Supporting Information

From stoichiometric to catalytic reactivity of the aryl cycloaurated species with arylboronic acids: insight into the mechanism of gold-catalyzed oxidative C(sp²)–H arylation

Qian Wu, Chenglong Du, Yumin Huang, Xingyan Liu, Zhen Long, Feijie Song and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China

Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Table of Contents

I. General remarks	S3
II. Synthesis of gold(III) complexes and additional experiments	S3
III. ESI-HRMS detection	.S11
IV. Kinetic isotope effect experiments	. S 11
V. ORTEP diagrams of 3b , 7 and 8	.S15
VI. General procedure for gold-catalyzed directed C(sp ²)–H bond arylation	with
arylboronic acid	.S16
VII. Experimental data for the described substances	.S16
VIII. Removal of the directing group	.832
IX. References.	.832
X. Copies of ¹ H and ¹³ C NMR spectra.	.833

I. General remarks

NMR spectra were obtained with a Bruker AV II-400 spectrometer. The ¹H NMR (400 MHz) chemical shifts and the ¹³C NMR (100 MHz) chemical shifts were measured relative to CDCl₃ (H: δ = 7.26 ppm; C: δ = 77.16 ppm), DMSO-*d*₆ (H: δ = 2.50 ppm; C: δ = 39.52 ppm), and acetone-*d*₆ (H: δ = 2.05 ppm; C: δ = 29.84 ppm) as the internal references. High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). GC-Mass spectra were obtained with a Shimadzu-GCMS-QP 2010 SE (EI). X-Ray single-crystal diffraction data were collected on Oxford Xcalibur E and Xcalibur Gemini X-ray single crystal diffractometers. Elemental analysis data were obtained on EA FLASH 1112 SERIES. Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. AuCl₃, AuBr₃, and Au(OAc)₃ were purchased from Across, Alfa Aesar and Adamas, respectively. 2-(o-Tolyl)quinoline,¹ arylpyridine derivatives,² and 2-(o-tolyloxy)pyridine³ were prepared according to the literature procedure. Solvents were dried by refluxing over CaH₂ (for DCE), or sodium (for 1,4-dioxane, *t*-BuOH, *t*-AmylOH, diethyl ether, benzene, hexane, and THF), and freshly distilled prior to use. All syntheses and manipulations were carried out under N₂ atmosphere.

II. Synthesis of gold(III) complexes and additional experiments

(1) Synthesis of cyclometalated aryl gold(III) halides 3a and 3b⁴

To a solution of 2-(*o*-tolyl)pyridine (36.3 mg, 0.22 mmol) in *t*-BuOH (2 mL) was added AuCl₃ (60.3 mg, 0.2 mmol), and the yellow precipitate was formed immediately. This precipitate was filtered off, washed with petroleum ether, and dried in vacuum to afford the **2a** as a yellow solid in 93% yield (87.6 mg). M.p.: 134-136 °C. ¹H NMR (acetone-*d*₆, 400 MHz): $\delta = 2.28$ (s, 3H), 7.44-7.48 (m, 2H), 7.55 (td, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 8.02-8.06 (m, 2H), 8.46 (dd, J = 7.6 Hz, J = 1.2 Hz, 1H), 9.30 (dd, J = 6.8 Hz, J = 1.2 Hz, 1H) ppm. ¹³C NMR (acetone-*d*₆, 100 MHz): $\delta = 20.7$, 126.9, 128.1, 131.0, 131.8, 132.1, 137.8, 143.3, 151.6, 160.1 ppm. Anal. Calcd for C₁₂H₁₁AuCl₃N (%): C, 30.50; H, 2.35; N, 2.96, found: C, 30.36; H, 2.24; N, 2.90.

To a solution of 2-(*o*-tolyl)pyridine (36.3 mg, 0.22 mmol) in *t*-BuOH (2 mL) was added AuBr₃ (86.7 mg, 0.2 mmol), and the red precipitate was formed immediately. This precipitate was filtered off, washed with petroleum ether, and dried in vacuum to afford the **2b** as a red solid in 88% yield (106.1 mg). M.p.: 187-189 °C. ¹H NMR (acetone-*d*₆, 400 MHz): δ = 2.31 (s, 3H), 7.42-7.44 (m, 2H), 7.51-7.55 (m, 1H), 7.80-7.82 (m, 1H), 7.98-8.01 (m, 2H), 8.43 (td, *J* = 8.0 Hz, *J* = 1.6 Hz, 1H), 9.23 (dd, *J* = 6.0 Hz, *J* = 0.8 Hz, 1H) ppm. ¹³C NMR (acetone-*d*₆, 100 MHz): δ = 21.1, 126.7, 127.7, 131.0, 131.6, 131.8, 132.3, 137.6, 142.9, 152.3, 160.1 ppm. Anal. Calcd for C₁₂H₁₁AuBr₃N (%): C, 23.79; H, 1.83; N, 2.31, found: C, 23.79; H, 1.50; N, 2.09.

A sealed tube with a magnetic stirring bar was charged with **2a** (47.1 mg, 0.1 mmol), MeCN (2.0 mL) and H₂O (2.0 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at 130 °C for 8 h. The white solid was filtered off, washed with the mixture of MeCN and H₂O (1/1, v/v), and dried in vacuum to afford the **3a** as a white solid in 53% yield (23.1 mg). M.p.: >250 °C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 2.74 (s, 3H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.76-7.82 (m, 2H), 8.34-8.42 (m, 2H), 9.72 (dd, *J* = 6.0 Hz, *J* = 1.2 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 22.9, 124.7, 125.4, 128.0, 130.2, 133.4, 138.2, 140.5, 143.9, 148.9, 152.8, 163.9 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₀AuClN [M-Cl]⁺ 400.0167, found 400.0163. Anal. Calcd for C₁₂H₁₀AuCl₂N (%): C, 33.05; H, 2.31; N, 3.21, found: C, 32.78; H, 2.43; N, 3.34.

A sealed tube with a magnetic stirring bar was charged with **2b** (60.3 mg, 0.1 mmol), MeCN (2.0 mL) and H₂O (2.0 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at 130 °C for 8 h. The white solid was filtered off, washed with the mixture of MeCN and H₂O (1/1, v/v), and dried in vacuum to afford the **3b** as a white solid in 34% yield (17.8 mg). M.p.: 225-227 °C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 2.74 (s, 3H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.79 (t, *J* = 6.4 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.34-8.42 (m, 2H), 9.94 (d, *J* = 5.6 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 23.2, 124.8, 125.6, 130.2, 130.5, 133.2, 138.3, 141.2, 143.6, 150.0, 154.0, 163.9 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₀AuBrN [M-Br]⁺ 443.9662, found 443.9663. Anal. Calcd for C₁₂H₁₀AuBr₂N (%): C, 27.45; H, 1.92; N, 2.67, found: C, 27.75; H, 1.58; N, 2.46.

