SUPPORTING INFORMATION

Suzuki-Miyaura Coupling of Arylboronic Acids to Gold(III)

Ayan Maity, Amanda N. Sulicz, Nihal Deligonul, Matthias Zeller, Allen D. Hunter,

and Thomas G. Gray*

Contents

Experimental Information	2
Figure S1. Crystal structure of dichloro(2-(4-fluorophenyl)pyridine)gold(III)	27
Figure S2. Crystal structure of 3a	28
Figure S3. Crystal structure of 3c	29
Figure S4. Crystal structure of 3d	30
Figure S5. Crystal structure of 3j	31
Figure S6. Crystal structure of 31	32
Figure S7. Crystal structure of 3n	33
Figure S8. Crystal structure of 4a	34
Figure S9. Crystal structure of 4b	35
Figure S10. Crystal structure of 4c	36
Table S1. Relative energies of 4b and 4b'	37
Table S2. Relative energies of 4c, 4c', and 4c''	37
Table S3. Optimized Cartesian coordinates (Å) of 4a	38
Table S4. Optimized Cartesian coordinates (Å) of 4a'	39
Table S5. Optimized Cartesian coordinates (Å) of 4b	40
Table S6. Optimized Cartesian coordinates (Å) of 4b'	41
Table S7. Optimized Cartesian coordinates (Å) of 4c	42
Table S8. Optimized Cartesian coordinates (Å) of 4c'	43
Table S9. Optimized Cartesian coordinates (Å) of 4c''	44
References	45

Experimental Information.

General Information. All experimental procedures involving air- or moisture-sensitive substances were performed under argon using Schlenk line techniques or in a nitrogen-filled MBraun drybox. The toluene used for the arylation reactions was degassed by purging with argon for 45 min and then dried with a MBraun solvent purification system comprising column containing activated alumina. Other anhydrous solvents were purchased from Sigma-Aldrich. TLC plates were visualized by ultraviolet light and cerium molybdate staining solution. Analytical thin layer chromatography was carried out using glass bedded Whatman silica gel UV254, 0.25 mm plates. Column chromatography was performed using activated basic alumina, ~150 mesh, 58 Å (Aldrich).

Instruments. ¹H NMR experiments were performed on a Varian-400 FT NMR spectrometer operating at 399.7 MHz. ¹H chemical shifts are reported in parts per million (δ) with integration and multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublets of doublets and m = multiplet), measured from tetramethylsilane (0 ppm) and are referenced to residual solvent in CDCl₃ (7.26 ppm), C₆D₆ (7.15) or CD₂Cl₂ (5.32 ppm). ¹³C{¹H} NMR spectra were recorded on a Varian INOVA AS-600 spectrometer operating at 150.0 MHz. ¹³C NMR chemical shifts are reported in parts per million (δ), measured from tetramethylsilane (0 ppm) and are referenced to solvent residuals in CDCl₃ (77.00 ppm). ¹⁹F NMR spectra were recorded on a Varian INOVA AS-400 spectrometer operating at 376.1 MHz. ¹⁹F NMR chemical shifts are reported in parts per million (δ) and measured from CFCl₃ (0.00 ppm) or C₆H₅F (-113.15 ppm) as reference. Solvents were degassed by bubbling argon for 20 min prior to use for UV/Vis and luminescence measurements. UV/Vis and luminescence data were recorded using a Cary 5G UV/Vis/NIR spectrometer and a Cary Eclipse spectrometer, respectively. Elemental analyses were carried out

by Robertson Microlit Laboratories, Ledgewood, NJ. *Caution:* Safety precautions, including use of a blast shield, are recommended for reactions run under pressure.

Materials. All reagents were purchased from commercial sources and used without further purification. $HAuCl_4$ · H_2O was purchased from Strem Chemicals; 2-(*p*-tolyl)pyridine was purchased from Sigma-Aldrich; all boronic acids were purchased from Sigma-Aldrich, Acros Organics, Oakwood Chemicals and Frontier Scientific. Pd-catalysts and phosphine ligands were purchased from Strem Chemicals and Sigma-Aldrich and were used as received. K_2CO_3 was purchased from Sigma-Aldrich and K_3PO_4 from Strem Chemicals.

Synthesis of [(tpy)AuCl₂] (tpy = 2-(*p*-tolyl)pyridine), 1:

(tpy)AuCl₂ was synthesized with a slight modification of literature procedure.¹¹ A high-pressure flask was used in place of microwave heating. Into a high-pressure reaction flask, equipped with a stir bar, was added HAuCl₄·H₂O (1.015 g, 2.990 mmol) followed by 10 mL deionized water. To this was added a solution of 2-(*p*-tolyl)pyridine (tpy) (0.57 mL, 3.330 mmol) in 2 mL acetonitrile. A yellow precipitate formed immediately. The reaction mixture was warmed at 60 °C for 30 min. After cooling, the yellow precipitate was collected by filtration and was washed thoroughly with water. The crude product was again loaded back into the high-pressure reaction flask followed by 10 mL of 1:1 (v/v) acetonitrile and water. After securely closing the cap of the vessel, the reaction mixture was heated at 180 °C for 12 h. After cooling down to room temperature, the precipitate was collected as off-white solid by filtration. The precipitate was washed with methanol and diethyl ether. Drying under vacuum yielded analytically pure product. Yield: 0.88 g (68%). ¹H NMR is reported elsewhere;¹ analysis (calcd., found for C₁₂H₁₀AuCl₂N): C (33.05, 33.34), H (2.31, 2.59), N (3.21, 3.47).

