Supplementary Information for

Ether Solvent-induced Chirality Inversion of Helical

Poly(quinoxaline-2,3-diyl)s Containing L-Lactic Acid Derived Side

Chains

Yuuya Nagata,[†] Takuma Kuroda,[†] Keisuke Takagi,[†] and

Michinori Suginome*,^{†,‡}

[†]Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,

Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 Japan, and [‡]CREST, Japan Science and

Technology Agency (JST), Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: suginome@sbchem.kyoto-u.ac.jp

Contents

1	NMR Spectra of New Compounds	S41
	¹ H NMR spectrum of M1-NO₂ in $CDCl_3$. S41
	13 C NMR spectrum of M1-NO₂ in CDCl ₃	. S42
	¹ H NMR spectrum of M1-NC in C_6D_6	. S43
	¹³ C NMR spectrum of M1-NC in $\tilde{C}_6 D_6$. S44
	¹ H NMR spectrum of $M2-NO_2$ in $CDCl_3$. S45
	13 C NMR spectrum of M2-NO₂ in CDCl ₃	. S46
	¹ H NMR spectrum of M2-NC in C_6D_6	. S47

^{*}To whom correspondence should be addressed

[†]Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University [‡]JST, CREST

¹³ C NMR spectrum of M2-NC in C_6D_6	. S48
¹ H NMR spectrum of $M3-NO_2$ in $CDCl_3$. S49
13 C NMR spectrum of M3-NO ₂ in CDCl ₃	. S50
¹ H NMR spectrum of M3-NC in C_6D_6	. S51
¹³ C NMR spectrum of M3-NC in $C_6 D_6$. S52
¹ H NMR spectrum of $M4-NO_2$ in $CDCl_3$. S53
13 C NMR spectrum of M4-NO ₂ in CDCl ₃	. S54
¹ H NMR spectrum of M4-NC in C_6D_6	. S55
¹³ C NMR spectrum of M4-NC in $C_6 D_6$. S56
¹ H NMR spectrum of $M5-NO_2$ in $CDCl_3$. S57
13 C NMR spectrum of M5-NO ₂ in CDCl ₃	. S58
¹ H NMR spectrum of M5-NC in C_6D_6	. S59
¹³ C NMR spectrum of M5-NC in $C_6 D_6$. S60
¹ H NMR spectrum of $M6-NO_2$ in $CDCl_3$. S61
13 C NMR spectrum of M6-NO ₂ in CDCl ₃	. S62
¹ H NMR spectrum of M6-NC in C_6D_6	. S63
¹³ C NMR spectrum of M6-NC in $C_6 D_6$. S64
¹ H NMR spectrum of $M7-NO_2$ in $CDCl_3$. S65
13 C NMR spectrum of M7-NO ₂ in CDCl ₃	. S66
¹ H NMR spectrum of M7-NC in C_6D_6	. S67
¹³ C NMR spectrum of M7-NC in $C_6 D_6$. S68
¹ H NMR spectrum of $M8-NO_2$ in $CDCl_3$. S69
¹³ C NMR spectrum of M8-NO₂ in $CDCl_3$. S70
¹ H NMR spectrum of M8-NC in C_6D_6	. S71
¹³ C NMR spectrum of M8-NC in C_6D_6	. S72
¹ H NMR spectrum of $M9-NO_2$ in $CDCl_3$. S73
¹³ C NMR spectrum of $M9-NO_2$ in $CDCl_3$. S74
¹ H NMR spectrum of M9-NC in C_6D_6	. S75
¹³ C NMR spectrum of M9-NC in C_6D_6	. S76
¹ H NMR spectrum of $M10-NO_2$ in $CDCl_3$. S77
¹³ C NMR spectrum of M10-NO₂ in $CDCl_3$. S78
¹ H NMR spectrum of M10-NC in C_6D_6	. S79
¹³ C NMR spectrum of M10-NC in C_6D_6	. S80
¹ H NMR spectrum of $1(40)$ in CDCl ₃	. S81
¹ H NMR spectrum of $2(40)$ in CDCl ₃	. S82
¹ H NMR spectrum of 3(40) in CDCl_3	. S83
¹ H NMR spectrum of $4(40)$ in CDCl ₃	. S84
¹ H NMR spectrum of $5(40)$ in CDCl ₃	. S85
¹ H NMR spectrum of $6(40)$ in CDCl ₃	. S86
¹ H NMR spectrum of $7(40)$ in CDCl ₃	. S87
¹ H NMR spectrum of 8(40) in CDCl_3	. S88
¹ H NMR spectrum of $9(40)$ in CDCl ₃	. S89
¹ H NMR spectrum of $10(40)$ in CDCl ₃	. S 90
¹ H NMR spectrum of $5(20)$ in CDCl ₃	. S 91
¹ H NMR spectrum of $5(60)$ in CDCl ₃	. S92

	¹ H NMR spectrum of $5(80)$ in CDCl ₃		S93
	¹ H NMR spectrum of $5(100)$ in $CDCl_3$		S94
	¹ H NMR spectrum of $5(150)$ in CDCl ₃		S95
	¹ H NMR spectrum of $5(200)$ in CDCl ₃		S96
	¹ H NMR spectrum of $5(300)$ in CDCl ₃		S97
	¹ H NMR spectrum of 5 (1000-50) in $CDCl_3$		S98
2	UV-vis and CD Spectra of New Compounds		S 99
_	UV-vis absorption spectrum of (S)-BO in CHCl.		S99
	CD spectrum of (S) -BQ in CHCl ₂	•	S99
	UV-vis absorption spectrum of (S) - BO in CH ₂ Cl ₂	•	S100
	CD spectrum of (S)- BO in CH ₂ Cl ₂	•	S100
	UV-vis absorption spectrum of (S)- BO in 1.1.2-TCE	·	S100
	CD spectrum of (S)- BO in 1,1,2-TCF	·	S101
	UV-vis absorption spectrum of (S)-BO in Toluene	·	S102
	CD spectrum of (S) - BO in Toluene	•	S102
	$UV_{vis} absorption spectrum of (S)-BO in THE$	•	S102
	CD spectrum of (S)- B Q in THF	·	S103
	$UV_{vis} absorption spectrum of (S)-BO in 1.4-Diovane$	·	S103
	CD spectrum of (S) - BO in 1.4-Dioxane	•	S104 S104
	$UV_{vis} absorption spectrum of (S)-BO in 1.2-DME$	·	\$105
	CD spectrum of (S) - BO in 1.2-DME	•	\$105
	$UV_{vis} absorption spectrum of (S)-BO in Et O$	·	\$105
	CD spectrum of (S)- BQ in Et ₂ O	·	\$106
	UV vis absorption spectrum of (S)-BO in MTBE	•	\$100
	CD spectrum of (S)- BQ in MTBE	·	S107
	UV vis absorption spectrum of 1(40) in CHC	·	S107
	CD spectrum of $1(40)$ in CHCl	·	S108
	UV vis absorption spectrum of 1(40) in CH Cl	•	S100
	CD spectrum of $1(40)$ in CH Cl	·	S109 S109
	UV vis absorption spectrum of 1(40) in 1 1 2 TCE	·	S109 S110
	CD spectrum of $1(40)$ in 1,1,2 TCE	·	S110 S110
	UV vis absorption spectrum of 1(40) in Toluene	•	S110 S111
	CD spectrum of $1(40)$ in Toluene	·	S 111 S 111
	UV vis observation spectrum of $1(40)$ in THE	·	S111 S112
	O_V -vis absorption spectrum of $1(40)$ in THF	•	S112 S112
	UV wis observation spectrum of 1(40) in 1.4 Disconst	•	S112 S112
	O_{V-VIS} absorption spectrum of $1(40)$ in 1,4-Dioxane	•	S113 S112
	UV wis observation spectrum of 1(40) in 1.2 DME	•	S115 S114
	O_{V-VIS} absorption spectrum of $I(40)$ in 1,2-DME	•	S114 S114
	UV vis observation spectrum of $1(40)$ in Et O	•	S114 S115
	O_{V-VIS} absorption spectrum of $1(40)$ in $\mathbf{E}t_2 O_1 \dots \dots$	•	S113 C112
	UD spectfulli 01 $I(40)$ III $El_2 \cup \dots $	•	S113 C114
	\cup v-vis absorption spectrum of $1(40)$ in MTBE	•	5110
	UV spectrum of $1(40)$ in MTBE	•	5110
	\cup v-vis absorption spectrum of $1(40)$ in 2- MeTHF	•	211/