(2) Reactivities of 3a and 3b with PhB(OH)₂

A sealed tube with a magnetic stirring bar was charged with **3a** or **3b** (0.05mmol), phenylboronic acid (18.3 mg, 0.15 mmol, 3.0 equiv), additive (3.0 equiv), and *t*-BuOH (1 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at 130 °C for 12 h. The reaction mixture was then cooled to ambient temperature, diluted with 10 mL of CH₂Cl₂, filtered through a Celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) to provide product **4aa** as a white solid. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.20$ (s, 3H), 6.89 (d, J = 7.6 Hz, 1H), 7.07-7.10 (m, 3H), 7.12-7.17 (m, 3H), 7.26-7.31 (m, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.44 (td, J = 7.6 Hz, J = 1.6 Hz, 1H), 8.63 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 20.6$, 121.4, 125.7, 126.3, 127.68, 127.69, 128.1, 129.5, 129.7, 135.8, 136.8, 139.4, 141.4, 141.8, 148.9, 159.7 ppm. M.p.: 49 °C. HRMS (ESI⁺): calcd for C₁₈H₁₆N [M+H]⁺ 246.1283, found 246.1284.

Entry	X	Additive	Yield $(\%)^b$
1	Cl	-	NR
2	Cl	t-BuOK	84%
3	Cl	КОН	87%
4	Cl	KF	89%
5 ^{<i>c</i>}	Cl	NFSI	70%
6^d	Cl	NFSI	NR
7	Br	-	NR

Table S1: Stoichiometric reaction of **3a** or **3b** with PhB(OH)₂.^{*a*}

8	Br	KF	94%
9 ^c	Br	NFSI	73%
10 ^c	Br	Selectfluor	72%
11 ^c	Br	PhI(OAc) ₂	NR

^{*a*} Reaction conditions: **3a** or **3b** (0.05 mmol), phenylboronic acid (0.15 mmol, 3.0 equiv), additive (0.15 mmol, 3.0 equiv), and *t*-BuOH (1.0 mL) at 130 °C for 12 h under N2. ^{*b*} Yields of isolated products. ^{*c*} For 24 h. ^{*d*} At 60 °C. NR = no reaction. Selectfluor = 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate). NFSI = *N*-Fluorobenzenesulfonimide.

(3) Gold-catalyzed reactions of 2-(o-tolyl)pyridine (1a) with phenylboronic acid

A sealed tube with a magnetic stirring bar was charged with 2-(*o*-tolyl)pyridine **1a** (33.8 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol, 3.0 equiv), gold(III) bromide (4.4 mg, 0.01 mmol, 0.05 equiv), NFSI (189.2 mg, 0.6 mmol, 3.0 equiv), and *t*-BuOH (2 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at 130 °C for 24 h. The reaction mixture was then cooled to ambient temperature, diluted with 10 mL of CH₂Cl₂, filtered through a Celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on neutral alumina (petroleum ether/acetone = 30:1, v/v) to provide product **4aa** as a white solid in 91% yield (44.6 mg).

A sealed tube with a magnetic stirring bar was charged with 2-(*o*-tolyl)pyridine **1a** (33.8 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol, 3.0 equiv), **3b** (5.2 mg, 0.01 mmol, 0.05 equiv), NFSI (189.2 mg, 0.6 mmol, 3.0 equiv), and *t*-BuOH (2 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at 130 ^oC for 24 h. The reaction mixture was then cooled to ambient temperature, diluted with 10 mL of CH₂Cl₂, filtered through a Celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) to provide product **4aa** as a white solid in 94% yield (46.1 mg).

(4) Synthesis of cyclometalated biaryl gold(III) species 7⁵

A sealed tube with a magnetic stirring bar was charged with gold(III) acetate (262 mg, 0.7 mmol), 2-(*o*-tolyl)pyridine (125.5 mg, 0.74 mmol, 1.06 equiv), distilled water (10 mL) and trifluoroacetic acid (10 mL). Then the reaction mixture was heated in the microwave oven at 120 °C for 35 min. After the solution was cooled to room temperature, additional trifluoroacetic acid was added until the white precipitate was dissolved. Then the yellow solution was filtered through a Celite pad, and the product was precipitated by addition of water. The precipitated solid was filtered, washed with water and dried under vacuum to give [Au(OCOCF₃)₂(tpy)] in 61% yield (252.4 mg). ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 2.74 (s, 3H), 6.87 (d, *J* = 8.0 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.76-7.80 (m, 1H), 8.34 (d, *J* = 8.0 Hz, 1H), 8.44-8.48 (m, 1H), 8.67 (dd, *J* = 6.0 Hz, *J* = 1.2 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 22.1, 125.0, 125.1, 125.8, 130.4, 134.1, 138.8, 139.5, 142.7, 145.1, 148.4, 158.7, 159.1, 163.2 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₀AuF₆NNaO₄ [M+Na]⁺ 614.0077, found 614.0072.

A solution of Au(OCOCF₃)₂(tpy) (200.9 mg, 0.34 mmol) in dried THF (20 mL) at -78 °C was added PhMgBr (1.0 M in THF, 0.76 mL, 0.76 mmol, 2.2 equiv) under a flow of N₂. The reaction mixture was stirred for 1 h at -78 °C and then at room temperature for another hour. After the solvent was removed under vacuum, the resulting solid was dissolved in dichloromethane and washed with distilled water. The organic phase was dried over MgSO₄ and filtered through a pad of Celite. Then the dichloromethane was removed under vacuum to give cyclometalated biaryl gold(III) species **7** as an off-white solid in 83% yield (147.0 mg). M.p.: 159-161 °C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ = 2.74 (s, 3H), 6.49 (d, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.19-7.23 (m, 3H), 7.37 (d, *J* = 6.8 Hz, 2H), 7.78 (t, *J* = 6.0 Hz, 1H), 8.31 (td, *J* = 8.4 Hz, *J* = 1.6 Hz, 1H), 8.37 (d, *J* = 8.0 Hz, 1H), 9.64 (d, *J* = 5.2 Hz, 1H) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz): δ = 23.8, 124.5, 124.8, 125.3, 129.0, 130.0, 130.8, 132.3, 132.7, 137.3, 141.5, 142.1, 144.4, 149.4, 150.1, 161.5 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅AuN [M-Br]⁺ 442.0870, found 442.0872. Anal. Calcd for C₁₈H₁₅AuBrN (%): C, 41.40; H, 2.90; N, 2.68, found: C, 41.52; H, 3.23; N, 2.55.