Synthesis of [(Fppy)AuCl₂] (Fppy = 2-(4-fluorophenyl)pyridine), 1a:

(Fppy)AuCl₂ was synthesized following the procedure described above. A high-pressure flask was used in place of microwave heating. Into a high-pressure reaction flask, equipped with a stir bar, was added HAuCl₄·H₂O (974 mg, 2.866 mmol) followed by 10 mL deionized water. To this was added a solution of 2-(4-fluorophenyl)pyridine (Fppy) (546 mg, 3.153 mmol) in 2 mL acetonitrile. A yellow precipitate formed immediately. The reaction mixture was warmed at 60 °C for 30 min. After cooling, the yellow precipitate was collected by filtration and was washed thoroughly with water. The crude product was again loaded back into the high-pressure reaction flask followed by 10 mL of 1:1 (v/v) acetonitrile and water. After securely closing the cap of the vessel, the reaction mixture was heated at 180 °C for 12 h. After cooling down to room temperature, the precipitate was collected as off-white solid by filtration. The precipitate was washed with methanol and diethyl ether. Drying under vacuum yielded analytically pure product. Yield: 656 mg (52%); ¹H NMR (400 MHz, DMSO): δ 9.47 (d, *J* = 5.9 Hz, 1H), 8.40-8.38 (m, 2H), 8.15 (t, *J* = 5.9, 1H), 7.76 (t, *J* = 5.3 Hz, 1H), 7.57 (dd, *J* = 5.3, 1.8 Hz, 1H), 7.42 (td, *J* = 8.0, 2.1 Hz, 1H); ¹⁹F NMR (376.1 MHz, DMSO): δ –103.8 (m, 1F); analysis (calcd., found for C₁₁H₇AuCl₂FN): C (30.02, 30.21), H (1.60, 1.94), N (3.18, 3.34).

3a. [(**tpy**)**Au**(*p*-**C**₆**H**₅**F**)₂]: Please see manuscript.

3b. [(tpy)Au(2,4-difluorophenyl)₂]:

 $Pd(OAc)_2$ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (10 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P^tBu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture, followed by 2,4-difluorophenylboronic acid (90.5 mg, 0.573 mmol) and 2-propanol (10 mL). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 10 h. Upon completion, as indicated by TLC, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear yellow solution. Removal of solvent under reduced pressure rendered an off-white solid that was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 76 mg (56%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.70$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.13–8.06 (m, 1H), 8.00–7.93 (m, 2H), 7.69 (d, *J* = 8.25 Hz, 1H), 7.49–7.32 (m, 2H), 7.22–7.18 (m, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.86–6.71 (m, 4H), 6.68–6.65 (m, 1H), 2.21 (s, 3H); ¹⁹F NMR (376.1 MHz, CD₂Cl₂): δ –93.52 (s, 1F), -95.97 (s, 1F), -117.51 (s, 1F), -118.55 (s, 1F); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 270 (sh, 42000), 330 (14000); emission (methylene chloride): λ_{ex} , nm (Int.) 468 (149), 495 (172); analysis (calcd., found for C₂₄H₁₆AuF₄N): C (48.75, 48.94), H (2.73, 2.80), N (2.37, 2.61).

3c. [(tpy)Au(4-(trifluoromethyl)phenyl)₂]:

Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (15 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture, followed by 4-(trifluoromethyl)phenylboronic acid (109 mg, 0.573 mmol) and 2propanol (10 mL). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 10 h. After the completion of the reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear solution. Removal of solvent under reduced pressure rendered an off-white solid which was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 112 mg (75%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.65$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.00 (d, *J* = 5.5 Hz, 1H), 7.98–7.96 (m, 2H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.22–7.18 (m, 1H), 7.10 (d, *J* = 8.1 Hz, 1H), 6.72 (s, 1H), 2.21 (s, 3H); ¹⁹F NMR (376.1 MHz, CD₂Cl₂): δ –63.01 (s, 3F), -63.05 (s, 3F); UV/Vis (methylene chloride): λ_{max} , nm (ε, M⁻¹ cm⁻¹) 272 (sh, 22000), 329 (8000); emission (methylene chloride): λ_{ex} , nm (Int.) 466 (182), 495 (210); analysis (calcd., found for C₂₆H₁₈AuF₆N): C (47.65, 47.71), H (2.77, 2.85), N (2.14, 2.27).