CD spectrum of 1(40) in 2-MeTHF	S117
UV-vis absorption spectrum of 1(40) in CPME	S118
CD spectrum of 1 (40) in CPME	S118
UV-vis absorption spectrum of $2(40)$ in CHCl ₃	S119
CD spectrum of $2(40)$ in CHCl ₃	S119
UV-vis absorption spectrum of $2(40)$ in CH_2Cl_2	S120
CD spectrum of $2(40)$ in CH_2Cl_2	S120
UV-vis absorption spectrum of 2(40) in 1,1,2-TCE	S121
CD spectrum of 2(40) in 1,1,2-TCE	S121
UV-vis absorption spectrum of 2(40) in Toluene	S122
CD spectrum of 2(40) in Toluene	S122
UV-vis absorption spectrum of 2(40) in THF	S123
CD spectrum of 2(40) in THF	S123
UV-vis absorption spectrum of 2(40) in 1,4-Dioxane	S124
CD spectrum of 2(40) in 1,4-Dioxane	S124
UV-vis absorption spectrum of 2(40) in 1,2-DME	S125
CD spectrum of 2(40) in 1,2-DME	S125
UV-vis absorption spectrum of $2(40)$ in Et_2O	S126
CD spectrum of $2(40)$ in Et ₂ O	S126
UV-vis absorption spectrum of 2(40) in MTBE	S127
CD spectrum of 2(40) in MTBE	S127
UV-vis absorption spectrum of 2(40) in 2- MeTHF	S128
CD spectrum of 2(40) in 2-MeTHF	S128
UV-vis absorption spectrum of 2(40) in CPME	S129
CD spectrum of $2(40)$ in CPME	S129
UV-vis absorption spectrum of $3(40)$ in $CHCl_3$	S130
CD spectrum of $3(40)$ in CHCl ₃	S130
UV-vis absorption spectrum of $3(40)$ in 1,1,2-TCE	S131
CD spectrum of 3(40) in 1,1,2-TCE	S131
UV-vis absorption spectrum of $3(40)$ in THF	S132
CD spectrum of $3(40)$ in THF	S132
UV-vis absorption spectrum of $3(40)$ in 1,4-Dioxane	S133
CD spectrum of $3(40)$ in 1,4-Dioxane	S133
UV-vis absorption spectrum of $3(40)$ in 2- MeTHF	S134
CD spectrum of $3(40)$ in 2-MeTHF	S134
UV-vis absorption spectrum of $3(40)$ in 1,2-DME	S135
CD spectrum of $3(40)$ in 1,2-DME	S135
UV-vis absorption spectrum of $3(40)$ in CPME	S136
CD spectrum of $3(40)$ in CPME	S136
UV-vis absorption spectrum of $3(40)$ in Et_2O	S137
CD spectrum of $3(40)$ in Et ₂ O	S137
UV-vis absorption spectrum of $3(40)$ in MTBE	S138
CD spectrum of $3(40)$ in M1BE	S138
U v-vis absorption spectrum of $4(40)$ in CHCl ₃	S139
CD spectrum of $4(40)$ in CHCl ₃	\$139

UV-vis absorption spectrum of 4(40) in 1,1,2-TCE	S140
CD spectrum of 4(40) in 1,1,2-TCE	S140
UV-vis absorption spectrum of 4(40) in THF	S141
CD spectrum of 4 (40) in THF	S141
UV-vis absorption spectrum of 4(40) in 1,4-Dioxane	S142
CD spectrum of 4(40) in 1,4-Dioxane	S142
UV-vis absorption spectrum of 4(40) in 2- MeTHF.	S143
CD spectrum of 4(40) in 2- MeTHF	S143
UV-vis absorption spectrum of 4(40) in 1,2-DME	S144
CD spectrum of 4 (40) in 1,2-DME	S144
UV-vis absorption spectrum of 4(40) in CPME	S145
CD spectrum of 4(40) in CPME	S145
UV-vis absorption spectrum of $4(40)$ in Et ₂ O	S146
CD spectrum of $4(40)$ in Et ₂ O	S146
UV-vis absorption spectrum of 4(40) in MTBE	S147
CD spectrum of 4(40) in MTBE	S147
UV-vis absorption spectrum of $5(40)$ in CHCl ₃	S148
CD spectrum of $5(40)$ in CHCl ₃	S148
UV-vis absorption spectrum of $5(40)$ in 1,1,2-TCE	S149
CD spectrum of 5(40) in 1.1.2-TCE	S149
UV-vis absorption spectrum of 5(40) in THF	S150
CD spectrum of $5(40)$ in THF.	S150
UV-vis absorption spectrum of 5(40) in 1,4-Dioxane	S151
CD spectrum of $5(40)$ in 1,4-Dioxane	S151
UV-vis absorption spectrum of 5(40) in 2- MeTHF.	S152
CD spectrum of 5(40) in 2- MeTHF	S152
UV-vis absorption spectrum of 5(40) in 1,2-DME	S153
CD spectrum of 5 (4 0) in 1,2-DME	S153
UV-vis absorption spectrum of 5(40) in CPME	S154
CD spectrum of 5(40) in CPME	S154
UV-vis absorption spectrum of $5(40)$ in Et ₂ O	S155
CD spectrum of $5(40)$ in Et ₂ O	S155
UV-vis absorption spectrum of 5(40) in MTBE	S156
CD spectrum of 5 (40) in MTBE	S156
UV-vis absorption spectrum of $6(40)$ in CHCl ₃	S157
CD spectrum of $6(40)$ in CHCl ₃	S157
UV-vis absorption spectrum of $6(40)$ in 1,1,2-TCE	S158
CD spectrum of 6(40) in 1,1,2-TCE	S158
UV-vis absorption spectrum of 6(40) in THF	S159
CD spectrum of 6(40) in THF	S159
UV-vis absorption spectrum of 6(40) in 1,4-Dioxane	S160
CD spectrum of 6(40) in 1,4-Dioxane	S160
UV-vis absorption spectrum of 6(40) in 2- MeTHF	S161
CD spectrum of 6(40) in 2-MeTHF	S161
UV-vis absorption spectrum of 6(40) in 1,2-DME	S162

