028, 2979, 2925, 1641, 1606, 1516, 1450, 1381, 1281, 1098, 971, 785. **M.p.**: 167 ^oC. **Anal. Calc.** for C₃₅H₃₀BF₁₀P: C: 61.60; H: 4.43. Found: C: 61.52; H: 4.29. ¹**H NMR** (600 MHz, 243 K, CD₂Cl₂): δ = 7.01 (s, 1H, *m*-Mes^a), 6.88 (d, ⁴*J*_{PH} = 4.0 Hz, 1H, *m*-Mes^b), 6.78 (s, 1H, *m*'-Mes^b), 6.58 (s, 1H, *m*'-Mes^a), 5.46 (br m, 1H, HC=), 3.98, 2.71 (each m, each 1H, PCH₂), 2.69 (s, 3H, *o*-CH₃^{Mes,a}), 2.50 (d, ⁴*J*_{PH} = 1.8 Hz, 3H, *o*-CH₃^{Mes,b}), 2.25 (s, 3H, *p*-CH₃^{Mes,a}), 2.23 (m), 1.71 (ddd, ³*J*_{PH} = 43.5 Hz, ²*J*_{HH} = 17.2 Hz, ³*J*_{HH} = 9.5 Hz)(each 1H, BCH₂), 2.20 (s, 3H, *p*-CH₃^{Mes,b}), 2.07 (s, 3H, *o*'-CH₃^{Mes,b}), 1.62 (s, 3H, CH₃), 1.13 (s, 3H, *o*'-CH₃^{Mes,a}).

¹³C{¹H} NMR (151 MHz, 243 K, CD₂Cl₂): $\delta = 142.8$ (d, ²*J*_{PC} = 3.7 Hz, *o*-Mes^a), 142.6 (dm, ²*J*_{PC} = 15.4 Hz, *o*-Mes^b), 141.8 (d, ²*J*_{PC} = 12.3 Hz, *o*'-Mes^a), 140.9 (d, ⁴*J*_{PC} = 2.5 Hz, *p*-Mes^a), 140.9 (*o*'-Mes^b), 140.5 (d, ⁴*J*_{PC} = 2.2 Hz, *p*-Mes^b), 132.0 (d, ³*J*_{PC} = 8.3 Hz, *m*-Mes^a), 131.6 (d, ³*J*_{PC} = 6.9 Hz, *m*'-Mes^b), 130.9 (d, ³*J*_{PC} = 9.6 Hz, *m*'-Mes^a), 130.5 (d, ¹*J*_{PC} = 45.8 Hz, *i*-Mes^b), 129.4 (d, ³*J*_{PC} = 9.2 Hz, *m*-Mes^b), 128.4 (d, ³*J*_{PC} = 5.7 Hz, HC=), 128.3 (d, ²*J*_{PC} = 3.5 Hz, =CMe), 123.3 (br, C₆F₅), 122.8 (dd, ¹*J*_{PC} = 51.2 Hz, *J* = 2.7 Hz, *i*-Mes^a), 31.6 (dd, ¹*J*_{PC} = 31.6 Hz, *J* = 11.1 Hz, PCH₂), 24.8 (d, ³*J*_{PC} = 12.4 Hz, CH₃), 23.9 (m, *o*-CH₃^{Mes,b}), 22.8 (d, ³*J*_{PC} = 6.5 Hz, *o*'-CH₃^{Mes,a}), 22.4 (d, ³*J*_{PC} = 3.0 Hz, *o*'-CH₃^{Mes,b}), 22.1 (d, ³*J*_{PC} = 1.9 Hz, *o*-CH₃^{Mes,a}), 20.6 (d, ⁵*J*_{PC} = 1.0 Hz, *p*-CH₃^{Mes,a}), 20.5 (d, ⁵*J*_{PC} = 1.0 Hz, *p*-CH₃^{Mes,b}), 19.5 (br, BCH₂), [C₆F₅ not listed].

¹¹B{¹H} NMR (192 MHz, 243 K, CD₂Cl₂): δ = -8.1 (v_{1/2} ~ 500 Hz).