3d. [(tpy)Au(3-nitrophenyl)₂]

In a 100-mL Schlenk flask, Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in 12 mL dry toluene under argon. To this was added P^tBu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol), followed by 3nitrophenylboronic acid (95.7 mg, 0.573 mmol) and 12 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 20 mL methylene chloride and passed through a plug of Celite. The volume of the solvent was reduced and finally purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:3, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 103 mg (74%); TLC (hexanes: diethyl ether, 40:60 v/v): $R_f =$ 0.40; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.35 (dd, J = 2.5, 0.9 Hz, 1H), 8.29 (dd, J = 1.3, 1.0 Hz, 1H), 7.99–7.98 (m, 3H), 7.92 (t, J = 8.5 Hz, 2H), 7.86 (dt, J = 7.5, 1.0 Hz, 1H), 7.81 (dt, J = 7.4, 1.0 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.21–7.18

(m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 6.65 (s, 1H), 2.19 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 272 (31000), 324 (13000); emission (methylene chloride): λ_{ex} , nm (Int.) 486 (73); analysis (calcd., found for C₂₄H₁₈AuN₃O₄): C (47.30, 47.55), H (2.98, 3.11), N (6.90, 7.29).

3e. [(tpy)Au(3-ethoxycarbonylphenyl)₂]:

Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (10 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture followed by 3-ethoxycarbonylphenylboronic acid (111 mg, 0.573 mmol) and 2-propanol (10 mL). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 10 h. After the completion of the reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear yellow solution. Removal of solvent under reduced pressure rendered an off-white solid that was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 117 mg (77%); TLC (hexanes: diethyl ether, 40:60 v/v): $R_f = 0.41$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.18 (t, J = 1.2 Hz, 1H), 8.11 (t, J = 1.6 Hz, 1H), 8.01 (dt, J = 5.4, 1.1 Hz, 1H), 7.96 (d, J = 1.3 Hz, 1H), 7.95 (t, J = 1.2 Hz, 1H), 7.74–7.70 (m, 4H), 7.66 (dt, J = 7.7, 1.4 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.24 (t, J = 7.7 Hz, 1H), 7.16 (q, J = 4.4 Hz, 1H), 7.08 (d, J = 7.7 Hz, 1H), 6.71 (s, 1H), 4.32 (q, J = 3.9 Hz, 2H), 4.29 (q, J = 3.2 Hz, 2H), 2.19 (s, 3H), 1.35 (t, J = 7.0 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 273 (22000), 330 (10000); emission (methylene chloride): λ_{ex} , nm (Int.) 466 (136), 495 (162); analysis (calcd., found for C₃₀H₂₈AuNO₄): C (54.31, 54.59), H (4.25, 4.33), N (2.11, 2.38).

3f. [(tpy)Au(4-acetylphenyl)₂]

Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (15 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture followed by 4-acetylphenylboronic acid (94 mg, 0.573 mmol) and 2-propanol (10 mL). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 10 h. After completion of the reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 20 mL of methylene chloride and filtered through Celite to obtain a clear solution. Removal of solvent under reduced pressure rendered an off-white solid that was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:9, v/v). The desired product was eluted using hexanes/diethyl ether (1:9, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 78 mg (57%); TLC (hexanes:diethyl ether, 10:90 v/v): $R_f = 0.55$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.02 (br s, 1H), 7.98–7.96 (m, 2H), 7.80 (d, J = 8.1 Hz, 2H), 7.73 (t, J = 6.4 Hz, 3H), 7.64 (d, J = 6.4 Hz, 2H), 7.59 (d, J = 6.4 Hz, 2H), 7.18 (t, J = 5 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 6.74 (s, 1H), 2.53 (s, 3H), 2.52 (s, 3H), 2.20 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 329 (8000); emission (methylene chloride): λ_{ex}, nm (Int.) 465 (141), 494 (167); analysis (calcd., found for C₂₈H₂₄AuNO₂): C (55.73, 55.84), H (4.01, 4.29), N (2.32, 2.53).

3g. [(tpy)Au(phenyl)₂]:

In a 100-mL Schlenk flask, $Pd(OAc)_2$ (2.6 mg, 0.011 mmol) was dissolved in 10 mL of dry toluene under argon. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature

under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol) followed by phenylboronic acid (70 mg, 0.573 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 8 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and finally purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 78 mg (66%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.42$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.09 (dt, J = 5.6, 1.3 Hz, 1H), 7.94–7.92 (m, 2H), 7.70 (d, J = 8.1 Hz, 1H), 7.48 (d, 7.7 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.22 (t, J = 7.41 Hz, 2H), 7.18–713 (m, 3H), 7.05 (q, J = 6.9 Hz, 3H), 6.81 (s, 1H), 2.21 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 328 (17000); emission (methylene chloride): λ_{ex} , nm (Int.) 464 (82), 493 (97); analysis (calcd., found for C₂₄H₂₀AuN): C (55.50, 55.73), H (3.88, 4.19), N (2.70, 2.92).

3h. [(tpy)Au(2-naphthyl)₂]:

Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (10 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture followed by 2-naphthylboronic acid (98.6 mg, 0.573 mmol) and 2-propanol (10 mL). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 10 h. After the completion of the reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear yellow solution. Removal of solvent under reduced pressure rendered an off-white solid which was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 103 mg (73%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.64$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.11 (d, J = 5.7 Hz, 1H), 8.00–7.91 (m, 4H), 7.75–7.67 (m, 8H), 7.61 (d, J = 8.4 Hz, 1H), 7.40–7.31 (m, 4H), 712–7.07 (m, 2H), 6.85 (s, 1H), 2.14 (s, 3H); analysis (calcd., found for $C_{32}H_{24}AuN$): C (62.04, 62.18), H (3.90, 4.15), N (2.26, 2.35); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 273 (sh, 70000), 323 (22000); emission (methylene chloride): λ_{ex} , nm (Int.) 369 (771).