CD spectrum of 6(40) in 1,2-DME	S162
UV-vis absorption spectrum of 6(40) in CPME	S163
CD spectrum of 6(40) in CPME	S163
UV-vis absorption spectrum of $6(40)$ in Et_2O	S164
CD spectrum of $6(40)$ in Et ₂ O	S164
UV-vis absorption spectrum of 6(40) in MTBE	S165
CD spectrum of 6(40) in MTBE	S165
UV-vis absorption spectrum of $7(40)$ in CHCl ₃	S166
CD spectrum of $7(40)$ in CHCl ₃	S166
UV-vis absorption spectrum of 7(40) in 1,1,2-TCE	S167
CD spectrum of 7 (40) in 1,1,2-TCE	S167
UV-vis absorption spectrum of 7(40) in THF	S168
CD spectrum of 7 (40) in THF	S168
UV-vis absorption spectrum of 7(40) in 1,4-Dioxane	S169
CD spectrum of 7 (40) in 1,4-Dioxane	S169
UV-vis absorption spectrum of 7(40) in 2- MeTHF	S170
CD spectrum of 7(40) in 2-MeTHF	S170
UV-vis absorption spectrum of 7(40) in 1,2-DME	S171
CD spectrum of 7 (40) in 1,2-DME	S171
UV-vis absorption spectrum of 7(40) in CPME	S172
CD spectrum of 7 (40) in CPME	S172
UV-vis absorption spectrum of $7(40)$ in Et_2O	S173
CD spectrum of $7(40)$ in Et ₂ O	S173
UV-vis absorption spectrum of 7(40) in MTBE	S174
CD spectrum of 7(40) in MTBE	S174
UV-vis absorption spectrum of $8(40)$ in $CHCl_3$	S175
CD spectrum of $8(40)$ in CHCl ₃	S175
UV-vis absorption spectrum of 8(40) in 1,1,2-TCE	S176
CD spectrum of 8(40) in 1,1,2-TCE	S176
UV-vis absorption spectrum of 8(40) in THF	S177
CD spectrum of 8(40) in THF	S177
UV-vis absorption spectrum of 8(40) in 1,4-Dioxane	S178
CD spectrum of 8(40) in 1,4-Dioxane	S178
UV-vis absorption spectrum of 8(40) in 2- MeTHF	S179
CD spectrum of 8(40) in 2-MeTHF	S179
UV-vis absorption spectrum of 8(40) in 1,2-DME	S180
CD spectrum of 8(40) in 1,2-DME	S180
UV-vis absorption spectrum of 8(40) in CPME	S181
CD spectrum of 8(40) in CPME	S181
UV-vis absorption spectrum of $8(40)$ in Et_2O	S182
CD spectrum of 8(40) in Et_2O	S182
UV-vis absorption spectrum of 8(40) in MTBE	S183
CD spectrum of 8(40) in MTBE	S183
UV-vis absorption spectrum of $9(40)$ in $CHCl_3 \dots \dots$	S184
CD spectrum of $9(40)$ in CHCl ₃	S184

UV-vis absorption spectrum of 9(40) in 1,1,2-TCE	S185
CD spectrum of 9(40) in 1,1,2-TCE	S185
UV-vis absorption spectrum of 9(40) in THF	S186
CD spectrum of 9(40) in THF	S186
UV-vis absorption spectrum of 9(40) in 1,4-Dioxane	S187
CD spectrum of 9(40) in 1,4-Dioxane	S187
UV-vis absorption spectrum of 9(40) in 2- MeTHF.	S188
CD spectrum of 9(40) in 2- MeTHF	S188
UV-vis absorption spectrum of 9(40) in 1,2-DME	S189
CD spectrum of 9(40) in 1,2-DME	S189
UV-vis absorption spectrum of 9(40) in CPME	S190
CD spectrum of $9(40)$ in CPME \ldots	S190
UV-vis absorption spectrum of $9(40)$ in Et ₂ O	S191
CD spectrum of $9(40)$ in Et ₂ O	S191
UV-vis absorption spectrum of 9(40) in MTBE	S192
CD spectrum of $9(40)$ in MTBE \ldots	S192
UV-vis absorption spectrum of $10(40)$ in CHCl ₂	S193
CD spectrum of $10(40)$ in CHCl ₂	S193
UV-vis absorption spectrum of $10(40)$ in 1.1.2-TCE	S194
CD spectrum of $10(40)$ in 1.1.2-TCE	S194
UV-vis absorption spectrum of 10(40) in THF	S195
CD spectrum of $10(40)$ in THF	S195
UV-vis absorption spectrum of 10(40) in 1.4-Dioxane	S196
CD spectrum of $10(40)$ in 1.4-Dioxane	S196
UV-vis absorption spectrum of 10(40) in 2- MeTHF	S197
CD spectrum of $10(40)$ in 2-MeTHF	S197
UV-vis absorption spectrum of 10(40) in 1.2-DME	S198
CD spectrum of $10(40)$ in 1.2-DME \dots	S198
UV-vis absorption spectrum of 10(40) in CPME	S199
CD spectrum of $10(40)$ in CPME	S199
UV-vis absorption spectrum of $10(40)$ in Et ₂ O	S200
CD spectrum of $10(40)$ in Et ₂ O	S200
UV-vis absorption spectrum of $10(40)$ in MTBE	S201
CD spectrum of $10(40)$ in MTBE	S201
UV-vis absorption spectrum of 5(20) in MTBE	S202
CD spectrum of $5(20)$ in MTBE	S202
UV-vis absorption spectrum of 5(60) in MTBE	S203
CD spectrum of $5(60)$ in MTBE	S203
UV-vis absorption spectrum of 5(80) in MTBE	S204
CD spectrum of $5(80)$ in MTBE 1	S204
UV-vis absorption spectrum of 5(100) in MTBE	S205
CD spectrum of 5 (100) in MTBE	S205
UV-vis absorption spectrum of 5(150) in MTBE	S206
CD spectrum of 5 (150) in MTBE	S206
UV-vis absorption spectrum of 5(200) in MTBE	S207
UV-vis absorption spectrum of 5(200) in MTBE	S207

CD spectrum of 5(200) in MTBE
UV-vis absorption spectrum of 5(300) in MTBE
CD spectrum of 5(300) in MTBE
UV-vis absorption spectrum of 5(20) in 1,2-DME
CD spectrum of 5(20) in 1,2-DME
UV-vis absorption spectrum of 5(60) in 1,2-DME
CD spectrum of 5 (60) in 1,2-DME
UV-vis absorption spectrum of 5(80) in 1,2-DME
CD spectrum of 5(80) in 1,2-DME
UV-vis absorption spectrum of 5(100) in 1,2-DME
CD spectrum of 5(100) in 1,2-DME
UV-vis absorption spectrum of 5(150) in 1,2-DME
CD spectrum of 5(150) in 1,2-DME
UV-vis absorption spectrum of 5(200) in 1,2-DME
CD spectrum of 5(200) in 1,2-DME
UV-vis absorption spectrum of 5(300) in 1,2-DME
CD spectrum of 5(300) in 1,2-DME
UV-vis absorption spectrum of 1(40) in EtOAc
CD spectrum of 1(40) in EtOAc
UV-vis absorption spectrum of 2(40) in EtOAc
CD spectrum of 2(40) in EtOAc
UV-vis absorption spectrum of 3(40) in EtOAc
CD spectrum of 3(40) in EtOAc
UV-vis absorption spectrum of 4(40) in EtOAc
CD spectrum of 4(40) in EtOAc
UV-vis absorption spectrum of 5(40) in EtOAc
CD spectrum of 5(40) in EtOAc
UV-vis absorption spectrum of 6(40) in EtOAc
CD spectrum of 6(40) in EtOAc
UV-vis absorption spectrum of 7(40) in EtOAc
CD spectrum of 7(40) in EtOAc
UV-vis absorption spectrum of 8(40) in EtOAc
CD spectrum of 8(40) in EtOAc
UV-vis absorption spectrum of 9(40) in EtOAc
CD spectrum of 9(40) in EtOAc
UV-vis absorption spectrum of 10(40) in EtOAc
CD spectrum of 10(40) in EtOAc

1 NMR Spectra of New Compounds

Figure S3. ¹H NMR spectrum of $M1-NO_2$ in $CDCl_3$.

