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Materials and methods 

 

General considerations 

All reagents were purchased from commercial suppliers and used as received unless otherwise 

stated. The ligands (Z)-N,N'-bis[1-pyridin-2-yl-meth-(E)-ylidene]oct-4-ene-2,6-diyne-1,8-

diamine (PyED) and pyridine-2-ylmethyl-(2-{[pyridine-2-ylmethylene)-amino]-methyl}-

benzyl)-amine (PyBD) were synthesized according to previously published procedure.1 A40 

(DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV) and A42 

(DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA) were purchased from 

AnaSpec (Fremont, CA). Absorbance measurements for the Parallel Artificial Membrane 

Permeability Assay adapted for blood-brain barrier (PAMPA-BBB) were recorded on a 

SpectraMax M5 microplate reader (Molecular Devices, Sunnydale, CA). Mass spectrometry for 

interaction studies was conducted on a Waters Synapt G2/S mass spectrometer. MALDI-TOF 

spectra were recorded with a Bruker Autoflex III instrument (Bruker Daltonics, Billerica, MA) 

and tandem mass spectra were acquired using a 4800 TOF-TOF MALDI tandem masss 

spectrometer (AB Sciex, Framingham, MA). Transmission electron microscopy (TEM) images 

were recorded on JEOL 1010 transmission electron microscope (Electron Microscopy Center, 

Indiana University, Bloomington, IN) or a Philips CM-100 transmission electron microscope 

(Microscopy and Image Analysis Laboratory, University of Michigan, Ann Arbor, MI). Optical 

spectra were recorded on an Agilent 8453 UV-visible (UV-Vis) spectrophotometer. 

 

Solution speciation determination for PyBD and the Cu(II)PyBD complex 

UV-vis variable-pH titration was used to determine the pKa values for PyBD.2 A solution (100 

mM NaCl, 10 mM NaOH, pH 12) of PyBD (50 M) was titrated with small aliquots of HCl and 

at least 30 spectra were recorded in the pH range of 2–9. Additionally, Cu(II) binding to ligand at 

various pH values was investigated. A solution (100 mM NaCl, 10 mM NaOH, pH 10) 



containing PyBD (50 M) and CuCl2 (50 M) was titrated with small aliquots of HCl and at 

least 30 spectra were recorded in the pH range of 3–8. The HypSpec program (Protonic 

Software, UK)3 was used to calculate the acidity and stability constants and the HySS2009 

program (Protonoc Software)4 was used to model the speciation diagrams of ligand and its 

corresponding metal complex. 

 

Parallel Artificial Membrane Permeability Assay adapted for the blood-brain barrier 

(PAMPA-BBB) 

PAMPA-BBB experiments were carried out using the PAMPA Explorer kit (pION Inc., 

Billerica, MA) using previously reported protocols with modifications.2, 5-8 Each stock solution 

was diluted with Prisma HT buffer (pH 7.4, pION) to a final concentration of 25 M (1% v/v 

final DMSO concentration). The resulting stock solution was added to wells of the donor plate 

(200 L, number of replicates = 12). The polyvinylidene fluoride (0.45 M) filter membrane on 

the acceptor plate was coated with the BBB-1 lipid formulation (5 L, pION) and placed on top 

of the donor plate, forming a sandwich. Brain sink buffer (200 L, pION) was added to each 

well of the acceptor plate. The sandwich was incubated at room temperature for 4 h without 

stirring. The UV-vis spectra of the solutions for reference, acceptor, and donor plates were 

measured using a microplate reader. The PAMPA Explorer software v.3.5 (pION) was used to 

calculate the –logPe for each compound. Designation of CNS± was assigned by comparison to 

those that were identified in previous reports.5-7 

 

Metal binding studies 

The binding of PyED and PyBD with Cu(II) and Zn(II) was investigated by UV-vis absorption.2 

A solution of ligand (20 M, 1% v/v DMSO) was treated with CuCl2 or ZnCl2 (1 equiv). 

Solutions were incubated at 4 C for 1 h and the optical spectrum of the resulting solution was 

recorded. 

 

Metal selectivity 

The metal selectivity of PyBD was examined by measuring the optical changes upon addition of 

CuCl2 (1 equiv) to a solution of PyBD (50 M, 1% v/v DMSO) previously treated with another 

metal chloride salt (1 or 25 equiv; MgCl2, CaCl2, MnCl2, FeCl2, FeCl3, CoCl2, NiCl2, or ZnCl2). 