(5) Reductive elimination of 7

A sealed tube with a magnetic stirring bar was charged with 7 (26.1 mg. 0.05mmol) and *t*-BuOH (1 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at 80 °C for 12 h. The reaction mixture was then cooled to ambient temperature, diluted with 10 mL of CH₂Cl₂, filtered through a Celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on neutral alumina (petroleum ether/acetone = 30:1, v/v) to provide product **4aa** as a white solid in 98% yield or 96% yield in the presence of KF.

(6) Synthesis of [AuCl₂(Ph)(tpy)] (8)⁶

Under N₂, a mixture of benzene (1.06 mL, 12 mmol) and hexane (4 mL) was added dropwise to a hexane suspension of gold(III) chloride (181.1 mg, 0.6 mmol) at 0 °C. After being stirring at 0 °C for 1 h, the reaction mixture was added diethyl ether (4 mL), treated with diethyl ether solution (4 mL) of 2-(*o*-tolyl)pyridine (101.4 mg, 0.6 mmol, 1.0 equiv), and continued stirring at room temperature for 1 h. The resulting suspension was filtered through a pad of Celite, and washed with diethyl ether. The combined organic extracts were concentrated and the resulting residue was purified by silica gel chromatography (hexane/CH₂Cl₂ = 1/1, v/v) to provide [AuCl₂(Ph)(tpy)] (8) as a yellowish solid in 26% yield (80.0 mg). M.p.: 166-168 °C. ¹H NMR (CD₂Cl₂, 400 MHz): δ = 2.31 (s, 3H), 7.82-7.84 (m, 2H), 7.01-7.03 (m, 3H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.47-7.55 (m, 2H), 7.64-7.67 (m, 2H), 7.78-7.79 (m, 1H), 8.02-8.06 (m, 1H), 8.79 (d, *J* = 5.2 Hz, 1H) ppm. ¹³C NMR (CD₂Cl₂, 100 MHz): δ = 20.7, 125.2, 126.2, 127.0, 129.0, 129.3 130.3, 130.6, 131.1, 131.4, 132.3, 137.3, 138.0, 139.8, 149.5, 159.6 ppm. Anal. Calcd for C₁₈H₁₆AuCl₂N (%): C, 42.04; H, 3.14; N, 2.72. Found: C, 42.37; H, 3.21; N, 2.67.

(7) Stoichiometric reaction of [AuCl₂(Ph)(tpy)] (8)

A sealed tube with a magnetic stirring bar was charged with $[AuCl_2(Ph)(tpy)]$ 8 (22.6 mg, 0.05 mmol) and *t*-BuOH (1 mL) either in the presence or absence of NFSI (47.3 mg, 0.15 mmol) under N₂. A rubber septum was replaced with Teflon stopper, and the

system was evacuated twice and back filled with N_2 . Then the reaction mixture was stirred at 130 °C for 12 h. The reaction mixture was then cooled to ambient temperature and diluted with 10 mL of CH₂Cl₂. Then the organic phase was detected by GC-Mass, and no arylated product **4aa** was observed.

III. ESI-HRMS detection⁷

A sealed tube with a magnetic stirring bar was charged with AuBr₃ (2.2 mg, 0.005 mmol), 2-(*o*-tolyl)pyridine (16.9 mg, 0.1 mmol), phenylboronic acid (36.6 mg, 0.3 mmol), NFSI (94.6 mg, 0.3 mmol) and *t*-BuOH (1.0 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. After being stirred at 130 °C for 4 h, the reaction mixture was cooled to ambient temperature, diluted with methanol, and then detected by ESI-HRMS.

A sealed tube with a magnetic stirring bar was charged with **3b** (52.3 mg, 0.10 mmol), phenylboronic acid (36.6 mg, 0.3 mmol), NFSI (94.6 mg, 0.3 mmol) and *t*-BuOH (1.0 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. After being stirred at 130 °C for 4 h, the reaction mixture was cooled to ambient temperature, diluted with methanol, and then detected by ESI-HRMS.

IV. Kinetic isotope effect experiments

(1) Synthesis of [D]-1a⁸

To a solution of 2-(*o*-tolyl)pyridine (933.4 mg, 5.52 mmol) in AcOH (30 mL) in a sealed tube was added *N*-bromosuccinimide (1.16 g, 6.62 mmol) and Pd(OAc)₂ (124 mg, 0.55 mmol). The reaction mixture was heated to 120 °C for 24 h. Then the reaction mixture was cooled to room temperature and solvent was removed in vacuum. The residue was purified by silica gel chromatography (EtOAc/hexanes = 1:10, v/v) to afford 2-(2-bromo-6-methylphenyl)pyridine as pale yellow oil in 51% yield (700 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.09 (s, 3H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.27-7.31 (m, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.78 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 8.73 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.8, 122.4, 123.1, 124.8, 129.2, 129.4, 130.2, 136.4, 138.7, 141.2, 149.7, 159.2 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₁BrN [M+H]⁺ 248.0075, found 248.0070.

To the solution of 2-(2-bromo-6-methylphenyl)pyridine (123.5 mg, 0.5 mmol) in 8 mL of dry diethyl ether, *n*-butyl lithium (0.4 mL of 2.5 M in hexane, 1.0 mmol, 2 equiv) was added dropwise at -40 °C under nitrogen. After stirring for 30 min, the reaction mixture was quenched with 0.8 mL of D₂O, and was continued stirring for another hour. The reaction mixture was diluted with 20 mL of ethyl acetate and washed with brine. The organic layer was dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1, v/v) to give [D]-**1a** as colorless oil in 82% yield (69.7 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.30 (s, 3H), 7.16-7.25 (m, 4H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.67 (td, *J* = 7.6 Hz, *J* = 2.0 Hz, 1H), 8.63 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.4, 121.7, 124.2, 125.9, 128.4, 130.8, 135.9, 136.2, 140.5, 149.4, 160.2 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₁DN [M+H]⁺ 171.1033, found 171.1027.

