SO₄²⁻ Anions Directed Hexagonal-Prismatic Cages *via* Cooperative C-H···O Hydrogen Bonds

Jiandong Pang,^{ab} Feilong Jiang,^a Daqiang Yuan,^a Jun Zheng, ^{ab} Mingyan Wu,^{*a} Guoliang Liu,^{ab} Kongzhao Su,^{ab} and Maochun Hong^{*a}

^{*a*} Key Lab of Coal to Ethylene Glycol and Its Related Technology, State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

^b University of the Chinese Academy of Sciences, Beijing, 100049, China.

E-mail: <u>wumy@fjirsm.ac.cn</u>; <u>hmc@fjirsm.ac.cn</u>; Fax: +86-591-83794946; Tel: +86-591-83792460.

Supporting Information

Experimental Section

Figure S1 Three groups of bib ligands in each cage in 1. Left: cage A; right: cage B.

Figure S2 PXRD for complex 1.

Figure S3 PXRD for complex 5.

 Table S1. Crystal data and structure refinement for complex 1 and 2.

 Table S2. Crystal data and structure refinement for complex 3 and 4.

 Table S3. Crystal data and structure refinement for complex 5.

Table S4. The data of C-H··· O hydrogen bonds for complex 1.

Table S5. The data of C-H··· O hydrogen bonds for complex 2.

Table S6. The data of C-H··· O hydrogen bonds for complex 3.

Experimental Section

Materials and methods

All reactants were reagent grade and used as purchased without further purification. Elemental analyses for C, H, N were carried out on a German Elementary Vario EL III instrument. IR spectra were recorded in the range 4000–400 cm⁻¹ with a Magna 750 FT0IR spectrometer using KBr pellets. The power X-ray diffraction (XRD) patterns were collected by a Rigaku DMAX2500 X-ray diffractometer using Cu K α radiation (λ = 0.154 nm).

Synthesis of 1,1'-(5-methoxy-1,3-phenylene)bis(1H-imidazole)² (5-CH₃O-bib)

A Schlenk flask was charged with CuI (381mg, 2 mmol), N,N'-dimethylglycine (412mg, 4mmol), K₂CO₃ (5.53g, 40 mmol), 1,3-dibromo-5-methoxybenzene (2.66g, 10 mmol), and imidazole (2.72g, 40 mmol). The system was then evacuated twice and back filled with N₂, followed by addition of 40 mL of DMSO. The mixture was heated at 110 °C for 48 h before it was partitioned between water and ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The yellow residue was recrystallized from CH₃OH to afford the pure product. (1.25g, 5.2mmol, 52% yield based on 1,3-dibromo-5-methoxybenzene). ¹H NMR (400 MHz, CDCl₃): δ 3.92 (s, 3H), 7.13 (s, 2H), 7.24 (s, 2H), 7.57 (s, 1H), 7.92 (s, 2H), 8.43 (s, 2H).

Synthesis of complex 1

An aqueous (3 mL) of NiSO₄·6H₂O (28 mg, 0.1 mmol) was placed in the bottom of a test-tube, and a mixture (4 mL) of H₂O and MeOH (methanol) (V:V = 1:1) was carefully layered on the aqueous. Then a methanolic solution of bib (1,3-bis(1-imidazoly)benzene, 21 mg, 0.1 mmol) and tmp (2,4,6-trimethylpyridine, 20 µL) in methanol (3 mL) was layered on the top. A pale green needle crystalline precipitate formed on the shell of the tube after two weeks at room temperature (17 mg, 38%). Elemental analysis calcd(%) for compound 1: C 32.36; H 4.38; N 12.49; found: C 31.72; H 4.26; N 12.45. IR (KBr disk, v / cm⁻¹): 3392 (s), 3128 (m), 3084 (m), 1618 (m), 1519 (s), 1323 (w), 1296 (w), 1272 (m), 1122 (s), 1087 (s), 1074 (s), 999(w), 960 (w), 935 (w), 867 (w), 790 (m), 746 (m), 684 (m), 653 (m), 617 (m).