³¹P{¹H} NMR (243 MHz, 243 K, CD₂Cl₂): $\delta = 1.7 (v_{1/2} \sim 60 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 243 K, CD₂Cl₂): δ = -125.5 (m, 1F, *o*), -127.4 (m, 1F, o'), -158.0 (t,

 ${}^{3}J_{FF} = 20.4 \text{ Hz}, 1\text{F}, p), -164.7 \text{ (m, 2F, } m-, m')(BC_{6}F_{5})[\Delta\delta^{19}F_{m,p} = 6.7], -128.6 \text{ (br, o)}, -131.5 \text{ (m, } o'), -160.9 \text{ (t, }^{3}J_{FF} = 21.0 \text{ Hz}, p), -165.2 \text{ (m, } m'), -165.8 \text{ (m, } m)(\text{each 1F, BC}_{6}F_{5})[\Delta\delta^{19}F_{m,p} = 4.3, 4.9].$

¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 243 K, CD₂Cl₂)[selected traces]: δ ¹H / δ ¹H = 7.01 / 6.58, 2.69, 2.25, 1.13 (*m*-Mes^a / *m*'-Mes^a, *o*-CH₃^{Mes,a}, *p*-CH₃^{Mes,a}, *o*'-CH₃^{Mes,a}), 6.88 / 6.78, 2.50, 2.20, 2.07 (*m*-Mes^b / *m*'-Mes^b, *o*-CH₃^{Mes,b}, *p*-CH₃^{Mes,b}, *o*'-CH₃^{Mes,b}), 5.46 / 3.98, 2.71, 2.24, 1.71 (HC= / PCH₂, PCH₂, BCH₂, BCH₂), 3.98 / 2.71, 2.24, 1.62 (PCH₂ / PCH₂, BCH₂, CH₃).

¹H, ¹³C GHSQC (600 MHz / 151 MHz, 243 K, CD₂Cl₂): δ ¹H / δ ¹³C = 7.01 / 132.0 (*m*-Mes^a), 6.88 / 129.4 (*m*-Mes^b), 6.78 / 131.6 (*m*'-Mes^b), 6.58 / 130.9 (*m*'-Mes^a), 5.46 / 128.4 (HC=), 3.98, 2.71 / 31.6 (PCH₂), 2.69 / 22.1 (*o*-CH₃^{Mes,a}), 2.50 / 23.9 (*o*-CH₃^{Mes,b}), 2.25 / 20.6 (*p*-CH₃^{Mes,a}), 2.24, 1.71 / 19.5 (BCH₂), 2.20 / 20.5 (*p*-CH₃^{Mes,b}), 2.07 / 22.4 (*o*'-CH₃^{Mes,b}), 1.62 / 24.8 (CH₃), 1.13 / 22.8 (*o*'-CH₃^{Mes,a}).

S30

¹H, ¹³C GHMBC (600 MHz / 151 MHz, 243 K, CD₂Cl₂)[selected traces]: δ^{-1} H / δ^{-13} C = 5.46 / 31.6, 24.8 (HC= / PCH₂, CH₃), 2.69 / 142.8, 132.0, 122.8 (*o*-CH₃^{Mes,a} / *o*-Mes^a, *m*-Mes^a, *i*-Mes^a), 2.50 / 142.6, 130.5, 129.4 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *i*-Mes^b, *m*-Mes^b), 2.25 / 140.9, 132.0, 130.9 (*p*-CH₃^{Mes,a} / *p*-Mes^a, *m*-Mes^a, *m*'-Mes^a), 2.20 / 140.5, 131.6, 129.4 (*p*-CH₃^{Mes,b} / *p*-Mes^b, *m*'-Mes^b, *m*-Mes^b), 2.07 / 140.8, 131.6, 130.5 (*o*'-CH₃^{Mes,b} / *o*'-Mes^b, *m*'-Mes^b, *m*'-Mes^b), 1.13/ 141.8, 130.9, 122.8 (*o*'-CH₃^{Mes,a} / *o*'-Mes^a, *m*'-Mes^a, *i*-Mes^a).