Figure S4. ¹³C NMR spectrum of $M1-NO_2$ in $CDCl_3$.

Figure S5. ¹H NMR spectrum of **M1-NC** in C_6D_6 .

Figure S6. ¹³C NMR spectrum of **M1-NC** in C_6D_6 .

Figure S7. ¹H NMR spectrum of $M2-NO_2$ in $CDCl_3$.

Figure S8. ¹³C NMR spectrum of $M2-NO_2$ in $CDCl_3$.

Figure S9. ¹H NMR spectrum of **M2-NC** in C_6D_6 .

Figure S10. ¹³C NMR spectrum of M2-NC in C_6D_6 .

Figure S11. ¹H NMR spectrum of **M3-NO₂** in CDCl₃.

Figure S12. ¹³C NMR spectrum of $M3-NO_2$ in CDCl₃.

Figure S13. ¹H NMR spectrum of **M3-NC** in C_6D_6 .

Figure S14. ¹³C NMR spectrum of **M3-NC** in C_6D_6 .

Figure S15. ¹H NMR spectrum of **M4-NO₂** in CDCl₃.

Figure S16. ¹³C NMR spectrum of $M4-NO_2$ in $CDCl_3$.

Figure S17. ¹H NMR spectrum of **M4-NC** in C_6D_6 .

Figure S18. ¹³C NMR spectrum of M4-NC in C_6D_6 .

Figure S19. ¹H NMR spectrum of **M5-NO₂** in CDCl₃.

Figure S20. ¹³C NMR spectrum of $M5-NO_2$ in $CDCl_3$.

Figure S21. ¹H NMR spectrum of **M5-NC** in C_6D_6 .

Figure S22. ¹³C NMR spectrum of **M5-NC** in C_6D_6 .

Figure S23. ¹H NMR spectrum of **M6-NO₂** in CDCl₃.

Figure S24. ¹³C NMR spectrum of $M6-NO_2$ in $CDCl_3$.

Figure S25. ¹H NMR spectrum of **M6-NC** in C_6D_6 .

Figure S26. ¹³C NMR spectrum of M6-NC in C_6D_6 .

Figure S27. ¹H NMR spectrum of **M7-NO₂** in CDCl₃.

Figure S28. ¹³C NMR spectrum of $M7-NO_2$ in CDCl₃.

Figure S29. ¹H NMR spectrum of **M7-NC** in C_6D_6 .

Figure S30. ¹³C NMR spectrum of **M7-NC** in C_6D_6 .

Figure S31. ¹H NMR spectrum of **M8-NO₂** in CDCl₃.

Figure S32. ¹³C NMR spectrum of **M8-NO₂** in $CDCl_3$.

Figure S33. ¹H NMR spectrum of **M8-NC** in C_6D_6 .

Figure S34. ¹³C NMR spectrum of **M8-NC** in C_6D_6 .

Figure S35. ¹H NMR spectrum of **M9-NO₂** in CDCl₃.

Figure S36. ¹³C NMR spectrum of **M9-NO₂** in CDCl₃.

Figure S37. ¹H NMR spectrum of **M9-NC** in C_6D_6 .

Figure S38. ¹³C NMR spectrum of **M9-NC** in C_6D_6 .

Figure S39. ¹H NMR spectrum of $M10-NO_2$ in $CDCl_3$.

Figure S40. ¹³C NMR spectrum of **M10-NO₂** in CDCl₃.

Figure S41. ¹H NMR spectrum of **M10-NC** in C_6D_6 .

Figure S42. ¹³C NMR spectrum of **M10-NC** in C_6D_6 .

Figure S43. ¹H NMR spectrum of **1(40)** in CDCl₃.

Figure S44. ¹H NMR spectrum of **2(40)** in CDCl₃.

Figure S45. ¹H NMR spectrum of **3(40)** in CDCl₃.

Figure S46. ¹H NMR spectrum of **4(40)** in CDCl₃.

Figure S47. ¹H NMR spectrum of **5(40)** in CDCl₃.

Figure S48. ¹H NMR spectrum of **6(40)** in CDCl₃.

Figure S49. ¹H NMR spectrum of **7(40)** in CDCl₃.

Figure S50. ¹H NMR spectrum of **8(40)** in CDCl₃.

Figure S51. ¹H NMR spectrum of **9(40)** in CDCl₃.

Figure S52. ¹H NMR spectrum of **10(40)** in CDCl₃.

Figure S53. ¹H NMR spectrum of **5(20)** in CDCl₃.

Figure S54. ¹H NMR spectrum of **5(60)** in CDCl₃.

Figure S55. ¹H NMR spectrum of **5(80)** in CDCl₃.

Figure S56. ¹H NMR spectrum of **5(100)** in CDCl₃.

Figure S57. ¹H NMR spectrum of **5(150)** in CDCl₃.

Figure S58. ¹H NMR spectrum of **5(200)** in CDCl₃.

Figure S59. ¹H NMR spectrum of **5(300)** in CDCl₃.

Figure S60. ¹H NMR spectrum of 5(1000-50) in CDCl₃.

2 UV-vis and CD Spectra of New Compounds

Figure S61. UV-vis absorption spectrum of (S)-**BQ** in CHCl₃ (2.54×10^{-2} g/L, path length = 10 mm).

Figure S62. CD spectrum of (S)-**BQ** in CHCl₃ (2.54×10^{-2} g/L, path length = 10 mm).

Figure S63. UV-vis absorption spectrum of (S)-**BQ** in CH_2Cl_2 (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S64. CD spectrum of (S)-**BQ** in CH₂Cl₂ (3.01×10^{-2} g/L, path length = 10 mm).

Figure S65. UV-vis absorption spectrum of (S)-**BQ** in 1,1,2-TCE (1.86×10^{-2} g/L, path length = 10 mm).

Figure S66. CD spectrum of (*S*)-**BQ** in 1,1,2-TCE (1.86×10^{-2} g/L, path length = 10 mm).

Figure S67. UV-vis absorption spectrum of (*S*)-**BQ** in Toluene (3.01×10^{-2} g/L, path length = 10 mm).

Figure S68. CD spectrum of (S)-**BQ** in Toluene (3.01×10^{-2} g/L, path length = 10 mm).

Figure S69. UV-vis absorption spectrum of (S)-**BQ** in THF (3.01×10^{-2} g/L, path length = 10 mm).

Figure S70. CD spectrum of (S)-**BQ** in THF (3.01×10^{-2} g/L, path length = 10 mm).