Synthesis of complex 2 and 3

An aqueous (3mL) of NiSO₄·6H₂O (28 mg, 0.1 mmol) was placed in the bottom of a test-tube, and a mixture (4 mL) of H₂O and MeOH (methanol) (*V*:*V* = 1:1) was carefully layered on the aqueous. Then a methanolic solution of 1,1'-(5-methyl-1,3-phenylene)bis(1H-imidazole) (5-CH₃bib) (22.5 mg, 0.1 mmol) and tmp (2,4,6-trimethylpyridine, 20 µL) in methanol (3 mL) was layered on the top. Pale green needle crystals formed on the shell of the tube after two weeks. Single-crystal X-ray diffractions demonstrate that they are the mixture of the complexes $\{SO_4 \subset \{[Ni_4(\mu_3-OH)_4]_2(5-CH_3-bib)_6(\mu_2-SO_4)_2(H_2O)_8\}\}(SO_4)\}\{SO_4 \subset \{[Ni_4(\mu_3-OH)_4]_2(5-CH_3$ $bib)_6(\mu_2-SO_4)(SO_4)_2(H_2O)_8\} \cdot (H_2O)_{77}(CH_3OH)_5$ (2) and $\{\{SO_4 \subset \{[Ni_4(\mu_3-OH)_4]_2(5-CH_3$ $bib)_6(\mu_2-SO_4)(CH_3O)(H_2O)_7\}\}_2(\mu_4-SO_4)\}(SO_4)_2 \cdot xH_2O \cdot xCH_3OH$ (3). However, it is a pity that 2 and 3 can not be separated manually. Therefore, no further research is carried out. Synthesis of complex 4

An aqueous (3 mL) of NiSO₄·6H₂O (28 mg, 0.1 mmol) was placed in the bottom of a test-tube, and a mixture (4 mL) of H₂O and MeOH (methanol) (V:V = 1:1) was carefully layered on the aqueous. Then a methanolic solution of 1,1'-(5-methoxy-1,3-phenylene)bis(1H-imidazole) (5-OCH₃-bib) (24 mg, 0.1 mmol) and tmp (2,4,6-trimethylpyridine, 20 µL) in methanol (3 mL) was layered on the top. A pale green crystalline precipitate formed on the shell of the tube after months at room temperature. **4** is very unstable and fragile. And it will turn into the green power quickly apart from the mother liquid.

Synthesis of complex 5

Complex 5 was prepared by a procedure similar to that of 1 with $Ni(ClO_4)_2 \cdot 6H_2O$ (35mg, 0.1mmol). The detailed discussion of 5 will be presented in the following work.

X-ray data collection and sructural determination

For the single crystal analysis of complex 1, a pale-green needle crystal was taken directly from the mother liquor, transferred to oil and mounted into loop. The crystal was kept at 100 K during data collection on a supernova diffractometer equipped with a Multilayers mirror Cu-K α radiation ($\lambda = 1.5418$ Å) by using a ω scan mode. Similarly, the same proceducures are for complex 2, 3 and 4. However, the data of complex 5 was collected on a Rigaku MM007 CCD diffractometer equipped with a graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 173 K. The crystal structures were solved by direct method and refined by full-matrix least squares on F^2 using SHELXTL package.¹ All non-hydrogen atoms were refined with anisotropic thermal parameters except several solvent molecules. All the hydrogen atoms were located at geometrically calculated positions and refined by riding. More details on the crystallographic studies as well as atomic displacement parameters are given in Supporting Information as CIF files. In complex 3, the free solvent molecules are highly disordered and attempts to locate and refine the solvent peaks were unsuccessful. The diffused electron densities resulting from these solvent molecules were removed using the SQUEEZE routine of PLATON; structures were then refined again using the data generated. Complex 4 is very unstable and fragile. Though we tried our best the diffraction data is still poor. In 4, the free solvent molecules are highly disordered and attempts to locate and refine the solvent peaks were unsuccessful. Only the metal ions are refined anisotropically. Additionaly, some balanced anions, which may be SO₄²⁻, OH⁻ or CH₃O⁻ anions, can not found from the eletron density maps. Therefore, the diffused electron densities resulting from these solvent molecules or balanced anions were removed using the SOUEEZE routine of PLATON; structures were then refined again using the data generated. Nevertheless, in 4 the skeletons of the cages and the encapsulated SO₄²⁻ anions are undoutedly determined. Crystallographic data for the structures reported in this paper have been deposited in the Cambridge Crystallographic Data Center with CCDC reference number 1011630, 1011631, 1011632, 1011628 and 1011629 for complexes 1, 2, 3, 4 and 5 respectively.

Figure S1 Three groups of bib ligands in each cage in 1. Left: cage A; right: cage B.

Figure S3 PXRD for complex 5.