290 270 250 230 210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 Figure S40: ¹¹B{¹H} NMR (192 MHz, 243 K, CD_2Cl_2) and ³¹P{¹H} NMR (243 MHz, 243 K, CD_2Cl_2) of compound **17b**

Figure S41: X-ray crystal structure analysis of compound 17b. formula $C_{29}H_{18}BF_{10}P$, M = 682.37, colourless crystal, 0.33 x 0.23 x 0.17 mm, a = 9.1195(3), b = 19.9550(5), c = 18.0470(5) Å, $\beta = 91.390(2)$ °, V = 3283.2(2) Å³, $\rho_{calc} = 1.380$ gcm⁻³, $\mu = 1.470$ mm⁻¹, empirical absorption correction ($0.642 \le T \le 0.788$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 22341 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 5728 independent ($R_{int} = 0.043$) and 5215 observed reflections [$I > 2\sigma(I)$], 431 refined parameters, R = 0.043, $wR^2 = 0.119$, max. (min.) residual electron density 0.25 (-0.23) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

S33

Synthesis of compound 17c.

Bis(pentafluorophenyl)borane (0.346 g, 1.0 mmol, 1 eq) and 2- methylbut-1-en-3-yne (0.072 g, 1.1 mmol, 1.1 eq) were suspended in toluene (5 mL) and stirred for 4 h at room temperature. Then di-*tert*-butylphosphane (0.146 g, 1.0 mmol, 1 eq) in toluene (5 mL) was added and the reaction mixture was heated at 60 °C for 16 h. Subsequently all volatiles were removed in vacuo and the residue was extracted with pentane (50 mL) *via* filter cannula. The solvent of the solution was removed in vacuo and the obtained solid was washed with cold pentane (3x1 mL). After drying in vacuo compound **17c** (0.439 g, 0.79 mmol, 79 %) was obtained as a white solid. Crystals suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a dichloromethane solution of compound **17c** at -35

^oC. **IR** (KBr): \ddot{v} / cm⁻¹ = 2974, 2912, 1643, 1517, 1456, 1373, 1279, 1098, 975, 778. **M.p.**: 187 ^oC. **Anal. Calc.** for C₂₅H₂₆BF₁₀P: C: 53.79; H: 4.69. Found: C: 54.13; H: 4.53.

¹**H NMR** (500 MHz, 299 K, CD₂Cl₂): δ = 5.78 (br, 1H, HC=), 2.38 (d, ²*J*_{PH} = 10.7 Hz, 2H, PCH₂), 2.03 (br, 2H, BCH₂), 1.89 (s, 3H, CH₃), 1.27 (d, ³*J*_{PH} = 12.7 Hz, 18H, ^{*t*}Bu).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): $\delta = 148.2$ (dm, ${}^{1}J_{FC} \sim 240$ Hz, C₆F₅), 139.6 (dm, ${}^{1}J_{FC} \sim 250$ Hz, C₆F₅), 137.5 (dm, ${}^{1}J_{FC} \sim 250$ Hz, C₆F₅), 131.1 (d, ${}^{3}J_{PC} = 9.9$ Hz, HC=), 124.7 (d, ${}^{2}J_{PC} = 5.5$ Hz, =CMe), 124.2 (br, *i*-C₆F₅), 37.3 (d, ${}^{1}J_{PC} = 17.5$ Hz, ^{*t*}Bu), 29.8 (^{*t*}Bu), 27.3 (br, BCH₂), 26.0 (d, ${}^{3}J_{PC} = 6.5$ Hz, CH₃), 21.5 (d, ${}^{1}J_{PC} = 30.4$ Hz, PCH₂).

¹¹**B**{¹**H**} **NMR** (160 MHz, 299 K, CD₂Cl₂): δ = -13.9 (br d, ¹*J*_{PB} ~ 55 Hz).

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta = 15.0$ (1:1:1:1 q, partial relaxed ¹J_{PB} ~ 55 Hz). ¹⁹F NMR (470 MHz, 299 K, CD₂Cl₂): $\delta = -127.8$ (br, 2F, *o*-BC₆F₅), -159.7 (br, 1F, *p*-BC₆F₅), -164.8 (br, 2F, *m*-BC₆F₅), [$\Delta \delta^{19}$ F_{m,p} = 5.1].

¹⁹**F NMR** (470 MHz, 193 K, CD₂Cl₂): δ = -124.0 (m, *o*), -129.8 (m, *o*'), -160.7 (t, ³J_{FF} = 21.3 Hz, *p*), -164.0 (m, *m*'), -165.0 (m, *m*)(each 1F, BC₆F₅^a)[Δδ¹⁹F_{m,p} = 3.3, 4.3], -125.5 (m, *o*), -132.1 (m, *o*'), -157.4 (br t, ³J_{FF} = 21.1 Hz, *p*), -163.0 (m, *m*'), -163.8 (m, *m*)(each 1F, BC₆F₅^b)[Δδ¹⁹F_{m,p} = 5.6, 6.4].