Figure S71. UV-vis absorption spectrum of (S)-**BQ** in 1,4-Dioxane (3.01×10^{-2} g/L, path length = 10 mm).

Figure S72. CD spectrum of (*S*)-**BQ** in 1,4-Dioxane (3.01×10^{-2} g/L, path length = 10 mm).

Figure S73. UV-vis absorption spectrum of (S)-**BQ** in 1,2-DME (3.01×10^{-2} g/L, path length = 10 mm).

Figure S74. CD spectrum of (S)-BQ in 1,2-DME (3.01×10^{-2} g/L, path length = 10 mm).

Figure S75. UV-vis absorption spectrum of (S)-**BQ** in Et₂O (3.01×10^{-2} g/L, path length = 10 mm).

Figure S76. CD spectrum of (S)-**BQ** in Et₂O (3.01×10^{-2} g/L, path length = 10 mm).

Figure S77. UV-vis absorption spectrum of (*S*)-**BQ** in MTBE (3.01×10^{-2} g/L, path length = 10 mm).

Figure S78. CD spectrum of (S)-**BQ** in MTBE (3.01×10^{-2} g/L, path length = 10 mm).

Figure S79. UV-vis absorption spectrum of 1(40) in CHCl₃ (2.37 × 10⁻² g/L, path length = 10 mm).

Figure S80. CD spectrum of 1(40) in CHCl₃ (2.37 × 10⁻² g/L, path length = 10 mm).

Figure S81. UV-vis absorption spectrum of 1(40) in CH₂Cl₂ (2.75 × 10⁻² g/L, path length = 10 mm).

Figure S82. CD spectrum of 1(40) in CH₂Cl₂ (2.75 × 10⁻² g/L, path length = 10 mm).

Figure S83. UV-vis absorption spectrum of 1(40) in 1,1,2-TCE (3.2×10^{-2} g/L, path length = 10 mm).

Figure S84. CD spectrum of **1(40)** in 1,1,2-TCE (3.2×10^{-2} g/L, path length = 10 mm).

Figure S85. UV-vis absorption spectrum of 1(40) in Toluene (3.2×10^{-2} g/L, path length = 10 mm).

Figure S86. CD spectrum of 1(40) in Toluene $(3.2 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S87. UV-vis absorption spectrum of 1(40) in THF (2.37 × 10⁻² g/L, path length = 10 mm).

Figure S88. CD spectrum of 1(40) in THF (2.37 × 10⁻² g/L, path length = 10 mm).

Figure S89. UV-vis absorption spectrum of 1(40) in 1,4-Dioxane (3.2×10^{-2} g/L, path length = 10 mm).

Figure S90. CD spectrum of 1(40) in 1,4-Dioxane (3.2 × 10⁻² g/L, path length = 10 mm).

Figure S91. UV-vis absorption spectrum of 1(40) in 1,2-DME (3.2×10^{-2} g/L, path length = 10 mm).

Figure S92. CD spectrum of **1(40)** in 1,2-DME (3.2×10^{-2} g/L, path length = 10 mm).

Figure S93. UV-vis absorption spectrum of 1(40) in Et₂O (2.37 × 10⁻² g/L, path length = 10 mm).

Figure S94. CD spectrum of 1(40) in Et₂O (2.37 × 10⁻² g/L, path length = 10 mm).

Figure S95. UV-vis absorption spectrum of 1(40) in MTBE (3.2×10^{-2} g/L, path length = 10 mm).

Figure S96. CD spectrum of 1(40) in MTBE $(3.2 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S97. UV-vis absorption spectrum of 1(40) in 2- MeTHF (3.2×10^{-2} g/L, path length = 10 mm).

Figure S98. CD spectrum of 1(40) in 2- MeTHF (3.2 × 10⁻² g/L, path length = 10 mm).

Figure S99. UV-vis absorption spectrum of 1(40) in CPME (3.2×10^{-2} g/L, path length = 10 mm).

Figure S100. CD spectrum of 1(40) in CPME (3.2×10^{-2} g/L, path length = 10 mm).

Figure S101. UV-vis absorption spectrum of 2(40) in CHCl₃ (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S102. CD spectrum of 2(40) in CHCl₃ (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S103. UV-vis absorption spectrum of **2(40)** in CH_2Cl_2 (2.98 × 10⁻² g/L, path length = 10 mm).

Figure S104. CD spectrum of **2(40)** in CH₂Cl₂ (2.98 × 10⁻² g/L, path length = 10 mm).

Figure S105. UV-vis absorption spectrum of 2(40) in 1,1,2-TCE (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S106. CD spectrum of **2(40)** in 1,1,2-TCE (2.85×10^{-2} g/L, path length = 10 mm).

Figure S107. UV-vis absorption spectrum of **2(40)** in Toluene (2.85×10^{-2} g/L, path length = 10 mm).

Figure S108. CD spectrum of 2(40) in Toluene (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S109. UV-vis absorption spectrum of 2(40) in THF (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S110. CD spectrum of 2(40) in THF (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S111. UV-vis absorption spectrum of 2(40) in 1,4-Dioxane (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S112. CD spectrum of 2(40) in 1,4-Dioxane (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S113. UV-vis absorption spectrum of 2(40) in 1,2-DME (2.98 × 10⁻² g/L, path length = 10 mm).

Figure S114. CD spectrum of **2(40)** in 1,2-DME (2.98×10^{-2} g/L, path length = 10 mm).

Figure S115. UV-vis absorption spectrum of **2(40)** in Et₂O (2.85×10^{-2} g/L, path length = 10 mm).

Figure S116. CD spectrum of 2(40) in Et₂O (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S117. UV-vis absorption spectrum of **2(40)** in MTBE (2.98×10^{-2} g/L, path length = 10 mm).

Figure S118. CD spectrum of 2(40) in MTBE (2.98×10^{-2} g/L, path length = 10 mm).

Figure S119. UV-vis absorption spectrum of 2(40) in 2- MeTHF (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S120. CD spectrum of 2(40) in 2-MeTHF (2.85 × 10⁻² g/L, path length = 10 mm).

Figure S121. UV-vis absorption spectrum of **2(40)** in CPME (2.85×10^{-2} g/L, path length = 10 mm).

Figure S122. CD spectrum of **2(40)** in CPME (2.85×10^{-2} g/L, path length = 10 mm).

Figure S123. UV-vis absorption spectrum of **3(40)** in CHCl₃ (4.62×10^{-2} g/L, path length = 10 mm).

Figure S124. CD spectrum of **3(40)** in CHCl₃ (4.62×10^{-2} g/L, path length = 10 mm).

Figure S125. UV-vis absorption spectrum of **3(40)** in 1,1,2-TCE (3.05×10^{-2} g/L, path length = 10 mm).

Figure S126. CD spectrum of **3(40)** in 1,1,2-TCE (3.05×10^{-2} g/L, path length = 10 mm).

Figure S127. UV-vis absorption spectrum of **3(40)** in THF (4.62×10^{-2} g/L, path length = 10 mm).

Figure S128. CD spectrum of **3(40)** in THF (4.62×10^{-2} g/L, path length = 10 mm).

Figure S129. UV-vis absorption spectrum of **3(40)** in 1,4-Dioxane $(3.05 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm}).$

Figure S130. CD spectrum of 3(40) in 1,4-Dioxane $(3.05 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S131. UV-vis absorption spectrum of **3(40)** in 2- MeTHF (3.05×10^{-2} g/L, path length = 10 mm).