Identification code	Complex 1	Complex 2	
Empirical formula	$C_{145}H_{234}N_{48}Ni_{16}O_{96}S_8$	C ₁₆₁ H ₃₆₃ N ₄₈ Ni ₁₆ O ₁₄₆ S ₈	
Formula weight	5381.63	6503.81	
Temperature	100(2) K	100(2) K	
Wavelength	1.54184 Å	1.54184 Å	
Crystal system	monoclinic	monoclinic	
Space group	Сс	$P2_{1}/n$	
Unit cell dimensions.	a = 44.0087(6) Å,	a = 20.55910(10) Å,	
	b = 20.5888(3) Å,	b = 35.0164(2) Å,	
	c = 26.8381(3) Å,	c = 39.4400(2) Å,	
	$\beta = 119.9980(10)^{\circ}$	$\beta = 91.3010(10)^{\circ}$	
Volume	21060.1(5) Å ³	28385.8(3) Å ³	
Ζ	4	4	
Density (calculated)	1.697 mg mm ⁻³	1.522 mg mm ⁻³	
Absorption coefficient	3.164 mm ⁻¹	2.583 mm ⁻¹	
<i>F</i> (000)	11136	13636	
Crystal size	0.1×0.2×0.2 mm	0.1×0.1×0.1 mm	
θ range for data collection.	3.320 to 73.102 °	3.316 to 73.580 °	
Limiting indices	-54 <= <i>h</i> <= 35, -24 <= <i>k</i> <= 25, -	-15 <= <i>h</i> <= 25, -42 <= <i>k</i> <= 43	
	28<= <i>l</i> <= 33	-48<= <i>l</i> <= 47	
Reflections collected / unique	41765 / 24909 [<i>R</i> (int) = 0.0343]	55711 / 46658 [<i>R</i> (int) = 0.0347]	
Completeness	99.7 %	99.8 %	
Absorption correction	multi-scan	multi-scan	
Data/restraints/params	41765 / 20 / 2820	55711 / 12 / 3594	
Refinement method	Full-matrix least squares on F^2	Full-matrix least squares on F^2	
Goodness of fit on F^2	1.045	1.038	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0506, wR2 = 0.1358	R1 = 0.0674, wR2 = 0.1949	
R indices (all data)	R1 = 0.0540, wR2 = 0.1405	R1 = 0.0794, wR2 = 0.2074	

 Table S1. Crystal data and structure refinement for complex 1 and 2:

 Table S2. Crystal data and structure refinement for complex 3 and 4:

Identification code	Complex 3	Complex 4
Empirical formula	$C_{158}H_{190}N_{48}Ni_{16}O_{60}S_7$	$C_{314}H_{589}N_{96}Ni_{32}\ O_{224}S_{11}$
Formula weight	4885.35	11525.16
Temperature	100(2)K	100(2)K
Wavelength	1.54178 Å	1.54184 Å
Crystal system	tetragonal	triclinic
Space group	P41212	<i>P</i> -1
Unit cell dimensions.	a = 31.2000(3) Å,	a = 20.5225(8) Å,
	b = 31.2000(3) Å,	b = 39.0486(5) Å,
	c = 25.3435(4) Å,	c = 39.0923(4) Å,
		$\alpha = 119.8440(10)^{\circ}$

		$\beta = 91.894(2)^{\circ}$
		$\gamma = 102.976(2)$ °
Volume	24670.4(6) Å ³	26087.7(11) Å ³
Ζ	4	2
Density (calculated)	1.315 mg mm ⁻³	1.467 mg mm ⁻³
Absorption coefficient	2.462 mm ⁻¹	2.456 mm ⁻¹
<i>F</i> (000)	10056	12018
Crystal size	0.12×0.08×0.06 mm	0.06×0.04×0.03 mm
θ range for data collection.	3.167 to 76.368 °	3.5480 to 51.2760 °
Limiting indices	-32 <= <i>h</i> <= 39, -38 <= <i>k</i> <= 38, -	-20 <= h <= 20, -39 <= k <= 39,
	30<= <i>l</i> <= 30	-39<= <i>l</i> <= 38
Reflections collected / unique	59895 / 25295 [<i>R</i> (int) = 0.0448]	55850 / 30510 [<i>R</i> (int) = 0.1115]
Completeness	99.5%	98.2%
Absorption correction	multi-scan	multi-scan
Data/restraints/params	59895 / 44 / 1251	55850 / 0 / 5723
Refinement method	Full-matrix least squares on F^2	Full-matrix least squares on F^2
Goodness of fit on F^2	1.172	1.882
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.1149, wR2 = 0.3125	R1 = 0.1773, wR2 = 0.4747
R indices (all data)	R1 = 0.1485, wR2 = 0.3425	R1 = 0.2198, wR2 = 0.5025