3i. [(tpy)Au(2-anthracenyl)₂]:

In a 100-mL Schlenk flask, Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in 15 mL dry toluene under argon. To this was added P^fBu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol), followed by 2anthraceneboronic acid (127 mg, 0.573 mmol) and 15 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 24 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced. The product was purified on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a yellow solid, which was dried under vacuum for 6 h. Yield: 69 mg (42%); TLC (hexanes:diethyl ether, 40:60 v/v): R_f = 0.53; ¹H NMR (400 MHz, C₆D₆): δ 8.44 (s, 1H), 8.31 (s, 1H), 8.26 (s, 1H), 8.19–8.18 (m, 2H), 8.11 (s, 1H), 8.09 (d, *J* = 5.6 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.88 (d, *J* = 4.5 Hz, 2H), 7.85– 7.72 (m, 2H), 7.52 (s, 1H), 7.40 (d, J = 7.9 Hz, 1H), 7.35 (s, 2H), 7.23–7.20 (m, 3H), 7.10–7.05 (m, 2H), 6.98–6.95 (m, 2H), 6.74 (t, J = 8.4 Hz, 1H), 5.95 (t, J = 6.8 Hz, 1H), 1.94 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 298 (64000), 315 (52000), 367 (19000), 387 (15000); emission (methylene chloride): λ_{ex} , nm (Int.) 433 (457), 459 (527); analysis (calcd., found for C₄₀H₂₈AuN): C (66.76, 66.91), H (3.92, 4.18), N (1.95, 2.30).

3j. [(tpy)Au(benzo[b]thien-2-yl)₂]:

In a 100-mL Schlenk flask, Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in 10 mL of dry toluene under argon. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (0.100 g, 0.229 mmol) followed by benzo[b]thien-2-ylboronic acid (102 mg, 0.573 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and finally purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted with hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 98 mg (68%); TLC (hexanes:diethyl ether, 40:60 v/v): R_f = 0.44; ¹H NMR (400 MHz, CD₂Cl₂) δ 8.36 (d, J = 5.8 Hz, 1H), 8.01–7.94 (m, 2H), 7.78–7.70 (m, 5H), 7.29 (s, 1H), 7.26–7.19 (m, 4H), 7.15 (t, J = 8.0 Hz, 3H), 7.04 (s, 1H), 2.21 (s, 3H). UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 333 (22000); emission (methylene chloride): λ_{ex}, nm (Int.) 378 (405), 462 (48); analysis (calcd., found for C₂₈H₂₀AuNS₂): C (53.25, 53.41), H (3.19, 3.30), N (2.22, 2.37).

3k. [(tpy)Au(*m*-tolyl)₂]:

In a 100-mL Schlenk flask, Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in 10 mL of dry toluene under argon. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol) followed by mtolylboronic acid (78 mg, 0.573 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and finally purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 90 mg (72%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.78$; ¹H NMR (400 MHz, CD_2Cl_2): δ 8.06 (dt, J = 5.4, 1.3 Hz, 1H), 7.93 (d, J = 1.3 Hz, 1H), 7.93– 7.92 (m, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.32–7.26 (m, 3H), 7.22 (d, J = 7.4 Hz, 1H), 7.18–7.02 (m, 4H), 6.87 (d, J = 7.6 Hz, 2H), 6.82 (s, 1H), 2.31 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 330 (18000); emission (methylene chloride): λ_{ex} , nm (Int.) 464 (95), 491 (112); analysis (calcd., found for C₂₆H₂₄AuN.CH₂Cl₂): C (51.28, 51.39), H (4.14, 4.35), N (2.21, 2.46).

3l. [(tpy)Au(*o*-tolyl)₂]:

 $Pd(OAc)_2$ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (10 mL) inside a 100-mL argonfilled Schlenk flask. To this was added $P^tBu_3 \cdot HBF_4$ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture, followed by *o*-tolylboronic acid (78 mg, 0.573 mmol) and 2-propanol (10 mL). The reaction mixture was degassed with three successive freeze-pump-thaw cycles and stirred at room temperature for 24 h. After completion of the reaction, as indicated by TLC, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear yellow solution. Removal of solvent under reduced pressure rendered an off-white solid that was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 76 mg (61%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.75$; ¹H NMR (400 MHz, CD₂Cl₂): δ 7.94 (m, 3H), 7.71 (dd, J = 7.91, 1.9 Hz, 1H), 7.51 (d, J = 5.9 Hz, 1H), 7.43–7.27 (m, 1H), 7.15–6.90 (m, 8H), 6.63 (d, J = 5.9 Hz, 1H), 2.50 (s, 3H), 2.40 (s, 3H), 2.17 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 329 (17000); emission (methylene chloride): λ_{ex} , nm (Int.) 463 (96), 491 (109); analysis (calcd., found for C₂₆H₂₄AuN): C (57.04, 57.26), H (4.42, 4.38), N (2.56, 2.80).