¹H, ¹H GCOSY (500 MHz / 500 MHz, 299 K, CD₂Cl₂)[selected trace]: δ ¹H / δ ¹H = 5.78 / 2.38, 2.03, 1.89 (HC= / PCH₂, BCH₂, CH₃).

¹H, ¹³C GHSQC (500 MHz / 126 MHz, 299 K, CD₂Cl₂): δ ¹H / δ ¹³C = 5.78 / 131.1 (HC=), 2.38 / 21.5 (PCH₂), 1.89 / 26.0 (CH₃), 1.27 / 29.8 (^{*t*}Bu).

¹H, ¹³C GHMBC (500 MHz / 126 MHz, 299 K, CD₂Cl₂)[selected traces]: δ ¹H / δ ¹³C = 1.89 / 131.1, 124.6, 21.5 (CH₃ / HC=, =CMe, PCH₂), 1.27 / 37.3, 29.8 (^{*t*}Bu / ^{*t*}Bu, ^{*t*}Bu).

Figure S42: ¹H NMR (500 MHz, 299 K, CD₂Cl₂) of compound 17c

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 Figure S45: ¹¹B{¹H} NMR (160 MHz, 299 K, CD_2Cl_2) and ³¹P{¹H} NMR (202 MHz, 299 K, CD_2Cl_2) of compound 17c

Dynamic ¹⁹F NMR:

 $\Delta G^{\ddagger} = RT_{c}(22.96 + \ln(T_{c}/\delta v))$ $T_{c} = \text{coalescence temperature [K]: 268 K (^{19}\text{F}, p\text{-BC}_{6}\text{F}_{5})}$ $\Delta v = \text{chemical shift difference [Hz] (^{19}\text{F}, p\text{-BC}_{6}\text{F}_{5}, 193 \text{ K}): 1586 \text{ Hz}}$ R = 8.314 J/(mol K); 1 J = 0.239 cal $\Delta G^{\ddagger}[268\text{K}, \delta v(193 \text{ K}) = 1586 \text{ Hz}] = 47197 \text{ J/mol} = 11.3 \pm 0.3 \text{ kcal/mol}}$

Figure S47: X-ray crystal structure analysis of compound 17c. formula $C_{25}H_{26}BF_{10}P$, M = 558.24, colourless crystal, 0.15 x 0.12 x 0.03 mm, a = 25.4740(7), b = 12.5753(3), c = 19.1732(4) Å, $\beta = 109.881(2)$ °, V = 5775.9(2) Å³, $\rho_{calc} = 1.284$ gcm⁻³, $\mu = 1.547$ mm⁻¹, empirical absorption correction (0.801 $\leq T \leq 0.955$), Z = 8, monoclinic, space group C2/c (No. 15), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 41845 reflections collected ($\pm h$, $\pm k$, $\pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 5118 independent ($R_{int} = 0.059$) and 4115 observed reflections [$I > 2\sigma(I)$], 341 refined parameters, R = 0.039, $wR^2 = 0.106$, max. (min.) residual electron density 0.19 (-0.26) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

pK_a Calculation

$$K = \frac{[R_3PH^+][RCH^-B]}{[R_3P][RCH_2B]} = \frac{[R_3PH^+][RCH^-B][H_3O^+]}{[R_3P][H_3O^+][RCH_2B]} = \frac{K_{a(C)}}{K_{a(P)}}$$

 $\log K = \log K_{a(C)} - \log K_{a(P)}$

- log K = - log K_{a(C)} - (- log K_{a(P)}) = pK_{a(C)} - pK_{a(P)}

 ΔG (300 K) = - RT ln K = 0.6 $^{\cdot}$ 2.303 $^{\cdot}$ (pK_{a(C)} - pK_{a(P)})

DFT calculations

All calculations were performed with the Turbomole programs: a) TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. TPSS functional: a) J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, **91**, 146401 (2003); Dispersion correction (D3): b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104-154123; c) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456-1465; d) def2-TZVP basis set: F. Weigend; R. Ahlrichs. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305; e) COSMO solvation model: A. Klamt, G. Schüürmann, *J. Chem. Soc. Perkin Trans.* **1993**, *2*, 799-805. The thermodynamic correction was made with the aoforce program using a rotor approximation for low lying modes: f) S. Grimme, Chem. Eur. J. **2012**, *18*, 9955-9964.