(2) Hydrogen-deuterium exchange experiment

A sealed tube with a magnetic stirring bar was charged with AuBr₃ (2.2 mg, 0.005 mmol), 2-(*o*-tolyl)pyridine (16.6 mg, 0.1 mmol), phenylboronic acid (36.6 mg, 0.3 mmol), NFSI (94.6 mg, 0.3 mmol) and *t*-BuOD (1.0 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. The reaction mixture was refluxed at 130 °C in 2 h. The reaction mixture was then cooled to ambient temperature, diluted with 10 mL of CH₂Cl₂, filtered through a pad of Celite, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) to recover the starting material **1a**. ¹H NMR (acetone-*d*₆, 400 MHz) analysis showed that the hydrogen at the *ortho*-position of phenyl ring of 2-(*o*-tolyl)pyridine (**1a**) was not deuterated. No [D]-**1a** was observed when the reaction was carried out in the absence of PhB(OH)₂ in 2 h.

Figure S1. ¹H NMR spectrum of hydrogen-deuterium exchange experiment.

(3) Kinetic isotope effect⁹

A sealed tube with a magnetic stirring bar was charged with **1a** or [D]-**1a** (0.1 mmol), phenylboronic acid (36.6 mg, 0.3 mmol), gold(III) bromide (2.2 mg, 0.005 mmol), NFSI (94.6 mg, 0.3 mmol), and *t*-BuOH (1 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. The resulting mixture was stirred at 130 °C for designated time (20 min, 40 min, 60 min, 80 min, and 120 min) and then an internal standard (1,1,2,2-tetrachloroethane, 10.5 μ L, 0.1 mmol) were added. The solution was filtered through a pad of Celite and washed with 10 mL of dichloromethane. The filtrate were concentrated and subjected to ¹H NMR analysis to determine the concentration of product. KIE = 0.001371/0.001414 = 0.96.

Figure S2. Plots of yield versus reaction time.

V. ORTEP diagrams of 3b, 7 and 8

Figure S3. ORTEP drawing of 3b with 50% probability thermal ellipsoids.

Figure S4. ORTEP drawing of 7 with 50% probability thermal ellipsoids.

Figure S5. ORTEP drawing of **8** with 50% probability thermal ellipsoids.

VI. General procedure for gold-catalyzed directed C(sp²)–H bond arylation with arylboronic acid

A sealed tube with a magnetic stirring bar was charged with AuBr₃ (4.4 mg, 0.01 mmol), *N*-heteroarene-containing arene (0.2 mmol), arylboronic acid (0.6 mmol, 3.0 equiv), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) under N₂. A rubber septum was replaced with Teflon stopper, and the system was evacuated twice and back filled with N₂. Then the reaction mixture was stirred at the indicated temperature for 24 h. The reaction mixture was then cooled to ambient temperature, diluted with 10 mL of CH_2Cl_2 , filtered through a Celite pad, and washed with 10-20 mL of CH_2Cl_2 . The combined organic extracts were concentrated and the resulting residue was purified by neutral alumina column chromatography to provide the desired product.

VII. Experimental data for the described substances

2-(3-Methylbiphenyl-2-yl)pyridine (4aa)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a white solid in 91% yield (44.6 mg). M.p.: 49-50 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.20 (s, 3H), 6.89 (d, *J* = 7.6 Hz, 1H), 7.07-7.10 (m, 3H), 7.11-7.17 (m, 3H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.44 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 8.63 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 121.4, 125.7, 126.3, 127.68, 127.69, 128.1, 129.5, 129.7, 135.8, 136.8, 139.4, 141.4, 141.8, 148.9, 159.7 ppm. HRMS (ESI⁺): calcd for $C_{18}H_{16}N [M+H]^+$ 246.1283, found 246.1284. *Characterization data were consistent with literature values.*¹⁰

2-(3'-Methyl-3-methylbiphenyl-2-yl)pyridine (4ac)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 3-methylphenylboronic acid (81.6 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded colorless oil in 70% yield (36.3 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.19 (s, 3H), 2.20 (s, 3H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.6 Hz, 1H), 6.92-6.94 (m, 2H), 7.01 (t, *J* = 8.0 Hz, 1H), 7.07-7.11 (m, 1H), 7.27-7.30 (m, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.45 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 8.64 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 21.4, 121.3, 125.7, 126.8, 127.0, 127.5, 127.7, 128.1, 129.4, 130.6, 135.8, 136.7, 137.2, 139.4, 141.4, 141.6, 148.9, 159.8 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₈N [M+H]⁺ 260.1439, found 260.1438. *Characterization data were consistent with literature values*.¹⁰

2-(3,4'-Dimethylbiphenyl-2-yl)pyridine (4ad)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 4-methylphenylboric acid (81.6 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded colorless oil 80% yield (41.5 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.20 (s, 3H), 2.28 (s, 3H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.95-7.02 (m, 4H), 7.11-7.14 (m, 1H), 7.28-7.31 (m, 2H), 7.37 (t, *J* = 7.6 Hz, 1H),

7.48 (td, J = 8.0 Hz, J = 2.0 Hz, 1H), 8.66 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 20.6, 21.2, 121.4, 125.7, 127.8, 128.1, 128.5, 129.3, 129.6, 135.86, 135.93, 136.8, 138.8, 139.4, 141.3, 149.0, 159.9 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₈N [M+H]⁺ 260.1439, found 260.1440.$ *Characterization data were consistent with literature values.*¹⁰

Methyl 3'-methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-4-carboxylate (4ae)

2-(*o*-Tolyl)pyridine (33.0 mg, 0.2 mmol), 4-methoxycarbonylphenylboronic acid (108.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 20:1, v/v) afforded a white solid in 61% yield (37.0 mg). M.p.: 92-93 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.18 (s, 3H), 3.86 (s, 3H), 6.88 (d, *J* = 7.6 Hz, 1H), 7.08-7.11 (m, 1H), 7.12-7.15 (m, 2H), 7.25-7.27 (m, 1H), 7.32 (d, *J* = 6.8 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.44 (td, *J* = 7.6 Hz, *J* = 2.0 Hz, 1H), 7.79-7.82 (m, 2H), 8.60-8.62 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 52.2, 121.7, 125.7, 127.5, 128.0, 128.3, 129.0, 129.7, 130.2, 136.0, 137.0, 139.4, 140.3, 146.7, 149.1, 159.2, 167.2 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₈NO₂ [M+H]⁺ 304.1338, found 304.1343. Anal. Calcd for C₂₀H₁₇NO₂ (%): C, 79.19; H, 5.65; N, 4.62, found: C, 78.81; H, 5.71; N, 4.48.