3m. [(tpy)Au(4-methoxyphenyl)₂]:

In a 100-mL Schlenk flask, $Pd(OAc)_2$ (2.6 mg, 0.011 mmol) was dissolved in 10 mL dry toluene under argon. To this was added P^fBu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol) followed by 4methoxyphenylboronic acid (87.1 mg, 0.573 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced. The crude product was purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 99 mg (75%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.65$; ¹H NMR (400 MHz, CD_2Cl_2): δ 8.11 (dt, J = 5.3, 1.4 Hz, 1H), 7.92 (d, J = 1.1 Hz, 1H), 7.91 (m, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 7.17–7.14 (m, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.86 (s, 1H), 6.83 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H), 3.74 (s, 3H), 2.21 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 328 (19000); emission (methylene chloride): λ_{ex} , nm (Int.) 493 (133); analysis (calcd., found for C₂₆H₂₄AuNO₂): C (53.89, 54.18), H (4.17, 4.24), N (2.42, 2.71).

3n. [(tpy)Au(4-isopropoxyphenyl)₂]:

In a 100-mL Schlenk flask, Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in 10 mL dry toluene under argon. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol) followed by 4isopropoxyphenylboronic acid (0.103 g, 0.573 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced. The crude product purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 97 mg (67%); TLC (hexanes:diethyl ether, 40:60 v/v): R_f = 0.70; ¹H NMR (400 MHz, C₆D₆): δ 8.13 (dd, *J* = 5.5, 1.2 Hz, 1H), 7.63 (d, *J* = 8.9 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.51 (s, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 7.02 (d, J = 8.5 Hz, 2H), 6.95 (dd, J = 7.9, 1.2 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 6.75 (td, J = 7.4, 1.2 Hz, 1H), 6.04 (td, J = 7.1, 1.2 Hz, 1H), 4.25 (sep, J = 5.8 Hz, 1H), 4.19 (sep, J = 5.8 Hz, 1H), 2.06 (s, 3H), 1.14 (d, J = 5.8 Hz, 6H), 1.11 (d, J = 5.8 Hz, 6H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 328 (29000); emission (methylene chloride): λ_{ex} , nm (Int.) 492 (112); analysis (calcd., found for C₃₀H₃₂AuNO₂.CH₂Cl₂): C (51.68, 51.80), H (4.76, 4.93), N (1.94, 2.29).

30. [(tpy)Au(4-(benzyloxy)phenyl)₂]:

Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (10 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P^tBu₃·HBF₄ (9.9 mg, 0.034 mmol) followed by K₂CO₃ (128 mg, 0.917 mmol). The resultant yellow reaction mixture was stirred for 5 min under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture followed by 4-(benzyloxy)phenylboronic acid (130.7 mg, 0.573 mmol) and 2-propanol (10 mL). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 10 h. Progress of the reaction was monitored by TLC. Upon completion, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear yellow solution. Removal of solvent under reduced pressure rendered an off-white solid that was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:1, v/v). The desired product was eluted using hexanes/diethyl ether (1:1, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 130 mg (78%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.68$; ¹H NMR (400 MHz, CD₂Cl₂): δ 8.12 (d, J = 4.9Hz, 1H), 7.93-7.91 (m, 2H), 7.70 (d, J = 7.7 Hz, 1H), 7.50-7.30 (m, 14H), 7.18-7.15 (m, 1H), 7.07 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.91 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.02 (s, 2H), 5.01 (s, 2H), 2.22 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)

328 (16000); emission (methylene chloride): λ_{ex}, nm (Int.) 467 (88), 493 (105); analysis (calcd., found for C₃₈H₃₂AuNO₂): C (62.38, 62.39), H (4.41, 4.78), N (1.91, 2.22).

4a. [(tpy)Au(Cl)(4-fluorophenyl)]:

In a 100-mL Schlenk flask, Pd(OAc)₂ (2.6 mg, 0.011 mmol) was dissolved in 10 mL of dry toluene under argon. To this was added P^tBu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol) followed by 4fluorophenylboronic acid (80.2 mg, 0.573 mmol). The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 12 h at room temperature. Progress of the reaction was monitored by TLC. After 12 h, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced. The crude product was purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted as the second fraction using hexanes/diethyl ether (1:3, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 73 mg (65%); TLC (hexanes:diethyl ether, 40:60 v/v): R_f = 0.30; ¹H NMR (400 MHz, CDCl₃): δ 9.44 (d, *J* = 5.8 Hz, 1H), 8.02 (t, *J* = 7.5 Hz, 1H), 7.91 (t, J = 7.8 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.55–7.45 (m, 4H), 7.12 (d, J = 7.7 Hz, 1H), 7.02 (t, J = 8.8 Hz, 1H), 6.65 (s, 1H), 2.22 (s, 3H); analysis (calcd., found for $C_{18}H_{14}AuClFN$): C (43.61, 43.53), H (2.85, 2.76), N (2.83, 3.19).