All structures were optimized in vacuum calculations, the harmonic vibrational frequencies of the normal modes were also obtained without solvent model. COSMO energies were obtained in single point calculations using the gas phase geometries.

Table S1	Energies	and	thermodynamic	corrections	for	CH-boryl	and	other	reference
compounds,	and the res	specti	ve deprotonated	bases (cf. Tal	ole 1	of the ma	nuscri	ipt) obt	ained with
TPSS-D3/def2	2-TZVP (+ CC	DSMO	corrections)						

Entry	Compound	$E_{vac} [E_h]$	$E(\epsilon=9.08)[E_h]$	$E(\epsilon=46.7) [E_h]$	$E(\epsilon=78.3) [E_h]$	G ²⁹⁸ [kcal mol ⁻¹]
1	C₅H ₉ -H	-196.67335309	-196.67412277	-196.67424208	-196.67425435	69.028
1	C₅H ₉	-195.99469796	-196.07547556	-196.08833669	-196.08966920	58.444
2	PhCH ₂ -H	-271.72882883	-271.73255238	-271.73318668	-271.73325287	59.943
2	PhCH ₂	-271.10273802	-271.17740361	-271.18887840	-271.19005802	49.990
3	9-BBN-CH ₂ -H	-378.28827058	-378.28953895	-378.28973686	-378.28975724	130.516
3	9-BBN-CH ₂	-377.68842831	-377.75650027	-377.76720656	-377.76831258	122.545
4	mes ₂ B-CH ₂ -H	-764.44412508	-764.44412508	-764.44511022	-764.44521305	208.441
4	mes ₂ B-CH ₂	-763.85971493	-763.92037675	-763.93028479	-763.93131575	199.776
5	(C ₆ F ₅) ₂ B-CH ₂ -H	-1521.23893679	-1521.24428409	-1521.24517225	-1521.24526463	56.086
5	$(C_6F_5)_2B-CH_2$	-1520.69282381	-1520.74606815	-1520.75432854	-1520.75517956	47.919
6	C ₅ H ₅ -H	-194.21976736	-194.22309545	-194.22365421	-194.22371242	40.377
6	C_5H_5	-193.63736335	-193.71985115	-193.73237738	-193.73366171	31.464
7	(C ₆ F ₅) ₂ B-C(CH ₃) ₂ -H	-1599.90673422	-1599.91212501	-1599.91301684	-1599.91310952	89.515
7	$(C_6F_5)_2B-C(CH_3)_2$	-1599.37031650	-1599.42044798	-1599.42811315	-1599.42890066	81.055
8	(C ₆ F ₅) ₂ B-CH(Ph)-H	-1752.42967892	-1752.43667516	-1752.43784159	-1752.43796299	103.068
8	$(C_6F_5)_2B$ -CH(Ph)	-1751.90200392	-1751.95324366	-1751.96127412	-1751.96210318	94.734
9	$(C_6F_5)_2B$ -CH $(CH=CH_2)$ -H	-1598.67727462	-1598.68329874	-1598.68429039	-1598.68439336	75.881
9	$(C_6F_5)_2B-CH(CH=CH_2)$	-1598.15288260	-1598.20470112	-1598.21273107	-1598.21355829	67.090
10	mes ₂ EtP-H	-1120.69568514	-1120.75053872	-1120.75890974	-1120.75976966	231.387
10	mes ₂ EtP	-1120.28829630	-1120.29498675	-1120.29616400	-1120.29628782	225.413

Table S2Relative free enthalpies of deprotonation and derived pK_a values in DMSO and H_2O with $C_5H_5^-$ of CH-boryl and other reference compounds, based on the values in Table S1 (TPSS-D3/def2-TZVP + COSMO)