1-(3'-Methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-4-yl)ethanone (4af)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 4-acetylphenylboronic acid (98.4 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL)

at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 20:1, v/v) afforded a white solid in 62% yield (35.6 mg). M.p.: 84-86 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.18 (s, 3H), 2.53 (s, 3H), 6.89 (d, *J* = 7.6 Hz, 1H), 7.09-7.12 (m, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 6.8 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.46 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 8.62 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 26.7, 121.7, 125.7, 127.5, 127.9, 128.3, 129.9, 130.2, 135.1, 136.0, 137.1, 139.4, 140.2, 146.9, 149.2, 159.2, 198.0 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₈NO [M+H]⁺ 288.1388, found 288.1386. *Characterization data were consistent with literature values*.¹⁰

2-(3'-Nitro-3-methylbiphenyl-2-yl)pyridine (4ag)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 3-nitrophenylboronic acid (100.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 20:1, v/v) afforded yellow oil in 35% yield (20.3 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.20 (s, 3H), 6.95 (d, *J* = 7.6 Hz, 1H), 7.10-7.14 (m, 1H), 7.26-7.29 (m, 2H), 7.35-7.43 (m, 3H), 7.51 (td, *J* = 7.6 Hz, *J* = 2.0 Hz, 1H), 7.96-8.00 (m, 2H), 8.62 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.5, 121.4, 121.9, 124.5, 125.6, 127.5, 128.5, 128.6, 130.6, 135.8, 136.2, 137.2, 138.9, 139.6, 143.4, 147.8, 149.4, 158.8 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅N₂O₂ [M+H]⁺ 291.1134, found 291.1139. *Characterization data were consistent with literature values*.¹⁰

2-(3'-Methoxyl-3-methylbiphenyl-2-yl)pyridine (4ah)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 3-methoxylphenylboronic acid (91.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 20:1, v/v) afforded yellowish oil in 44% yield (24.2 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.19 (s, 3H), 3.59 (s, 3H), 6.58-6.59 (m, 1H), 6.66-6.69 (m, 1H), 6.70-6.73 (m, 1H), 6.89-6.91 (m, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 7.09-7.13 (m, 1H), 7.28-7.31 (m, 2H). 7.36 (t, *J* = 7.6 Hz, 1H), 7.47 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 8.64-8.66 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 55.2, 112.9, 114.7, 121.5, 122.2, 125.7, 127.6, 128.2, 128.8, 129.6, 136.0, 136.9, 139.3, 141.2, 143.1, 148.9, 158.8, 159.8 ppm. calcd for C₁₉H₁₈NO [M+H]⁺ 276.1388, found 276.1385. Anal. Calcd for C₁₉H₁₇NO (%): C, 82.88; H, 6.22; N, 5.09, found: C, 82.41; H, 6.08; N, 4.77.

2-(3-Methyl-[1,1':4',1''-terphenyl]-2-yl)pyridine (4ai)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 4-biphenylboric acid (118.9 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a white solid in 83% yield (53.3 mg). M.p.: 109-111 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.21 (s, 3H), 6.94 (d, *J* = 8.0 Hz, 1H) 7.09-7.12 (m, 1H), 7.14-7.17 (m, 2H), 7.31-7.34 (m, 3H), 7.37-7.42 (m, 5H), 7,47 (td, *J* = 7.6 Hz, *J* = 2.0 Hz, 1H), 7.54-7.56 (m, 2H), 8.65-7.67 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 121.5, 125.8, 126.4, 127.0, 127.3, 127.7, 128.2, 128.8, 129.6, 130.2, 135.9, 136.9, 139.0, 139.5, 140.76, 140.82, 140.9, 149.0, 159.7 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₀N [M+H]⁺ 322.1596, found 322.1595. Anal. Calcd for C₂₄H₁₉N (%): C, 89.68; H, 5.96; N, 4.36, found: C, 89.58; H, 6.20; N, 4.17.

2-(4'-Trifluoromethyl-3-methylbiphenyl-2-yl)pyridine (4aj)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 4-trifluoromethylphenylboronic acid (114.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a white solid in 64% yield (40.1 mg). M.p.: 46-47 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.19 (s, 3H), 6.89 (d, *J* = 7.6 Hz, 1H), 7.10-7.14 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 6.8 Hz, 1H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.37-7.40 (m, 3H), 7.48 (td, *J* = 8.0 Hz, *J* = 1.6 Hz, 1H), 8.62 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.5, 121.8, 124.62, 124.65, 124.69, 124.73, 125.7, 127.6, 128.4, 130.0, 130.3, 136.0, 137.1, 139.5, 140.0, 145.5, 149.2, 159.2 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₅F₃N [M+H]⁺ 314.1157, found 314.1153. *Characterization data were consistent with literature values*.¹⁰

2-(3'-Fluoro-3-methylbiphenyl-2-yl)pyridine (4ak)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 3-fluorophenylboronic acid (84.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography

(petroleum ether/acetone = 30:1, v/v) afforded colorless oil in 73% yield (38.4 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.20 (s, 3H), 6.81-6.86 (m , 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 7.07-7.15 (m, 2H), 7.28 (s, 1H), 7.33 (d, *J* = 6.8 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.50 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 8.65 (d, *J* = 5.6 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 113.3 (d, *J* = 20.9 Hz), 116.6 (d, *J* = 21.6 Hz), 121.6, 125.57 (d, *J* = 2.8 Hz), 125.61, 127.6, 127.5, 128.2, 129.1 (d, *J* = 8.3 Hz), 130.0, 136.0, 137.0, 140.2, 144.1 (d, *J* = 7.8 Hz), 149.1, 159.3, 162.3 (d, *J* = 243.7 Hz) ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅FN [M+H]⁺ 264.1189, found 264.1185. Anal. Calcd for C₁₈H₁₄FN (%): C, 82.11; H, 5.36; N, 5.32, found: C, 81.81; H, 5.42; N, 5.40.