The Fe(II) and Fe(III) solutions were prepared anaerobically and spectra recorded under 

nitrogen. The quantification of metal selectivity was calculated by comparing and normalizing 

the absorption values for the metal–ligand complexes at 285 and 305 nm to the absorption at 

these wavelengths before and after Cu(II) addition. 

 

Amyloid- peptide experiments 

Amyloid- experiments were performed according to previously published procedures with 

slight modifications.2,8,9 A40 or A42 was dissolved in ammonium hydroxide (NH4OH, 1% v/v, 

aq), aliquoted, lyophilized overnight, and stored at −80 C. A stock solution was prepared by 

dissolving A in 1% NH4OH and diluted with ddH2O. For the disaggregation experiment, A 

(25 M) with and without metal ions (CuCl2 or ZnCl2, 25 M) was first incubated for 24 h at 37 

or 43 C with constant agitation. Afterward, a compound (50 M, 1% v/v final DMSO 

concentration) was added and followed by an additional 2, 8, or 24 h incubation at 37 or 43 C 

with constant agitation. For the inhibition experiment, A (25 M) was treated with or without 

metal ions (CuCl2 or ZnCl2; 25 M) for 2 min, followed by addition of a compound (50 M; 1% 

v/v final DMSO concentration). The resulting samples were incubated for 2, 8, or 24 h at 37 or 

43 C with constant agitation. Both studies were performed using a buffered solution (20 M 

HEPES, pH 6.6 (for CuCl2) or pH 7.4 (metal-free and ZnCl2), 150 M NaCl). 

 

Gel electrophoresis 

The A peptide experiments described above were analyzed using gel electrophoresis followed 

by Western blotting with an anti-A antibody (6E10, Covance, Princeton, NJ).2, 8, 9 Each sample 

(10 L) was separated using a 10–20% Tris-tricine gel (Invitrogen, Grand Island, NY). 

Following the separation, the proteins were transferred onto a nitrocellulose membrane and 

blocked with bovine serum albumin (BSA, 3% w/v, Sigma-Aldrich) in Tris-buffered saline 

(TBS) containing 0.1% Tween-20 (TBS-T) for 12 h (A40) or 2–3 h (A42) at ambient 

temperature. The membranes were incubated with an anti-A antibody (1:2000) in 2% BSA (w/v 

in TBS-T) for 4 h at ambient temperature (A40) or overnight at 4 C (A42). After washing, 

membranes were probed with the horseradish peroxidase-conjugated goat anti-mouse antibody 

(1:10,000) in 2% BSA for 1 h at ambient temperature. Thermo Scientific Supersignal West Pico 



Chemiluminescent Substrate (Thermo Scientific, Rockford, IL) was used to visualize protein 

bands. 

 

Transmission electron microscopy (TEM) 

Samples for TEM were prepared following a previously reported method (A40 samples; A42 

samples2,8,9). Glow discharge grids (Formar/Carbon 300 mesh; Electron Microscopy Sciences, 

Hatfield, PA) were treated with 24 h incubated samples from either disaggregation or inhibition 

experiments (5 L) for 5 min (A40 samples) or 2 min (A42 samples) at room temperature and 

excess sample was removed with filter paper. (A40 samples): Each grid was incubated with 

uranyl acetate (2% w/v ddH2O, 5 L, 5 min). Excess uranyl acetate was blotted and the grids 

were washed three time with ddH2O (5 L) and air-dried at room temperature. Images were 

acquired by a JEOL 1010 transmission electron microscope (80 kV, 25,000x magnification). 

(A42 samples): Grids were washed with ddH2O three times. Each grid was stained with uranyl 

acetate (1% w/v ddH2O, 5 L). Excess uranyl acetate was blotted off and grids were air-dried for 

15 min at room temperature. Images were acquired by a Philips CM-100 transmission electron 

microscope (80 kV, 25,000x magnification). 

 

Interaction of PyBD and PyED with Amyloid- (A) by mass spectrometry 

Samples were prepared by mixing stock solutions of PyED or PyBD (300 M in DMSO) with 

A40 (50 M in 100 mM ammonium acetate buffer, pH 7) with or without ZnCl2 or CuCl2 (50 

M). Samples were incubated on ice for 2 h prior to analysis. Samples were dissolved in 100 

mM ammonium acetate with no organic modifier and infused at 400 nL/min into a Waters 

Synapt G2/S mass spectrometer in sensitivity mode (resolution = 11,000) and averaged for three 

minutes. Samples containing Leucine-Enkephalin (Sigma, St. Louis, MO) and A40 prepared as 

described above were used as a positive interaction control. 