 Table S3. Crystal data and structure refinement for complex 5:

Identification code	Complex 5
Empirical formula	$C_{37}H_{35}Cl_2N_{12}NiO_{10}$
Formula weight	937.38
Temperature	173(2)K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	$P2_{1}/c$
Unit cell dimensions.	$a = 11.376(4)$ Å, $b = 20.675(8)$ Å, $c = 17.957(7)$ Å, $\beta = 99.139(7)$ °
Volume	4170(3) Å ³
Ζ	4
Density (calculated)	1.515 mg mm ⁻³
Absorption coefficient	0.668 mm ⁻¹
<i>F</i> (000)	1956
Crystal size	0.1×0.2×0.2 mm
θ range for data collection.	2.22 to 27.48 °
Limiting indices	-12 <= <i>h</i> <= 14, -26 <= <i>k</i> <= 26, -23 <= <i>l</i> <= 23
Reflections collected / unique	33047 / 9387 [R(int) = 0.0821]
Completeness	99.2%
Absorption correction	multi-scan
Data/restraints/params	33047 / 0 / 569
Refinement method	Full-matrix least squares on F^2
Goodness of fit on F^2	1.087

Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0799, wR2 = 0.2099	
<i>R</i> indices (all data)	R1 = 0.0957, wR2 = 0.2215	

D-H···A	$D(\mathbf{H}\cdots\mathbf{O})$ Å	<i>θ</i> (∠C-H···O) °	D-H···A	$D(\mathbf{H}\cdots\mathbf{O})$ Å	<i>θ</i> (∠C-H···O) °
Cage A			Cage B		
С58-Н58…О65	2.397	167.95	C118-H118…O50	2.328	145.91
С57-Н57…О65	2.450	176.13	C130-H130…O50	2.397	167.95
С49-Н49…О65	2.493	154.71	C125-H125…O50	2.450	176.13
С61-Н61…О65	2.749	153.89	C121-H121…O50	2.493	154.71
С70-Н70…О65	2.751	148.58	C109-H109…O50	2.751	148.58
С64-Н64…О65	2.882	156.86	C113-H113…O50	2.882	156.86
С34-Н34…О66	2.328	145.91	C78-H78…O51	2.246	150.33
С37-Н37…О66	2.359	158.42	C142-H142…O51	2.492	166.62
С13-Н13…О66	2.433	158.51	C136-H136…O51	2.506	172.40
С13-Н13…О67	2.192	155.81	C82-H82…O51	2.572	134.43
С2-Н2…О67	2.392	136.09	C133-H133…051	2.622	151.03
С61-Н61…О67	2.541	151.73	C142-H142…O52	2.433	166.28
С2-Н2…О68	2.339	154.92	C82-H82…O52	2.552	155.64
С10-Н10…О68	2.608	146.81	C94-H94…O52	2.608	146.81
С13-Н13…О68	2.797	146.44	C118-H118…O53	2.359	158.42
C21-H21O68	2.896	163.92	C106-H106…O53	2.433	158.51
C24-H24…O69	2.269	156.14	С94-Н94…О53	2.797	146.44
С9-Н9…О69	2.349	170.17	C106-H106…O54	2.192	155.81
С70-Н70…О69	2.552	155.64	C85-H85…O54	2.269	156.14
С10-Н10…О69	2.572	134.43	C101-H101…O54	2.392	136.09
C46-H46…O70	2.246	150.33	С98-Н98…О54	2.541	151.73
C24-H24…O70	2.462	163.26	C88-H88…O54	2.896	163.92
С27-Н27…О70	2.526	121.55	С98-Н98…О55	2.339	154.92
C46-H46…O71	2.433	166.28	C85-H85…O55	2.349	170.17
С37-Н37…О71	2.492	166.62	С73-Н73…055	2.526	121.55
C34-H34…O71	2.506	172.40	С73-Н73…О56	2.462	163.26
C41-H41O71	2.622	151.03	C133-H133…O56	2.648	164.77
С33-Н33…О71	2.648	164.77	C121-H121…O56	2.749	153.89
С27-Н27…О71	2.669	148.36			