2-(4'-Fluoro-3-methylbiphenyl-2-yl)pyridine (4al)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 4-fluorophenylboronic acid (84.1 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a white solid in 80% yield (42.1 mg). M.p.: 68-70 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.18 (s, 3H), 6.82 (t, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 1H), 7.01-7.05 (m, 2H), 7.09-7.12 (m, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 8.63 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 114.6 (d, *J* = 21.1 Hz), 121.5, 125.7, 127.6, 128.2, 129.6, 131.2 (d, *J* = 7.6 Hz), 136.0, 136.9, 137.7 (d, *J* = 3.3 Hz), 139.5, 140.3, 149.1, 159.5, 160.6 (d, *J* = 244.0 Hz) ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅FN [M+H]⁺ 264.1189, found 264.1185. *Characterization data were consistent with literature values*.¹⁰

2-(4'-Chloro-3-methylbiphenyl-2-yl)pyridine (4am)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 4-chlorophenylboronic acid (93.6 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 140 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a yellowish solid in 76% yield (42.4 mg). M.p.: 54-56 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.17 (s, 3H), 6.89 (d, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 2H), 7.09-7.13 (m, 3H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.49 (td, *J* = 8.0 Hz, *J* = 2.0 Hz, 1H), 8.63 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 121.6, 125.6, 127.6, 127.9, 128.3, 129.8, 131.0, 132.5, 136.0, 137.0, 139.4, 140.1, 140.3, 149.1, 159.4 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅ClN [M+H]⁺ 280.0893, found 280.0891. *Characterization data were consistent with literature values*.¹⁰

2-(4'-Bromo-3-methylbiphenyl-2-yl)pyridine (4an)

2-(*o*-Tolyl)pyridine (33.0 mg, 0.2 mmol), 4-bromophenylboronic acid (120.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 140 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a white solid in 67% yield (43.3 mg). M.p.: 68-70 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.20 (s, 3H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 2H), 7.13-7.16 (m, 1H), 7.24-7.29 (m, 3H), 7.33 (d, *J* = 6.8 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.51 (td, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 8.65 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 120.7, 121.6, 125.6, 127.5,

128.3, 129.9, 130.9, 131.4, 136.0, 137.0, 139.4, 140.1, 140.7, 149.1, 159.4 ppm. HRMS (ESI⁺): calcd for $C_{18}H_{15}BrN$ [M+H]⁺ 324.0388, found 324.0388. *Characterization data were consistent with literature values.*¹⁰

2-(2-Methyl-6-(naphthalen-2-yl)phenyl)pyridine (4ao)

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), 2-naphthaleneboronic acid (103.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded colorless oil in 72% yield (42.5 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.22 (s, 3H), 6.91 (d, *J* = 8.0 Hz, 1H), 7.04-7.07 (m, 1H), 7.15 (dd, *J* = 8.4 Hz, *J* = 1.6 Hz, 1H), 7.33-7.42 (m, 6H), 7.56 (d, *J* = 8.4 Hz,1H), 7.64 (s, 1H), 7.68-7.74 (m, 2H), 8.63-8.65 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 121.4, 125.77, 125.81, 126.0, 127.0, 127.6, 128.05, 128.08, 128.1, 128.2, 128.6, 129.7, 131.9, 133.2, 135.9, 137.0, 139.4, 139.6, 141.2, 149.0, 159.6 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₈N [M+H]⁺ 296.1439, found 296.1440. *Characterization data were consistent with literature values*.¹¹

2-(3-Methylbiphenyl-2-yl)pyrimidine (4ba)

2-(*o*-Tolyl)pyrimidine (34.0 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 20:1, v/v) afforded a white solid in 41% yield (20.2 mg). M.p.: 97-98 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.21 (s, 3H), 7.07-7.15 (m, 6H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 8.66 (d, J = 4.8 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.2, 118.6, 126.4, 127.8, 127.9, 128.7, 129.2, 129.5, 136.1, 138.4, 141.2, 141.7, 156.5, 168.4 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₅N₂ [M+H]⁺ 247.1235, found 247.1236. Anal. Calcd for C₁₇H₁₄N₂ (%): C, 82.90; H, 5.73; N, 11.37, found: C, 83.02; H, 5.99; N, 11.23.

2-(3-Methyl-[1,1'-biphenyl]-2-yl)quinoline (4ca)

2-(*o*-Tolyl)quinoline (43.8 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 140 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded yellow oil in 81% yield (47.8 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.23 (s, 3H), 6.98 (d, *J* = 8.4 Hz, 1H), 7.06-7.08 (m, 3H), 7.12-7.14 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.70-7.76 (m, 2H), 7.89 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.7, 123.9, 126.48, 126.54, 127.7, 127.8, 127.9, 128.4, 129.5, 129.9, 135.6, 137.0, 139.5, 141.3, 141.6, 147.7, 160.2 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₈N [M+H]⁺ 296.1439, found 260.1438. Anal. Calcd for C₂₂H₁₇N (%): C, 89.46; H, 5.80; N, 4.74, found: C, 89.17; H, 6.14; N, 4.33.

5-Methoxy-2-(3-methyl-[1,1'-biphenyl]-2-yl)pyridine (4da)

5-Methoxy-2-(*o*-tolyl)pyridine (39.8 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (hexane/acetone = 30:1, v/v) afforded colorless oil in 95% yield (52.3 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.22 (s, 3H), 3.85 (s, 3H), 6.82 (d, *J* = 8.4 Hz, 1H), 7.00 (dd, *J* = 8.4 Hz, *J* = 2.8 Hz, 1H), 7.10-7.12 (m, 2H), 7.15-7.18 (m, 3H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 8.36 (d, *J* = 2.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.7, 55.6, 120.5, 125.9, 126.2, 127.70, 127.72, 128.0, 129.5, 129.7, 136.2, 137.3, 139.0, 141.6, 142.0, 151.8, 153.8 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₈NO [M+H]⁺ 276.1388, found 276.1390. Anal. Calcd for C₁₉H₁₇NO (%): C, 82.88; H, 6.22; N, 5.09, found: C, 82.73; H, 6.12; N, 4.81.

4-Methyl-2-(3-methyl-[1,1'-biphenyl]-2-yl)pyridine (4ea)

4-Methyl-2-(*o*-tolyl)pyridine (36.6 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (hexane/acetone = 30:1, v/v) afforded colorless oil in 91% yield (47.2 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.17 (s, 3H), 2.21 (s, 3H), 6.74 (s, 1H), 6.92 (dd, *J* = 4.8 Hz, *J* = 0.8 Hz, 1H), 7.10-7.17 (m, 5H), 7.28-7.31 (m, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 8.49 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 21.0, 122.4, 126.3, 126.6, 127.62, 127.65, 128.0, 129.4, 129.7, 136.8, 139.6, 141.4, 141.9, 146.8, 148.7, 159.4 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₈N [M+H]⁺ 260.1439, found 260.1434.