 

Analysis of disaggregation samples by MALDI mass spectrometry 

Nine microliters of each disaggregation sample were combined with of 5% v/v aqueous 

trifluoroacetic acid (1 L) to disrupt fibrils and yield individual monomeric peptide. The 

resulting samples were desalted using a Ziptip C4 (Millipore, Billerica, MA) in accordance with 



the manufacturer’s instructions. Three microliters of 1:1 v/v acetonitrile:water was used to elute 

the peptides; the peptide-containing eluate (1 L) was combined of 5 g/L -cyano-4-

hydroxycinnamic acid (CHCA) matrix in 50% aqueous acetonitrile, 0.1% trifluoroacetic acid (3 

L). The matrix-peptide solution (0.5 L) was deposited onto a single spot of a stainless steel 

MALDI target and allowed to air dry. Initial MALDI-TOF mass spectra were recorded with a 

Bruker Autoflex III instrument operated in reflectron mode and externally calibrated with bovine 

insulin (m/z 5734), ACTH 7-38 (m/z 3660), ACTH 18-37 (m/z 2465), Glu1-fibrinopeptide (m/z 

1570), angiotensin I (m/z 1297) and des-Arg1 bradykinin (m/z 904). Tandem mass spectra were 

recorded using a 4800 TOF-TOF MALDI tandem mass spectrometer; the collision cell was filled 

with 4  10-6 mbar of air and accelerating the precursor ions to 1 keV of kinetic energy with the 

precursor selector set to a resolving power of 150; all tandem mass spectra are the average of 

5000 individual laser shots and the data were smoothed using a 5-point Gaussian function. 
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Table S1 Fragment ions observed from post-source decay of m/z 4329 from Cu(II)A40 (Fig. 
S5A) including observed masses, relative intensities, and mass differences from predicted 
fragment masses. 

Observed mass Relative intensity Likely ID Theoretical mass Mass difference 
619.457 2.21 b5 619.284 0.17 
756.460 3.40 b6 756.342 0.12 
871.411 22.68 b7 871.369 0.04 
958.427 3.23 b8 958.401 0.03 

1015.482 2.20 b9 1015.423 0.06 
1178.451 2.11 b10 1178.486 0.04 
1307.433 12.53 b11 1307.529 0.10 
1406.525 5.35 b12 1406.597 0.07 
1543.546 9.29 b13 1543.656 0.11 
1570.822 1.70 y17 1570.899 0.08 
1680.698 6.83 b14 1680.715 0.02 
1808.695 4.79 b15 1808.774 0.08 
1936.955 3.76 b16 1936.869 0.09 
2049.939 3.33 b17 2049.953 0.01 
2148.876 3.16 b18 2149.021 0.15 
2296.209 4.46 b19 2296.089 0.12 
2444.432 3.74 b20 2444.688 0.26 
2644.382 20.22 b21 2644.241 0.14 
2759.483 94.16 b23 2759.268 0.22 
2858.308 4.11 b24 2858.336 0.03 
2915.392 4.53 b25 2915.358 0.03 
3117.500 7.08 b27 3117.341 0.16 
3315.791 2.82 y31 3315.886 0.10 
3459.912 56.97 y33 3460.017 0.11 
3574.836 9.16 y34 3575.106 0.27 
3599.710 3.01 b32 3599.969 0.26 
3656.809 2.59 b33 3657.021 0.21 
3712.253 7.78 y35 3712.248 0.00 
4000.350 3.79 b36 4000.513 0.16 
4015.633 12.68 y37 4015.615 0.02 
4057.442 2.48 b37 4057.565 0.12 

 

  



Table S2 Fragment ions observed from post-source decay of m/z 4285 from Cu(II)A40  
PyBD (Fig. S5B) including observed masses, relative intensities, and mass differences from 
predicted fragment masses. 

Observed mass Relative intensity Likely ID Theoretical mass Mass difference 
574.504 3.10 b5  HCO2 574.286 0.22 
674.421 2.20 y7 674.391 0.03 
711.537 3.20 b6  HCO2 711.345 0.19 
712.416 3.40 b6  CO2 712.353 0.06 
731.364 2.50 y8 731.412 0.05 
826.449 28.80 b7  HCO2 826.372 0.08 
844.394 4.40 y9 844.496 0.10 
913.373 3.80 b8  HCO2 913.404 0.03 
970.452 2.90 b9  HCO2 970.425 0.03 
971.504 3.60 b9  CO2 971.433 0.07 
1133.52 2.40 b10  HCO2 1133.49 0.04 
1134.52 2.90 b10  CO2 1134.5 0.02 
1262.57 10.50 b11  HCO2 1262.53 0.04 
1263.41 11.60 b11  CO2 1263.54 0.13 
1361.52 5.60 b12  HCO2 1361.6 0.08 
1362.55 5.00 b12  CO2 1362.61 0.06 
1498.6 11.20 b13  HCO2 1498.66 0.06 

