Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information

for

Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical footprinting of DNA-protein interactions

Jana Balintová,^a Jan Špaček,^b Radek Pohl,^a Marie Brázdová,^b Luděk Havran,^{b,c} Miroslav Fojta*^{b,c} and Michal Hocek*^{a,d}

^a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic; E-mail: hocek@uochb.cas.cz.

^b Institute of Biophsics, v.v.i. Academy of Sciences of the Czech Republic; Kralovopolska 135, 61265 Brno, Czech Republic; E-mail: fojta@ibp.cz.

^c Central European Institute of Technology, Masaryk University

Kamenice 753/5, CZ-625 00 Brno, Czech Republic

^d Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.

Table of contents:

1. Single incorporation of functionalized dNTPs	2
2. Kinetics study	3
3. Multiple incorporations of functionalized dNTPs	4
4. Study of DNA-protein interaction	6
5. Thermal stability of complex DNA-protein	8
6. Cu ^I concentration dependence of stability of complex DNA-protein	10
7. Electrochemistry	12
8. Copies of NMR spectra	16
9. Copies of Maldi-TOF spectra of DNA	31
10. Copies of Maldi-TOF spectra	33

1 Single incorporation of functionalized dNTPs

Figure S1. PEX single incorporations of a $dN^{A}TP$ into 19-nt DNA using temp^{*C*} or temp^{*A*} template and PWO DNA polymerase.

Figure S2. PEX single incorporations of a $dN^{TP}TP$ and $dN^{TNO2}TP$ into 19-nt DNA using temp^{*C*} or temp^{*A*} template and Pwo DNA polymerase.

2 Kinetics study

Figure S3. Kinetics of PEX using $dC^{A}TP$ in comparison with natural dCTP (+). Time intervals are given in minutes.

Figure S4. Kinetics of PEX using $dA^{A}TP$ in comparison with natural dATP (+). Time intervals are given in minutes.

3 Multiple incorporations of functionalized dNTPs

Figure S5. PEX incorporations of a $dN^{A}TP$ into 31-nt DNA using temp^{*rnd16*} template, KOD XL and PWO DNA polymerase.

Figure S6. PEX incorporations of a $dN^{A}TP$ into 31-nt DNA using temp^{*rnd16*} template, Vent (*exo-*) DNA polymerase.

Figure S7. PEX incorporations of a $dN^{A}TP$ into 50-nt DNA using template temp^{2CON4} and KOD XL DNA polymerase.

4 Study of DNA-protein interaction

Figure S8. Native PAGE analysis of 50-mer DNA^{2CON4}_p53CD_GST complex. Lane 1: natural DNA; 2: 0.4 equiv.; 3: 0.7 equiv.; 4: 1.2 equiv.; 5: 1.8 equiv. of protein p53CD_GST to DNA; Lane 6: DNA^A; 7: 0.4 equiv.; 8: 0.7 equiv.; 9: 1.2 equiv.; 10: 1.8 equiv. of protein p53CD_GST to DNA.

Figure S9. Native PAGE analysis of stability of DNA^{2CON4}_p53CD_GST complex after click reaction. Lane 1: DNA^A; lane 2: protein/DNAcomplex; lane 3: protein/DNAcomplex, 0.5 mM 4-nitrophenylacetylene, 5 μ M CuBr; 25 μ M TBTA ligand, 65 μ M Na ascorbate, 20 °C, 1h.

5 Thermal stability of complex DNA-protein

Figure S10. Native PAGE analysis of thermal stability of DNA^{1a2G}_p53CD_GST complex. Lane 1: DNA^A; lanes 2-5: 1.2 equiv. of protein p53CD_GST to DNA. Conditions: DNA and proteins were mixed together in binding buffer and created protein/DNA complexes were incubated at mentioned temperatures for 1h.

Figure S11. Native PAGE analysis of thermal stability of DNA^{2CON4}_p53CD_GST **complex.** Lane 1: DNA^A; lanes 2-5: 1.2 equiv. of protein p53CD_GST to DNA. **Conditions:** DNA and proteins were mixed together in binding buffer and created protein/DNA complexes were incubated at mentioned temperatures for 1h.

6 Cu^I concentration dependence of stability of complex DNA-protein

Figure S12. Native PAGE analysis of Cu^I concentration dependence of stability of DNA^{1a2G}_p53CD_GST complex. Lane 1: DNA^A; lanes 2-9: 1.2 equiv. of protein p53CD_GST to DNA; lane 2: protein/DNAcomplex; lane 3: protein/DNAcomplex, 20°C; lane 4: protein/DNAcomplex, 5 μ M CuBr, 20°C; lane 5: protein/DNAcomplex, 5 μ M CuBr, 25 μ M TBTA ligand, 20°C; lane 6: protein/DNAcomplex, 10 μ M CuBr, 20°C; lane 7: protein/DNAcomplex, 10 μ M CuBr; 50 μ M TBTA ligand, 20°C; lane 8: protein/DNAcomplex, 20 μ M CuBr, 20°C; lane 9: protein/DNAcomplex, 20 μ M CuBr; 100 μ M TBTA ligand, 20°C. Conditions: DNA and proteins were mixed together in binding buffer and created protein/DNAcomplexes were incubated with various concentration of CuBr in/without presence of the TBTA ligand at 20°C for 1h.