5-Methoxy-2-(2-phenylnaphthalen-1-yl)pyridine (4fa)

5-Methoxy-2-(naphthalen-1-yl)pyridine (47.0 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 140 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a yellowish solid in 45% yield (28.0 mg). M.p.: 134-136 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 3.76 (s, 3H), 6.65 (dd, *J* = 8.4 Hz, *J* = 2.8 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 6.88-7.06 (m, 5H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.54-7.62 (m, 3H), 7.94-8.02 (m, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 55.8, 119.8, 125.3, 125.6, 126.0, 127.4, 128.7, 129.3, 129.4, 130.8, 131.0, 135.5, 135.9, 138.8, 140.1, 143.6, 152.9, 153.4 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₈NO [M+H]⁺ 312.1388, found 312.1382. Anal. Calcd for C₂₂H₁₇NO (%): C, 84.86; H, 5.50; N, 4.50, found: C, 84.73; H, 5.63; N, 4.53.

2-([1,1':3',1''-Terphenyl]-2'-yl)pyridine (4ga)

2-((1,1'-Biphenyl)-2-yl)pyridine (46.2 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 140 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded a white solid in 60% yield (36.9 mg). M.p.: 124-126 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 6.87-6.92 (m, 2H), 7.09-7.18 (m, 10H), 7.30 (td, *J* = 8.0 Hz, *J* = 2.0 Hz, 1H), 7.44-7.46 (m, 2H), 7.52 (td, *J* = 8.4 Hz, *J* = 6.4 Hz, 1H), 8.31 (dd, *J* = 4.8 Hz, *J* = 0.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 121.0, 126.4, 126.9, 127.8, 128.3, 129.6, 129.8, 135.0, 138.7, 141.7, 142.0, 148.6, 159.1 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₇NNa [M+Na]⁺ 330.1259, found 330.1252. *Characterization data were consistent with literature values*.¹⁰

2-(3,5-Dimethyl-[1,1'-biphenyl]-2-yl)-4-methylpyridine (4ha)

2-(2,4-Dimethylphenyl)-4-methylpyridine (39.4 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (petroleum ether/acetone = 30:1, v/v) afforded colorless oil in 52% yield (28.4 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.13 (s, 3H), 2.15 (s, 3H), 2.40 (s, 3H), 6.69 (s, 1H), 6.89 (d, *J* = 5.2 Hz, 1H), 7.07-7.14 (m, 7H), 8.46 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.5, 21.0, 21.3, 122.2, 126.2, 126.8, 127.6, 128.4, 129.7, 130.2, 136.7, 136.9, 137.5, 141.3, 142.0, 146.6, 148.6, 159.5 ppm. HRMS (ESI⁺): calcd for C₂₀H₂₀N [M+H]⁺ 274.1596, found 274.1596. Anal. Calcd for C₂₀H₁₉N (%): C, 87.87; H, 7.01; N, 5.12, found: C, 87.53; H, 7.04; N, 5.05.

2-((3-Methyl-[1,1'-biphenyl]-2-yl)oxy)pyridine (4ia)

2-(*o*-Tolyloxy)pyridine (37.0 mg, 0.2 mmol), phenylboronic acid (73.2 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (CH₂Cl₂/hexane = 3:1, v/v) afforded a white solid in 71% yield (37.1 mg). M.p.: 57-59 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.22 (s, 3H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.84 (dd, *J* = 6.4 Hz, *J* = 5.2 Hz, 1H), 7.22-7.33 (m, 6H), 7.45 (d, *J* = 6.8 Hz, 2H), 7.51-7.56 (m, 1H), 8.09 (dd, *J* = 4.8 Hz, *J* = 1.2 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 17.0, 110.3, 117.6, 125.7, 127.0, 128.0, 128.9, 129.2, 130.6, 132.1, 135.6, 138.4, 139.1, 147.7, 149.0, 163.4 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅NNaO [M+Na]⁺ 284.1051, found 284.1050. Anal. Calcd for C₁₈H₁₅NO (%): C, 82.73; H, 5.79; N, 5.36, found: C, 82.71; H, 5.84; N, 5.32.$

1-(3'-Methyl-2'-(pyridin-2-yloxy)-[1,1'-biphenyl]-4-yl)ethanone (4if)

2-(*o*-Tolyloxy)pyridine (37.0 mg, 0.2 mmol), 4-acetylphenylboronic acid (98.4 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (CH₂Cl₂/hexane = 3:1, v/v) afforded a white solid in 63% yield (38.2 mg). M.p.: 156-158 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.21 (s, 3H), 2.58 (s, 3H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.84 (dd, *J* = 6.4 Hz, *J* = 5.2 Hz, 1H), 7.26-7.35 (m, 3H), 7.52-7.56 (m, 3H), 7.87 (d, *J* = 8.4 Hz, 2H), 8.06 (dd, *J* = 5.2 Hz, *J* = 1.6 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 17.0, 26.7, 110.3, 117.8, 125.9, 128.2, 128.6, 129.4, 131.4, 132.4, 134.6, 135.7, 139.3, 143.5, 147.7, 149.0, 163.2, 198.0 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₈NO₂ [M+H]⁺ 304.1338, found 304.1335. Anal. Calcd for C₂₀H₁₇NO₂ (%): C, 79.19; H, 5.65; N, 4.62, found: C, 79.34; H, 5.67; N, 4.66.

2-((3-Methyl-[1,1':4',1''-terphenyl]-2-yl)oxy)pyridine (4ii)

2-(*o*-Tolyloxy)pyridine (37.0 mg, 0.2 mmol), [1,1'-biphenyl]-4-ylboronic acid (118.9 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (CH₂Cl₂/hexane = 3:1, v/v) afforded colorless oil in 70% yield (47.2 mg). ¹H NMR

(CDCl₃, 400 MHz): $\delta = 2.21$ (s, 3H), 6.71 (dd, J = 8.0 Hz, J = 0.8 Hz, 1H), 6.81-6.84 (m, 1H), 7.25-7.36 (m, 4H), 7.40-7.44 (m, 2H), 7.50-7.54 (m, 5H), 7.57-7.59 (m, 2H), 8.08-8.09 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 17.1$, 110.3, 117.6, 125.8, 126.7, 127.1, 127.3, 128.8, 129.6, 130.7, 132.2, 135.2, 137.4, 139.2, 139.8, 140.9, 147.8, 149.2, 163.5 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₀NO [M+H]⁺ 338.1545, found 338.1540. Anal. Calcd for C₂₄H₁₉NO (%): C, 85.43; H, 5.68; N, 4.15, found: C, 85.05; H, 5.82; N, 4.08.