Entry	"acid"	ΔG ²⁹⁸ (DMSO) [kcal/mol]	ΔG ²⁹⁸ (H ₂ O) [kcal/mol]	pKa ^[a] (DMSO)	рКа ^[а] (Н ₂ О)
1	C ₅ H ₉ -H	+57.68	+57.62	60.4	60.3
2	PhCH ₂ -H	+32.21	+32.28	41.7	41.7
3	9-BBN-CH ₂ -H	+20.53	+20.61	33.1	33.1
4	mes ₂ B-CH ₂ -H	+15.21	+15.40	29.2	29.3
5	(C ₆ F ₅) ₂ B-CH ₂ -H	+0.45	+0.74	18.3	18.5
6	C ₅ H ₅ -H	0.00	0.00	18.0 ^[b]	18.0 ^[b]
7	(C ₆ F ₅) ₂ B-C(CH ₃) ₂ -H	-3.57	-3.24	15.4	15.6
8	(C ₆ F ₅) ₂ B-CH(Ph)-H	-8.68	-8.35	11.6	11.9
9	(C ₆ F ₅) ₂ B-CH(CH=CH ₂)-H	-12.28	-11.96	9.0	9.2
10	mes ₂ EtP-H	-15.89	-15.11	6.3	7.2

[a] predicted pK_a calculated at 298 K, obtained from ΔG^{298} and the experimental pK_a value of C₅H₅-H in DMSO (18.0): pK_a = 18.0 + $\Delta G^{298}/(\ln(10)\text{RT})$

[b] experimental value in DMSO (see F. G. Bordwell, G. E. Drucker and H. E. Fried, J. Org. Chem. 1981, 46, 632.)

Figure S48 Optimized molecular conformations (TPSS-D3/def2-TZVP) of CH-boryl and other reference compounds, and the respective deprotonated bases (cf. Table 1 of the manuscript). C-C/C-B distances in Å.

Figure S48 (continued)

Figure S48 (continued)

Figure S49 HOMO (Highest Occupied Molecular Orbital) of the anions of entries 2, 5, 3, and 7 of Table S2. (TPSS-D3/def2-TZVP)

Compound	$E_{vac} \left[E_h \right]$	$E(\epsilon=9.08)[E_h]$	$E(\epsilon=46.7)[E_h]$	G ²⁹⁸ [kcal mol ⁻¹]	$\begin{array}{c} \Delta G^{298} \left(CH_2 Cl_2 \right)^{[a]} \\ \ \left[kcal/mol \right] \end{array}$	ΔG ²⁹⁸ (DMSO) ^[a] [kcal/mol]
10 (open)	-2600.98872715	-2600.99860810	-2601.00028483	269.049	+9.60	+9.58
10 (closed)	-2601.00827705	-2601.01809444	-2601.01974475	271.682	0.00	0.00
11	-2600.97243208	-2600.99114245	-2600.99451204	267.781	+13.01	+11.93
12	-2795.25271320	-2795.26098933	-2795.26235875	330.770	0.0	0.0
13	-2795.23986446	-2795.25475355	-2795.25738030	328.758	+1.90	+1.11
6	-2870.31808783	-2870.32865245	-2870.33043858	321.632	0.0	0.0
7	-2870.30580347	-2870.32615738	-2870.32983094	320.362	+0.30	-0.89
$HB(C_6F_5)_2$	-1481.88713962	-1481.89235577	-1481.89322546	40.396	-	-
8	-4352.24726287	-4352.26993735	-4352.27387646	379.793	-12.94	-13.74
14*15 (complex)	-2717.7773967	-2717.7880430	-2717.789868	301.791	0.00	0.00
E- 16	-2717.7607589	-2717.7820440	-2717.785910	302.380	4.35	3.07
<i>Z</i> - 16	-2717.7734048	-2717.7899920	-2717.792990	304.682	1.67	0.93
17	-2717.8099041	-2717.8211920	-2717.823106	308.868	-13.72	-13.78

Table S3Energies and thermodynamic corrections for structures discussed in the manuscript,obtained with TPSS-D3/def2-TZVP (+ COSMO corrections).

 $[a]\Delta G^{298}$ relative to the respective reference structure (0.0) of each of the four blocks

Figure S50 Optimized molecular conformations of compounds discussed in the manuscript, obtained with TPSS-D3/def2-TZVP

Figure S50 (continued)

8

14*15 (complex)

(E)**-16**

Figure S50 (continued)