4b. [(tpy)Au(Cl)(1-naphthyl)]:

 $Pd(OAc)_2$ (2.6 mg, 0.011 mmol) was dissolved in dry toluene (10 mL) inside a 100-mL argonfilled Schlenk flask. To this was added P^tBu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a light yellow reaction mixture, which was stirred for 5 min at room

temperature under argon. (tpy)AuCl₂ (100 mg, 0.229 mmol) was added to the stirred reaction mixture followed by 1-naphthylboronic acid (98.6 mg, 0.573 mmol). The reaction mixture was degassed by three successive freeze-pump-thaw cycles and stirred at room temperature for 12 h. After the time period, the solvent was evaporated under reduced pressure. The resultant mixture was suspended in 10 mL methylene chloride and filtered through Celite to obtain a clear yellow solution. Removal of solvent under reduced pressure rendered an off-white solid that was chromatographed on a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product was eluted as second fraction using hexanes/diethyl ether (1:3, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 49 mg (41%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.25$; ¹H NMR (400 MHz, CD₂Cl₂): δ 9.45 (d, J = 5.1 Hz, 1H), 8.15 (d, J = 7.9 Hz, 1H), 8.08 (td, J = 7.4, 1.8 Hz, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 8.07 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.66–7.63 (m, 2H), 7.55 (t, J = 6.1 Hz, 1H), 7.45–7.37 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H), 6.28 (s, 1H), 1.98 (s, 3H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 283 (63000), 326 (22000); emission (methylene chloride): λ_{ex} , nm (Int.) 485 (147); analysis (calcd., found for C₂₂H₁₇AuClN): C (50.06, 50.37), H (3.25, 3.55), N (2.65, 2.90).

In a 100-mL Schlenk flask, $Pd(OAc)_2$ (2.6 mg, 0.011 mmol) was dissolved in 10 mL of dry toluene under argon. To this was added P'Bu₃·HBF₄ (9.9 mg, 0.034 mmol) and K₂CO₃ (128 mg, 0.917 mmol) resulting in a pale yellow solution, which was stirred for 5 min at room temperature under argon. To this flask was added (tpy)AuCl₂ (100 mg, 0.229 mmol) followed by 2-acetylphenylboronic acid (94 mg, 0.573 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was

sealed and stirred for 24 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and finally purified by a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:9, v/v). The desired product was eluted using hexanes/diethyl ether (1:9, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 88 mg (80%); TLC (hexanes:diethyl ether, 10:90 v/v): $R_f = 0.75$; ¹H NMR (400 MHz, CD₂Cl₂): δ 9.14 (d, *J* = 6.5 Hz, 1H), 8.07–8.00 (m, 3H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.72 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.59 (td, *J* = 7.7, 1.6 Hz, 1H), 7.55 (s, 1H), 7.40 (t, *J* = 6.4 Hz, 1H), 7.33 (td, *J* = 7.5, 0.9 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 3.57 (s, 2H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 209.3, 168.6, 167.1, 166.2, 148.9, 145.2, 143.7, 141.6, 140.6, 135.3, 132.5, 131.9, 127.6, 127.2, 126.8, 125.1, 122.9, 120.5, 45.3, 22.1; IR (KBr): 1666.4 cm⁻¹; UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 302 (10000), 321 (11000); emission (methylene chloride): λ_{ex} , nm (Int.) 492 (74); analysis (calcd., found for C₂₀H₁₆AuNO): C (49.70, 49.85), H (3.34, 3.48), N (2.90, 3.13).

In a 100-mL Schlenk flask, $Pd(OAc)_2$ (1.3 mg, 0.005 mmol) was dissolved in 8 mL dry toluene under argon. To this was added $[HP(t-Bu)_3]BF_4$ (4.9 mg, 0.017 mmol) and K₂CO₃ (63 mg, 0.454 mmol). A pale yellow solution resulted, which was stirred for 5 min at room temperature under argon. To this flask was added (Fppy)AuCl₂ (50 mg, 0.114 mmol) followed by 4fluorophenylboronic acid (40.0 mg, 0.284 mmol) and 8 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and the mixture was passed through a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 46 mg (73%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.54$; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 5.6 Hz, 1H), 7.38–7.29 (m, 6H), 7.13–7.06 (m, 2H), 6.91 (t, J = 8.8 Hz, 3H), 6.83 (q, J = 2.8 Hz, 2H), 6.12 (t, J = 6 Hz, 1H). ¹⁹F NMR (376.1 MHz, CDCl₃): δ –107.6 (m, 1F), –118.3 (m, 1F), –118.6 (m, 1F); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 328 (3500); emission (methylene chloride): λ_{ex} , nm (Int.) 485 (40); analysis (calcd., found for C₂₃H₁₅AuF₃N): C (49.39, 49.62), H (2.70, 3.07), N (2.50, 2.24).

5b.

In a 100-mL Schlenk flask, Pd(OAc)₂ (1.3 mg, 0.005 mmol) was dissolved in 7 mL dry toluene under argon. To this flask was added [HP(*t*-Bu)₃]BF₄ (4.9 mg, 0.017 mmol) and K₂CO₃ (63 mg, 0.454 mmol). A pale yellow solution resulted, which was stirred for 5 min at room temperature under argon. To this flask was added (Fppy)AuCl₂ (50 mg, 0.114 mmol) followed by 3-ethoxycarbonylphenylboronic acid (55.1 mg, 0.284 mmol) and 7 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and the mixture was passed through a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 50 mg (66%); TLC (hexanes:diethyl ether, 40:60 v/v): R_f = 0.44; ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 2H), 8.12 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.86 (d, *J* = 5.6 Hz, 1H), 7.66 (t, *J* = 5.6 Hz, 2H), 7.26–7.21 (m,

3H), 7.07 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.85–6.80 (m, 2H), 6.05 (t, J = 6.4 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 4.17 (q, J = 7.2 Hz, 2H), 1.12 (t, J = 8.0 Hz, 3H), 1.08 (t, J = 7.6 Hz, 3H); ¹⁹F NMR (376.1 MHz, CDCl₃): δ –107.5 (m, 1F); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 331 (2500); emission (methylene chloride): λ_{ex} , nm (Int.) 484 (16); analysis (calcd., found for C₂₉H₂₅AuFNO₄): C (52.18, 52.03), H (3.78, 4.12), N (2.10, 2.33).