Figure S132. CD spectrum of 3(40) in 2-MeTHF (3.05 × 10⁻² g/L, path length = 10 mm).

Figure S133. UV-vis absorption spectrum of **3(40)** in 1,2-DME (3.05×10^{-2} g/L, path length = 10 mm).

Figure S134. CD spectrum of **3(40)** in 1,2-DME (3.05×10^{-2} g/L, path length = 10 mm).

Figure S135. UV-vis absorption spectrum of **3(40)** in CPME (3.05×10^{-2} g/L, path length = 10 mm).

Figure S136. CD spectrum of **3(40)** in CPME (3.05×10^{-2} g/L, path length = 10 mm).

Figure S137. UV-vis absorption spectrum of **3(40)** in Et₂O (4.62×10^{-2} g/L, path length = 10 mm).

Figure S138. CD spectrum of 3(40) in Et₂O (4.62×10^{-2} g/L, path length = 10 mm).

Figure S139. UV-vis absorption spectrum of **3(40)** in MTBE (3.05×10^{-2} g/L, path length = 10 mm).

Figure S140. CD spectrum of **3(40)** in MTBE $(3.05 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S141. UV-vis absorption spectrum of 4(40) in CHCl₃ (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S142. CD spectrum of 4(40) in CHCl₃ (3.01×10^{-2} g/L, path length = 10 mm).

Figure S143. UV-vis absorption spectrum of **4(40)** in 1,1,2-TCE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S144. CD spectrum of **4(40)** in 1,1,2-TCE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S145. UV-vis absorption spectrum of **4(40)** in THF (3.01×10^{-2} g/L, path length = 10 mm).

Figure S146. CD spectrum of 4(40) in THF (3.01×10^{-2} g/L, path length = 10 mm).

Figure S147. UV-vis absorption spectrum of 4(40) in 1,4-Dioxane (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S148. CD spectrum of 4(40) in 1,4-Dioxane (3.01×10^{-2} g/L, path length = 10 mm).

Figure S149. UV-vis absorption spectrum of 4(40) in 2- MeTHF (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S150. CD spectrum of 4(40) in 2- MeTHF (3.01×10^{-2} g/L, path length = 10 mm).

Figure S151. UV-vis absorption spectrum of 4(40) in 1,2-DME (2.99 × 10⁻² g/L, path length = 10 mm).

Figure S152. CD spectrum of **4(40)** in 1,2-DME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S153. UV-vis absorption spectrum of 4(40) in CPME (3.01×10^{-2} g/L, path length = 10 mm).

Figure S154. CD spectrum of 4(40) in CPME (3.01×10^{-2} g/L, path length = 10 mm).

Figure S155. UV-vis absorption spectrum of 4(40) in Et₂O (3.01×10^{-2} g/L, path length = 10 mm).

Figure S156. CD spectrum of 4(40) in Et_2O (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S157. UV-vis absorption spectrum of **4(40)** in MTBE (3.01×10^{-2} g/L, path length = 10 mm).

Figure S158. CD spectrum of 4(40) in MTBE $(3.01 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S159. UV-vis absorption spectrum of **5(40)** in CHCl₃ (3×10^{-2} g/L, path length = 10 mm).

Figure S160. CD spectrum of **5(40)** in CHCl₃ (3×10^{-2} g/L, path length = 10 mm).

Figure S161. UV-vis absorption spectrum of 5(40) in 1,1,2-TCE (2.46×10^{-2} g/L, path length = 10 mm).

Figure S162. CD spectrum of **5(40)** in 1,1,2-TCE (2.46×10^{-2} g/L, path length = 10 mm).

Figure S163. UV-vis absorption spectrum of **5**(40) in THF (3×10^{-2} g/L, path length = 10 mm).

Figure S164. CD spectrum of 5(40) in THF (3×10^{-2} g/L, path length = 10 mm).

Figure S165. UV-vis absorption spectrum of **5(40)** in 1,4-Dioxane (3×10^{-2} g/L, path length = 10 mm).

Figure S166. CD spectrum of 5(40) in 1,4-Dioxane (3 × 10⁻² g/L, path length = 10 mm).

Figure S167. UV-vis absorption spectrum of **5(40)** in 2- MeTHF (3×10^{-2} g/L, path length = 10 mm).

Figure S168. CD spectrum of 5(40) in 2-MeTHF (3 × 10⁻² g/L, path length = 10 mm).

Figure S169. UV-vis absorption spectrum of 5(40) in 1,2-DME (3.49×10^{-2} g/L, path length = 10 mm).

Figure S170. CD spectrum of **5(40)** in 1,2-DME (3.49×10^{-2} g/L, path length = 10 mm).

Figure S171. UV-vis absorption spectrum of **5(40)** in CPME (3×10^{-2} g/L, path length = 10 mm).

Figure S172. CD spectrum of **5(40)** in CPME (3×10^{-2} g/L, path length = 10 mm).

Figure S173. UV-vis absorption spectrum of **5(40)** in Et₂O (3×10^{-2} g/L, path length = 10 mm).

Figure S174. CD spectrum of **5(40)** in Et₂O (3×10^{-2} g/L, path length = 10 mm).

Figure S175. UV-vis absorption spectrum of **5(40)** in MTBE (3.49×10^{-2} g/L, path length = 10 mm).

Figure S176. CD spectrum of **5(40)** in MTBE $(3.49 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S177. UV-vis absorption spectrum of 6(40) in CHCl₃ (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S178. CD spectrum of **6(40)** in CHCl₃ (3.01×10^{-2} g/L, path length = 10 mm).

Figure S179. UV-vis absorption spectrum of 6(40) in 1,1,2-TCE (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S180. CD spectrum of **6(40)** in 1,1,2-TCE (3.01×10^{-2} g/L, path length = 10 mm).

Figure S181. UV-vis absorption spectrum of 6(40) in THF (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S182. CD spectrum of 6(40) in THF (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S183. UV-vis absorption spectrum of 6(40) in 1,4-Dioxane (3.01×10^{-2} g/L, path length = 10 mm).

Figure S184. CD spectrum of 6(40) in 1,4-Dioxane (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S185. UV-vis absorption spectrum of 6(40) in 2- MeTHF (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S186. CD spectrum of 6(40) in 2- MeTHF (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S187. UV-vis absorption spectrum of 6(40) in 1,2-DME (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S188. CD spectrum of **6(40)** in 1,2-DME (3.01×10^{-2} g/L, path length = 10 mm).

Figure S189. UV-vis absorption spectrum of 6(40) in CPME (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S190. CD spectrum of **6(40)** in CPME (3.01×10^{-2} g/L, path length = 10 mm).

Figure S191. UV-vis absorption spectrum of 6(40) in Et_2O (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S192. CD spectrum of 6(40) in Et₂O (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S193. UV-vis absorption spectrum of **6(40)** in MTBE (3.01×10^{-2} g/L, path length = 10 mm).

Figure S194. CD spectrum of **6(40)** in MTBE $(3.01 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S195. UV-vis absorption spectrum of **7(40)** in CHCl₃ (2.99×10^{-2} g/L, path length = 10 mm).

Figure S196. CD spectrum of **7(40)** in CHCl₃ (2.99×10^{-2} g/L, path length = 10 mm).