1499.46 10.10 b13  CO2 1499.67 0.20 
1570.89 3.70 y17 1570.9 0.01 
1635.71 9.10 b14  HCO2 1635.72 0.01 
1763.75 6.60 b15  HCO2 1763.78 0.03 
1891.91 5.90 b16  HCO2 1891.87 0.04 
2005.25 4.70 b17  HCO2 2004.95 0.29 
2104.04 4.70 b18  HCO2 2104.02 0.02 
2251.15 4.30 b19  HCO2 2251.09 0.06 
2520.36 4.30 y25 2520.39 0.03 
2598.35 16.90 b22  HCO2 2598.24 0.11 
2648.41 9.00 y26 2648.45 0.03 
2713.68 86.50 b23  HCO2 2713.27 0.41 
2785.84 10.10 y27 2785.51 0.33 
2814.15 5.90 b24  HCO2 2814.09 0.06 
2958.27 7.50 b25  HCO2 2958.22 0.06 
3072.33 11.90 b27  HCO2 3072.32 0.01 
3152.79 5.10 y30 3152.71 0.08 
3373.22 7.60 y32 3372.94 0.28 
3442.16 11.40 b31  HCO2 3441.79 0.37 
3460.38 46.50 y33 3460.02 0.36 
3712.29 8.70 y35 3712.25 0.04 
3868.24 4.70 y36 3868.44 0.20 
4015.09 9.10 y37 4015.61 0.53 
4215.64 2.70 y39 4215.81 0.17 



Table S3 Fragment ions observed from post-source decay of m/z 4239 from Cu(II)A40  
PyBD (Fig. S5C) including observed masses, relative intensities, and mass differences from 
predicted fragment masses. 

Observed mass Relative intensity Likely ID Theoretical mass Mass difference 
530.5286 4.84 b5  HC2O4 530.296 0.23 
667.4667 3.62 b6  HC2O4 667.3549 0.11 
782.4246 37.99 b7  HC2O4 782.3818 0.04 
844.2457 2.66 y9 844.4961 0.25 
869.463 3.34 b8  HC2O4 869.4139 0.05 

926.4001 3.05 b9  HC2O4 926.4353 0.04 
1089.459 3.95 b10  HC2O4 1089.499 0.04 
1213.87 3.24 y12 1213.734 0.14 

1218.457 14.61 b11  HC2O4 1218.541 0.08 
1317.528 6.94 b12  HC2O4 1317.61 0.08 
1454.609 12.1 b13  HC2O4 1454.669 0.06 
1570.836 4.07 y17 1570.899 0.06 
1591.619 10.43 b14  HC2O4 1591.728 0.11 
1685.918 2.96 y18 1685.926 0.01 
1719.872 6.91 b15  HC2O4 1719.786 0.09 
1814.964 2.95 y19 1814.968 0.00 
1847.794 7.48 b16  HC2O4 1847.881 0.09 
1960.873 4.36 b17  HC2O4 1960.965 0.09 
2059.954 4.09 b18  HC2O4 2060.034 0.08 
2180.016 5.52 y22 2180.142 0.13 
2207.393 4.34 b19  HC2O4 2207.102 0.29 
2353.785 4.63 b20  HC2O4 2354.17 0.38 
2425.501 4.38 b21  HC2O4 2425.207 0.29 
2520.673 4.64 y25 2520.389 0.28 
2554.565 17.47 b22  HC2O4 2554.25 0.32 
2649.796 10.42 y26 2650.175 0.38 
2670.506 99.66 b23  HC2O4 2670.945 0.44 
2768.267 5.53 b24  HC2O4 2768.345 0.08 
2785.295 7.74 y27 2785.507 0.21 
2924.781 8.35 y38 2924.46 0.32 
3023.272 9.27 y29 3023.593 0.32 
3156.52 7.43 b28  HC2O4 3156.489 0.03 

3373.051 8.95 y32 3372.939 0.11 
3397.561 5.6 b31  HC2O4 3397.781 0.22 
3460.594 42.99 y33 3460.017 0.58 
3868.439 4.63 y34 3868.437 0.00 
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