In a 100-mL Schlenk flask, Pd(OAc)₂ (1.3 mg, 0.006 mmol) was dissolved in 6 mL dry toluene under argon. To this flask was added [HP(t-Bu)₃]BF₄ (5.0 mg, 0.017 mmol) and K₂CO₃ (63.5 mg, 0.460 mmol). A pale yellow solution resulted, which was stirred for 5 min at room temperature under argon. To the same flask was added (bnp)AuCl₂ (50 mg, 0.115 mmol) followed by 4-(trifluoromethyl)phenylboronic acid (54.5 mg, 0.287 mmol) and 6 mL dry 2propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 17 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, contents were filtered through Celite plug and volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and the mixture was passed through a short basic alumina column using variant polarity between hexanes and hexanes/diethyl ether (1:3, v/v). The desired product eluted using hexanes/diethyl ether (1:2, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 45.2 mg (60%); TLC (hexanes:diethyl ether, 40:60 v/v): $R_f = 0.65$; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J = 4.8, 1H), 7.78 (td, J = 10, 1H), 7.58 (d, J = 7.2, 1H), 7.49 (d, J = 8.4, 2H), 7.42 (d, J = 8.0, 2H), 7.31 (d, J = 8.0, 2H), 7.25 (d, J = 8.0, 2H), 7.21 (d, J = 8.0, 26.4, 1H), 7.10 (m, 2H), 6.95 (m, 2H), 4.30 (s, 2H); ¹⁹F NMR (376.1 MHz, CDCl₃): δ –62.54 (s, 3F), -62.60 (s, 3F); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 272 (6500); emission (methylene chloride): λ_{ex} , nm (Int.) 488 (31); analysis (calcd., found for C₂₆H₁₈AuF₆N): C (47.65, 48.02), H (2.77, 2.83), N (2.14, 2.10).

In a 100-mL Schlenk flask, Pd(OAc)₂ (0.8 mg, 0.003 mmol) was dissolved in 10 mL dry toluene under argon. To this flask was added [HP(t-Bu)₃]BF₄ (3.1 mg, 0.010 mmol) and K₂CO₃ (38.4 mg, 0.278 mmol). A pale yellow solution resulted, which was stirred for 5 min at room temperature under argon. To the flask was added (bnp)AuCl₂ (30.3 mg, 0.070 mmol) followed by 3-ethoxycabonylboronic acid (25.4 mg, 0.198 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 17 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, contents were filtered through Celite plug and volatiles were removed under reduced pressure. The resulting product was suspended in 5 mL methylene chloride, reduced in volume and crude product was precipitated by addition of pentane. The product was purified by preparative TLC using hexanes/diethyl ether (1:1, v/v). The product was recovered from the TLC plate with methanol. Removal of solvent rendered a white solid. Yield: 35.3 mg (77 %); TLC (hexanes: diethyl ether, 30:70 v/v): $R_f = 0.36$, ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, J = 5.6 Hz, 1H), 8.12 (s, 1H), 8.04 (s, 1H), 7.81 (td, J = 7.6 Hz, 1 H), 7.64 (m, 5 H), 7.18 (m, 5 H), 75H), 6.99 (td, J = 6.4, 2H), 4.39 (s, 2H), 4.31 (m, 4 H), 1.34 (m, 6H); UV/Vis (methylene chloride): λ_{max}, nm (ε, M⁻¹ cm⁻¹) 245 (27000), 271 (sh, 13000), 284 (sh, 11000); emission (methylene chloride): λ_{ex} , nm (Int.) 551 (62), 584 (45); analysis (calcd., found for C₃₀H₂₈AuNO₄·CH₂Cl₂·H₂O): C (48.58, 48.80), H (4.21, 3.89), N (1.83, 1.77).