Figure S197. UV-vis absorption spectrum of **7(40)** in 1,1,2-TCE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S198. CD spectrum of **7(40)** in 1,1,2-TCE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S199. UV-vis absorption spectrum of **7(40)** in THF (2.99×10^{-2} g/L, path length = 10 mm).

Figure S200. CD spectrum of **7(40)** in THF (2.99×10^{-2} g/L, path length = 10 mm).

Figure S201. UV-vis absorption spectrum of **7(40)** in 1,4-Dioxane (2.99×10^{-2} g/L, path length = 10 mm).

Figure S202. CD spectrum of 7(40) in 1,4-Dioxane (2.99×10^{-2} g/L, path length = 10 mm).

Figure S203. UV-vis absorption spectrum of **7(40)** in 2- MeTHF (2.99×10^{-2} g/L, path length = 10 mm).

Figure S204. CD spectrum of **7(40)** in 2- MeTHF (2.99×10^{-2} g/L, path length = 10 mm).

Figure S205. UV-vis absorption spectrum of **7(40)** in 1,2-DME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S206. CD spectrum of **7(40)** in 1,2-DME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S207. UV-vis absorption spectrum of **7(40)** in CPME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S208. CD spectrum of **7(40)** in CPME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S209. UV-vis absorption spectrum of **7(40)** in Et₂O (2.99×10^{-2} g/L, path length = 10 mm).

Figure S210. CD spectrum of **7(40)** in Et_2O (2.99 × 10⁻² g/L, path length = 10 mm).

Figure S211. UV-vis absorption spectrum of **7(40)** in MTBE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S212. CD spectrum of **7(40)** in MTBE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S213. UV-vis absorption spectrum of **8(40)** in CHCl₃ (3.02×10^{-2} g/L, path length = 10 mm).

Figure S214. CD spectrum of **8(40)** in CHCl₃ (3.02×10^{-2} g/L, path length = 10 mm).

Figure S215. UV-vis absorption spectrum of 8(40) in 1,1,2-TCE (3.02×10^{-2} g/L, path length = 10 mm).

Figure S216. CD spectrum of **8(40)** in 1,1,2-TCE (3.02×10^{-2} g/L, path length = 10 mm).

Figure S217. UV-vis absorption spectrum of 8(40) in THF (3.02×10^{-2} g/L, path length = 10 mm).

Figure S218. CD spectrum of 8(40) in THF (3.02×10^{-2} g/L, path length = 10 mm).

Figure S219. UV-vis absorption spectrum of **8(40)** in 1,4-Dioxane $(3.02 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm}).$

Figure S220. CD spectrum of 8(40) in 1,4-Dioxane (3.02×10^{-2} g/L, path length = 10 mm).

Figure S221. UV-vis absorption spectrum of 8(40) in 2- MeTHF (3.02×10^{-2} g/L, path length = 10 mm).

Figure S222. CD spectrum of 8(40) in 2- MeTHF (3.02×10^{-2} g/L, path length = 10 mm).

Figure S223. UV-vis absorption spectrum of 8(40) in 1,2-DME (3.02×10^{-2} g/L, path length = 10 mm).

Figure S224. CD spectrum of **8(40)** in 1,2-DME (3.02×10^{-2} g/L, path length = 10 mm).

Figure S225. UV-vis absorption spectrum of 8(40) in CPME (3.02×10^{-2} g/L, path length = 10 mm).

Figure S226. CD spectrum of **8(40)** in CPME $(3.02 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S227. UV-vis absorption spectrum of 8(40) in Et₂O (3.02×10^{-2} g/L, path length = 10 mm).

Figure S228. CD spectrum of 8(40) in Et₂O (3.02×10^{-2} g/L, path length = 10 mm).

Figure S229. UV-vis absorption spectrum of 8(40) in MTBE (3.02×10^{-2} g/L, path length = 10 mm).

Figure S230. CD spectrum of 8(40) in MTBE $(3.02 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm}).$

Figure S231. UV-vis absorption spectrum of **9(40)** in CHCl₃ (3.14×10^{-2} g/L, path length = 10 mm).

Figure S232. CD spectrum of **9(40)** in CHCl₃ (3.14×10^{-2} g/L, path length = 10 mm).

Figure S233. UV-vis absorption spectrum of 9(40) in 1,1,2-TCE (3.14×10^{-2} g/L, path length = 10 mm).

Figure S234. CD spectrum of **9(40)** in 1,1,2-TCE (3.14×10^{-2} g/L, path length = 10 mm).

Figure S235. UV-vis absorption spectrum of **9(40)** in THF (3.14×10^{-2} g/L, path length = 10 mm).

Figure S236. CD spectrum of **9(40)** in THF (3.14×10^{-2} g/L, path length = 10 mm).

Figure S237. UV-vis absorption spectrum of 9(40) in 1,4-Dioxane (3.14 × 10⁻² g/L, path length = 10 mm).

Figure S238. CD spectrum of 9(40) in 1,4-Dioxane (3.14 × 10⁻² g/L, path length = 10 mm).

Figure S239. UV-vis absorption spectrum of 9(40) in 2- MeTHF (3.14×10^{-2} g/L, path length = 10 mm).

Figure S240. CD spectrum of 9(40) in 2-MeTHF (3.14 × 10⁻² g/L, path length = 10 mm).

Figure S241. UV-vis absorption spectrum of **9(40)** in 1,2-DME (3.14×10^{-2} g/L, path length = 10 mm).

Figure S242. CD spectrum of **9(40)** in 1,2-DME (3.14×10^{-2} g/L, path length = 10 mm).

Figure S243. UV-vis absorption spectrum of **9(40)** in CPME (3.14×10^{-2} g/L, path length = 10 mm).

Figure S244. CD spectrum of **9(40)** in CPME (3.14×10^{-2} g/L, path length = 10 mm).

Figure S245. UV-vis absorption spectrum of 9(40) in Et₂O (3.14×10^{-2} g/L, path length = 10 mm).

Figure S246. CD spectrum of 9(40) in Et₂O (3.14 × 10⁻² g/L, path length = 10 mm).

Figure S247. UV-vis absorption spectrum of **9(40)** in MTBE (3.14×10^{-2} g/L, path length = 10 mm).

Figure S248. CD spectrum of **9(40)** in MTBE (3.14×10^{-2} g/L, path length = 10 mm).

Figure S249. UV-vis absorption spectrum of 10(40) in CHCl₃ (2.68 × 10⁻² g/L, path length = 10 mm).

Figure S250. CD spectrum of **10(40)** in CHCl₃ (2.68×10^{-2} g/L, path length = 10 mm).

Figure S251. UV-vis absorption spectrum of 10(40) in 1,1,2-TCE (2.68 × 10⁻² g/L, path length = 10 mm).

Figure S252. CD spectrum of **10(40)** in 1,1,2-TCE (2.68×10^{-2} g/L, path length = 10 mm).

Figure S253. UV-vis absorption spectrum of **10(40)** in THF (2.68×10^{-2} g/L, path length = 10 mm).

Figure S254. CD spectrum of 10(40) in THF (2.68×10^{-2} g/L, path length = 10 mm).

Figure S255. UV-vis absorption spectrum of 10(40) in 1,4-Dioxane (2.68 × 10⁻² g/L, path length = 10 mm).

Figure S256. CD spectrum of 10(40) in 1,4-Dioxane (2.68×10^{-2} g/L, path length = 10 mm).