2-((3-Methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)oxy)pyridine (4ij)

2-(*o*-Tolyloxy)pyridine (37.0 mg, 0.2 mmol), 4-trifluoromethylphenylboronic acid (114.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (CH₂Cl₂/hexane = 3:1, v/v) afforded a white solid in 89% yield (58.6 mg). M.p.: 85-87 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.21 (s, 3H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.85-6.88 (m, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.32-7.37 (m, 1H), 7.52-7.58 (m, 5H), 8.06-8.08 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 17.0, 110.4, 117.9, 124.91, 124.94, 124.98, 125.0, 125.9, 128.7, 129.5, 131.4, 132.4, 134.4, 139.4, 142.2, 147.7, 149.1, 163.2 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₅F₃NO [M+H]⁺ 330.1106, found 330.1106. Anal. Calcd for C₁₉H₁₄F₃NO (%): C, 69.30; H, 4.28; N, 4.25, found: C, 69.25; H, 3.95; N, 4.35.

2-((4'-Fluoro-3-methyl-[1,1'-biphenyl]-2-yl)oxy)pyridine (4il)

2-(*a*-Tolyloxy)pyridine (37.0 mg, 0.2 mmol), 4-fluorophenylboronic acid (84.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (CH₂Cl₂/hexane = 3:1, v/v) afforded a white solid in 82% yield (45.8 mg). M.p.: 87-89 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.20 (s, 3H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.85 (dd, *J* = 6.8 Hz, *J* = 5.2 Hz, 1H), 6.93-6.99 (m, 2H), 7.23-7.32 (m, 3H), 7.37-7.42 (m, 2H), 7.52-7.56 (m, 1H), 8.07 (dd, *J* = 4.8 Hz, *J* = 1.6 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 17.0, 110.3, 114.9 (d, *J* = 21.2 Hz), 117.7, 125.8, 128.7, 130.8 (d, *J* = 4.9 Hz), 130.9, 132.2, 134.4 (d, *J* = 3.2 Hz), 134.7, 139.2, 147.7, 149.1, 162.1 (d, *J* = 244.3 Hz), 163.4 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅FNO [M+H]⁺ 280.1138, found 280.1136. Anal. Calcd for C₁₈H₁₄FNO (%): C, 77.40; H, 5.05; N, 5.01, found: C, 77.17; H, 5.00; N, 5.09.

2-((4'-Bromo-3-methyl-[1,1'-biphenyl]-2-yl)oxy)pyridine (4in)

2-(*o*-Tolyloxy)pyridine (37.0 mg, 0.2 mmol), 4-bromophenylboronic acid (120.0 mg, 0.6 mmol), AuBr₃ (4.4 mg, 0.01 mmol), NFSI (189.2 mg, 0.6 mmol) and *t*-BuOH (2.0 mL) at 130 °C for 24 h. Purification via neutral alumina column chromatography (CH₂Cl₂/hexane = 3:1, v/v) afforded a white solid in 70% yield (47.5 mg). M.p.: 115-116 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.17 (s, 3H), 6.67 (d, *J* = 8.4 Hz, 1H), 6.82-6.85 (m, 1H), 7.24 (d, *J* = 4.8 Hz, 2H), 7.28-7.30 (m, 3H), 7.37-7.39 (m, 2H), 7.51-7.56 (m, 1H), 8.04 (dd, *J* = 4.8 Hz, *J* = 1.2 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 17.0, 110.3, 117.8, 121.4, 125.8, 128.6, 130.9, 131.0, 131.2, 132.3, 134.5, 137.4, 139.3, 147.7, 149.0, 163.3 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅BrNO [M+H]⁺ 340.0337, found 340.0338. Anal. Calcd for C₁₈H₁₄BrNO (%): C, 63.55; H, 4.15; N, 4.12, found: C, 63.75; H, 4.16; N, 4.15.

VIII. Removal of the directing group¹²

A three necked flask with a magnetic stirring bar was charged with **4ia** (65.5 mg. 0.25 mmol), trifluoromethanesulfonate (100 μ L, 0.88 mmol) and toluene under N₂. Then the reaction mixture was stirred at 100 °C for 2 h. The reaction mixture was then cooled to ambient temperature and the solvent was evaporated in vacuum to give a white solid. Under an N₂ atmosphere, the solid in methanol (2.5 mL) was added to a solution of sodium (150 mg, 12 mmol) in methanol (8 mL). The reaction mixture was stirred at 80 °C for 30 min. After the reaction mixture was cooled to room temperature, methanol was removed in vacuum. The resulting reaction mixture was added water (40 mL), extracted with EtOAc and dried over Na₂SO₄. The organic layer was concentrated and the resulting residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 15/1, v/v) to provide the desired product **9** as colorless oil in 77% yield (35.3 mg). ¹H NMR (CDCl₃, 400 MHz): δ = 2.33 (s, 3H), 5 26 (s, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 7.09 (dd, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.39-7.44 (m, 1H), 7.46-7.53 (m, 4H) ppm. The product **9** was characterized by comparison of the ¹H NMR data with those reported previously.

IX. References

- (1) H. V. Mierde, P. Voort and F. van der Verpoort, *Tetrahedron Lett.*, 2008, 49, 6893.
- (2) X. Rao, C. Liu, J. Qiu and Z. Jin, Org. Biomol. Chem., 2012, 10, 7875.
- (3) D. Maiti and S. L. Buchwald, J. Org. Chem., 2010, 75, 1791.
- (4) E. C. Constable and T. A. Leese, J. Organomet. Chem., 1989, 363, 419.
- (5) E. Langseth, C. H. Görbitz, R. H. Heyn and M. Tilset, *Organometallics*, 2012, 31, 6567.

- (6) Y. Fuchita, Y. Utsunomiya and M. Yasutake, J. Chem. Soc., Dalton Trans., 2001, 2330.
- (7) J. Lindh, P. J. R. Sjöberg and M. Larhed, Angew. Chem., Int. Ed., 2010, 49, 7733.
- (8) D. C. Powers, M. A. L. Geibel, J. E. M. N. Klein and T. Ritter, J. Am. Chem. Soc., 2009, 131, 17050.
- (9) J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim and S. Chang, J. Am. Chem. Soc., 2012, 134, 9110.
- (10) H. Li, W. Wei, Y. Xu, C. Zhang and X. Wan, Chem. Commun., 2011, 47, 1497.
- (11) Z. Qi and X. Li, Angew. Chem., Int. Ed., 2013, 52, 8995.
- (12) K. Yoshida, R. Narui and T. Imamoto, Chem. Eur. J., 2008, 14, 9706.

X. Copies of ¹H and ¹³C NMR spectra

S50

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