Table S4. The data of C-H \cdots O hydrogen bonds for complex 1

Table S5. The data of C-H \cdots O hydrogen bonds for complex 2

D-H…A	$D(\mathbf{H}\cdots\mathbf{O})$ Å	$\theta (\angle C-H\cdots O)^{\circ}$	D-H···A	$D(\mathbf{H}\cdots\mathbf{O})$ Å	$\theta (\angle C - H \cdots O)^{\circ}$
Cage A		Cage B			

С1-Н1…О68	2.658	123.76	С79-Н79…057	2.510	155.11
С1-Н1…О69	2.825	143.93	С79-Н79…О63	2.533	152.79
С9-Н9…О69	2.648	160.54	С87-Н87…О57	2.535	155.42
С11-Н11…О64	2.349	130.84	C89-H89…O57	2.503	168.77
С11-Н11…О69	2.538	159.56	С89-Н89…О59	2.670	139.14
C14-H14…O66	2.835	145.63	С92-Н92…О58	2.415	153.74
C14-H14…O67	2.269	155.40	С92-Н92…063	2.357	136.55
C14-H14…O68	2.485	158.78	C100-H100…O58	2.282	176.58
C24-H24…O64	2.499	150.97	C102-H102…O58	2.377	163.84
C24-H24…O65	2.206	163.37	С102-Н102…О59	2.307	144.57
С27-Н27…О66	2.327	154.59	C105-H105…058	2.895	143.82
С27-Н27…О67	2.349	138.49	C105-H105…O62	2.506	162.12
С31-Н31…О66	2.337	157.84	C105-H105…O63	2.286	155.54
С37-Н37…О65	2.300	153.30	C115-H115…O58	2.863	153.40
С37-Н37…О66	2.435	165.40	C115-H115…O59	2.260	159.30
C40-H40O67	2.467	148.78	C115-H115…O60	2.531	153.47
C40-H40O70	2.684	155.51	C118-H118…O61	2.835	141.98
C44-H44…O70	2.857	150.76	C118-H118…O62	2.661	121.80
С50-Н50…О65	2.715	140.61	C122-H122…O61	2.685	162.75
С50-Н50…О70	2.637	167.01	C128-H128…O60	2.604	120.35
С53-Н53…О70	2.594	148.33	C128-H128…O61	2.777	141.82
С57-Н57…О70	2.502	165.95	С131-Н131…О61	2.534	156.28
С63-Н63…О70	2.455	160.43	C131-H131062	2.226	159.80
С66-Н66…О68	2.316	159.66	C135-H135…O61	2.521	154.95
С66-Н66…О69	2.620	152.67	C141-H141…O60	2.240	157.81
С70-Н70…О69	2.504	154.54	C141-H141…O61	2.584	151.07
С76-Н76…О64	2.251	152.79	C144-H144…O57	2.591	160.58
С76-Н76…О69	2.368	165.68	C148-H148…O57	2.634	158.91
			С154-Н154…О57	2.545	161.77

Table S6. The data of C-H···· O hydrogen bonds for complex 3

D-H···A	$D(\mathbf{H}\cdots\mathbf{O})$ Å	$\theta (\angle C-H\cdots O)^{\circ}$	D-H···A	$D(\mathbf{H}\cdots\mathbf{O})$ Å	θ (\angle C-H···O) °
C1-H1O18	2.213	152.72	C44-H44…O19	2.836	153.87
С13-Н13…О16	2.315	161.86	С50-Н50…О16	2.811	125.00
C14-H14…O17	2.388	173.43	С50-Н50…О19	2.562	175.52
С22-Н22…О17	2.596	160.04	С53-Н53…О19	2.768	142.49
C24-H24…O17	2.629	166.15	С57-Н57…О19	2.373	165.61
С27-Н27…О18	2.379	136.11	C64-H64…O19	2.181	174.89
С37-Н37…О16	2.304	155.31	C66-H66…O17	2.600	144.51
C40-H40O18	2.555	160.91	С70-Н70017	2.467	161.19
C40-H40O19	2.828	144.26	C75-H75…017	2.485	173.44

Reference:

- 1. Sheldrick, G. M. University of Göttingen: Germany, 1997.
- 2. S. Zhang, S. Yang, J. Lan, S. Yang, and J. You, Chem. Comm., 2008, 6170-6172.