Figure S257. UV-vis absorption spectrum of **10(40)** in 2- MeTHF (2.68×10^{-2} g/L, path length = 10 mm).

Figure S258. CD spectrum of 10(40) in 2- MeTHF (2.68×10^{-2} g/L, path length = 10 mm).

Figure S259. UV-vis absorption spectrum of **10(40)** in 1,2-DME (2.68×10^{-2} g/L, path length = 10 mm).

Figure S260. CD spectrum of **10(40)** in 1,2-DME (2.68×10^{-2} g/L, path length = 10 mm).

Figure S261. UV-vis absorption spectrum of **10(40)** in CPME (2.68×10^{-2} g/L, path length = 10 mm).

Figure S262. CD spectrum of 10(40) in CPME (2.68×10^{-2} g/L, path length = 10 mm).

Figure S263. UV-vis absorption spectrum of **10(40)** in Et_2O (2.68 × 10⁻² g/L, path length = 10 mm).

Figure S264. CD spectrum of **10(40)** in Et₂O (2.68 × 10⁻² g/L, path length = 10 mm).

Figure S265. UV-vis absorption spectrum of **10(40)** in MTBE (2.68×10^{-2} g/L, path length = 10 mm).

Figure S266. CD spectrum of 10(40) in MTBE (2.68×10^{-2} g/L, path length = 10 mm).

Figure S267. UV-vis absorption spectrum of **5(20)** in MTBE (3.34×10^{-2} g/L, path length = 10 mm).

Figure S268. CD spectrum of **5(20)** in MTBE $(3.34 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S269. UV-vis absorption spectrum of **5(60)** in MTBE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S270. CD spectrum of **5(60)** in MTBE (2.99×10^{-2} g/L, path length = 10 mm).

Figure S271. UV-vis absorption spectrum of **5(80)** in MTBE (2.86×10^{-2} g/L, path length = 10 mm).

Figure S272. CD spectrum of **5(80)** in MTBE (2.86×10^{-2} g/L, path length = 10 mm).

Figure S273. UV-vis absorption spectrum of **5(100)** in MTBE (2.38×10^{-2} g/L, path length = 10 mm).

Figure S274. CD spectrum of 5(100) in MTBE (2.38×10^{-2} g/L, path length = 10 mm).

Figure S275. UV-vis absorption spectrum of **5(150)** in MTBE (3.33×10^{-2} g/L, path length = 10 mm).

Figure S276. CD spectrum of **5(150)** in MTBE (3.33×10^{-2} g/L, path length = 10 mm).

Figure S277. UV-vis absorption spectrum of **5(200)** in MTBE (3.68×10^{-2} g/L, path length = 10 mm).

Figure S278. CD spectrum of 5(200) in MTBE (3.68×10^{-2} g/L, path length = 10 mm).

Figure S279. UV-vis absorption spectrum of **5(300)** in MTBE (3.09×10^{-2} g/L, path length = 10 mm).

Figure S280. CD spectrum of **5(300)** in MTBE (3.09×10^{-2} g/L, path length = 10 mm).

Figure S281. UV-vis absorption spectrum of **5(20)** in 1,2-DME (3.34×10^{-2} g/L, path length = 10 mm).

Figure S282. CD spectrum of **5(20)** in 1,2-DME (3.34×10^{-2} g/L, path length = 10 mm).

Figure S283. UV-vis absorption spectrum of **5(60)** in 1,2-DME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S284. CD spectrum of **5(60)** in 1,2-DME (2.99×10^{-2} g/L, path length = 10 mm).

Figure S285. UV-vis absorption spectrum of **5(80)** in 1,2-DME (2.86×10^{-2} g/L, path length = 10 mm).

Figure S286. CD spectrum of **5(80)** in 1,2-DME (2.86×10^{-2} g/L, path length = 10 mm).

Figure S287. UV-vis absorption spectrum of 5(100) in 1,2-DME (2.38 × 10⁻² g/L, path length = 10 mm).

Figure S288. CD spectrum of **5(100)** in 1,2-DME (2.38×10^{-2} g/L, path length = 10 mm).

Figure S289. UV-vis absorption spectrum of 5(150) in 1,2-DME (3.33 × 10⁻² g/L, path length = 10 mm).

Figure S290. CD spectrum of **5(150)** in 1,2-DME (3.33×10^{-2} g/L, path length = 10 mm).

Figure S291. UV-vis absorption spectrum of 5(200) in 1,2-DME (3.68 × 10⁻² g/L, path length = 10 mm).

Figure S292. CD spectrum of **5(200)** in 1,2-DME (3.68×10^{-2} g/L, path length = 10 mm).

Figure S293. UV-vis absorption spectrum of 5(300) in 1,2-DME (3.09 × 10⁻² g/L, path length = 10 mm).

Figure S294. CD spectrum of **5(300)** in 1,2-DME (3.09×10^{-2} g/L, path length = 10 mm).

Figure S295. UV-vis absorption spectrum of 1(40) in EtOAc (2.75 × 10⁻² g/L, path length = 10 mm).

Figure S296. CD spectrum of 1(40) in EtOAc (2.75 × 10⁻² g/L, path length = 10 mm).

Figure S297. UV-vis absorption spectrum of **2(40)** in EtOAc (2.98×10^{-2} g/L, path length = 10 mm).

Figure S298. CD spectrum of 2(40) in EtOAc (2.98 × 10⁻² g/L, path length = 10 mm).

Figure S299. UV-vis absorption spectrum of **3(40)** in EtOAc (3.05×10^{-2} g/L, path length = 10 mm).

Figure S300. CD spectrum of **3(40)** in EtOAc (3.05×10^{-2} g/L, path length = 10 mm).

Figure S301. UV-vis absorption spectrum of **4(40)** in EtOAc (2.99×10^{-2} g/L, path length = 10 mm).

Figure S302. CD spectrum of 4(40) in EtOAc (2.99×10^{-2} g/L, path length = 10 mm).

Figure S303. UV-vis absorption spectrum of **5(40)** in EtOAc (3×10^{-2} g/L, path length = 10 mm).

Figure S304. CD spectrum of **5(40)** in EtOAc (3×10^{-2} g/L, path length = 10 mm).

Figure S305. UV-vis absorption spectrum of 6(40) in EtOAc (3.01 × 10⁻² g/L, path length = 10 mm).

Figure S306. CD spectrum of **6(40)** in EtOAc $(3.01 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S307. UV-vis absorption spectrum of **7(40)** in EtOAc (2.99×10^{-2} g/L, path length = 10 mm).

Figure S308. CD spectrum of **7(40)** in EtOAc (2.99×10^{-2} g/L, path length = 10 mm).

Figure S309. UV-vis absorption spectrum of **8(40)** in EtOAc (3.03×10^{-2} g/L, path length = 10 mm).

Figure S310. CD spectrum of **8(40)** in EtOAc $(3.03 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S311. UV-vis absorption spectrum of **9(40)** in EtOAc (3.14×10^{-2} g/L, path length = 10 mm).

Figure S312. CD spectrum of **9(40)** in EtOAc (3.14×10^{-2} g/L, path length = 10 mm).

Figure S313. UV-vis absorption spectrum of **10(40)** in EtOAc (3.02×10^{-2} g/L, path length = 10 mm).

Figure S314. CD spectrum of 10(40) in EtOAc (3.02×10^{-2} g/L, path length = 10 mm).