Figure S13. Native PAGE analysis of Cu^I concentration dependence of stability of DNA^{2CON4}_p53CD_GST complex. Lane 1: DNA^A; lanes 2-9: 1.2 equiv. of protein p53CD_GST to DNA; lane 2: protein/DNAcomplex; lane 3: protein/DNAcomplex, 20°C; lane 4: protein/DNAcomplex, 5 μ M CuBr, 20°C; lane 5: protein/DNAcomplex, 5 μ M CuBr, 25 μ M TBTA ligand, 20°C; lane 6: protein/DNAcomplex, 10 μ M CuBr, 20°C; lane 7: protein/DNAcomplex, 10 μ M CuBr; 50 μ M TBTA ligand, 20°C; lane 8: protein/DNAcomplex, 20 μ M CuBr; 20°C; lane 9: protein/DNAcomplex, 20 μ M CuBr; 100 μ M TBTA ligand, 20°C. Conditions: DNA and proteins were mixed together in binding buffer and created protein/DNAcomplexes were incubated with various concentration of CuBr in/without presence of the TBTA ligand at 20°C for 1h.

7 Electrochemistry

Figure S14. CV responses at HMDE of PEX products synthesized with temp^{*rnd16*} template and dNTP mixes containing $dA^{A}TP$ (as specified in legend) complemented with three natural dNTPs and PEX products after click reaction with (nitro)phenyltriazole. CA – peak due to reduction of cytosine and adenine, G – peak due to guanine, N₃^{red} – azide reduction, NO₂^{red} – nitrogroup reduction.

Figure S15. CV responses at HMDE of PEX products synthesized with temp^{*rnd16*} template and dNTP mixes containing $dC^{A}TP$ (as specified in legend) complemented with three natural dNTPs and PEX products after click reaction with (nitro)phenyltriazole.

Figure S16. CV responses at HMDE of PEX products synthesized with temp^{*rnd16*} template and dNTP mixes containing $dA^{TX}TP$ (as specified in legend) complemented with three natural dNTPs.

Figure S17. CV responses at HMDE of PEX products synthesized with temp^{*rnd16*} template and dNTP mixes containing $dC^{TX}TP$ (as specified in legend) complemented with three natural dNTPs.

Figure S18. CV responses at HMDE of PEX products synthesized with temp^{la2G} template and **dA^ATP** complemented with three natural dNTPs (red curve) and PEX products after click reaction with nitrophenylacetylene (green curve), DNA-p53 complex after click reaction followed by denaturation (violet curve), control with BSA (black curve).

Figure S19. CV responses at HMDE of PEX products synthesized with temp^{2CON4} template and **dA^ATP** complemented with three natural dNTPs (red curve) and PEX products after click reaction with nitrophenylacetylene (green curve), DNA-protein complex after click reaction followed by denaturation (violet curve), control with BSA (black curve).

Figure S20. Detail of CV responses at HMDE of PEX products synthesized with $temp^{2CON4}$ template and $dA^{A}TP$ complemented with three natural dNTPs (red curve) and PEX products after click reaction with nitrophenylacetylene (green curve), DNA-protein complex after click reaction followed by denaturation (violet curve), the control with BSA (black curve). For full CV scans see Fig. S19.

8 Selected copies of NMR spectra

¹H NMR and ¹³C spectra of dC^A .

¹H NMR and ¹³C spectra of dA^A .

¹H NMR and ¹³C spectra of dC^{TP} .

¹H NMR and ¹³C spectra of dA^{TP} .

¹H NMR and ¹³C spectra of dC^{TNO2} .

¹H NMR, ¹³C and ³¹P spectra of $dC^{TP}TP$.

¹H NMR, ¹³C and ³¹P spectra of $dC^{TNO2}TP$.

9 Copies of Maldi-TOF spectra of DNA after click reaction

Figure S21. MALDI-TOF MS spectrum of temp^{*rnd16*} with A^{TP} modification (31 nt).

Figure S22. MALDI-TOF MS spectrum of temp^{*rnd16*} with A^{TNO2} modification (31 nt)

Figure S23. MALDI-TOF MS spectrum of temp^{rnd16} with C^{TP} modification (31 nt).

Figure S24. MALDI-TOF MS spectrum of temp^{rnd16} with C^{TNO2} modification (31 nt).

45000-M [Da] ON^{CTNO2} 40000 10674.3 9420.0 35000 30000-25000 9438.5-9458.0 20000-15000-9293.0 9497 10000-9169.6 9709.3 9980.5 5000 10627.9 7000 8500 12000 m/z 6500 7500 8000 10500 6000 9000 9500 10000 11000 11500

Figure S26. MALDI-TOF MS spectrum of temp^{rnd16} with C^{TNO2} modification (31 nt).

S33

Figure S27. MALDI-TOF MS spectrum of temp^{*rnd16*} with A^A modification (31 nt).

Figure S28. MALDI-TOF MS spectrum of temp^{*rnd16*} with C^A modification (31 nt).