In a 100-mL Schlenk flask, Pd(OAc)₂ (1.3 mg, 0.005 mmol) was dissolved in 10 mL dry toluene under argon. To this was added $[HP(t-Bu)_3]BF_4$ (4.9 mg, 0.017 mmol) and K₂CO₃ (63 mg, 0.454 mmol). A pale yellow solution resulted, which was stirred for 5 min at room temperature under argon. To the flask was added (anp)AuCl₂ (50 mg, 0.114 mmol) followed by 3ethoxycarbonylphenylboronic acid (55.1 mg, 0.284 mmol) and 10 mL dry 2-propanol. The reaction mixture was degassed by three successive freeze-pump-thaw cycles. Finally the reaction mixture was sealed and stirred for 10 h at room temperature. Progress of the reaction was monitored by TLC. Upon completion, volatiles were removed under reduced pressure. The resulting crude product was suspended in 10 mL methylene chloride and passed through a plug of Celite. The volume of solvent was reduced and the mixture was passed through a short basic alumina column using variant polarity between hexanes and diethyl ether/methanol (19:1, v/v). The desired product eluted using diethyl ether/methanol (19:1, v/v). Removal of solvent rendered a white solid, which was dried under vacuum for 6 h. Yield: 42 mg (55%); TLC (hexanes:diethyl ether, 10:90 v/v): $R_f = 0.40$; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (s, 1H), 8.04 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.66 (t, 7.8 Hz, 2H), 7.59–7.54 (m, 2H), 7.21–7.11 (m, 3H), 7.08–6.95 (m, 4H), 6.78 (t, J = 7.6 Hz, 1H), 6.47 (t, J = 6.8 Hz, 1H), 4.30 (q, J = 4.0 Hz, 4H), 1.37–1.33 (m, 6H); UV/Vis (methylene chloride): λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) 293 (3000), 336 (2500); emission (methylene chloride): λ_{ex} , nm (Int.) 466 (12); analysis (calcd., found for C₂₉H₂₇AuN₂O₄): C (52.42, 52.61), H (4.10, 3.77), N (4.22, 3.91).

Synthesis of $[(bnp)AuCl_2]$ (bnp = 2-benzylpyridine), 6. Into a high-pressure reaction flask, equipped with a stir bar, was added HAuCl₄·H₂O (0.5224 g, 1.5374 mmol) followed by 150 mL deionized water and 5 mL acetonitrile. To this was added 2-benzylpyridine (bnp) (0.25 mL, 1.5571 mmol). A yellow precipitate formed immediately. High pressure flask was sealed and the reaction mixture was heated at 130 °C for 15 h. After this time period a white precipitate had

formed. After cooling to room temperature, the precipitate was collected by filtration as offwhite solid. The precipitate was washed with water. Drying under vacuum for 6 h at 45 $^{\circ}$ C yielded analytically pure product. Yield: 0.5346 g (80%); characterization was previously reported.²

Synthesis of [(anp)AuCl₂] (anp = 2-anilinopyridine), 7.

Synthesis reported previously.³

X-ray Crystallography. Crystallographic data for **3a**, **3c**, **3d**, **3j**, **3l**, **3n**, **4a**, **4b**, **4c** and the pfluoro derivative of **1** were collected on either a Bruker AXS SMART APEXII CCD diffractometer or a Bruker AXS Quest diffractometer using monochromatic Mo K α radiation with omega and/or phi scan techniques. The unit cells were retrieved using the APEX2 Crystallographic Suite. Structures were solved by direct methods and refined by full matrix least squares against F^2 with all reflections using SHELXL2013 and SHELXLE. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and were refined with an isotropic displacement parameter 1.5 (CH₃) or 1.2 (all others) times that of the adjacent carbon atom.

Complex **3c**: The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 180 degree rotation around the real a-axis. The two components were initially integrated using Saint giving the twin matrix 0.99994 0.01611 - 0.03295, 0.69290 -0.98912 -0.02860, 0.32732 0.02563 -1.01045. Integration proofed problematic due to excessive multiple overlap of reflections, resulting in large numbers of rejected reflections. Attempts were made to adjust integration parameters to avoid excessive rejections (through adjustements to integration queue size, blending of profiles, integration box slicing and twin overlap parameters), which led to less but still substantial numbers of rejected reflections. With no complete dataset obtainable through simultaneous integration of both twin

domains, the data were instead handled as if not twinned, with only the major domain integrated, and converted into an hklf 5 type format hkl file after integration using the "Make HKLF5 File" routine as implemented in WinGX. The twin law matrix was used as obtained from SAINT, see above. The Overlap R1 and R2 values used were 0.32, i.e. reflections with a discriminator function less or equal to overlap radius of 0.32 were counted overlapped, all others as single. The discriminator function used was the "delta function on index non-integrality". No reflections were omitted. The structure was solved using direct methods with the hklf 4 type file and was refined using the hklf 5 type file, resulting in a BASF value of 0.199(4). A refinement using the incomplete data obtained through SAINT and TWINABS gave similar refinement statistics, but with higher overall R values (around 8-9% for R1) and with less well defined ADPs (two atoms NPD or close to NPD). No Rint value is obtainable for the hklf 5 type file using the WinGX routine. The value from TWINABS is given instead, which is for all reflections available and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2009)).

Complex **3j**: The compound exhibits two different types of disorder. Thiophene rings are disordered by 180 degree rotations around the Au-C bond. In addition, whole molecule disorder is observed due to 180 rotation of the tpy ligand which, due to the steric demand if the methyl group, induces a shift of the whole molecule. The disorder of the tpy ligand and of the the two thiophene moieties are independent of each other, thus leading to eight different combinations of disordered moieties. Due to their low prevalence, the minor flip disordered thiophene moieties associated with the minor rotated tpy ligand were omitted from the refinement. All chemically equivalent disordered organic moieties were restrained to have similar geometries (SAME restraint of Shelxl). The gold bonded carbon atoms of equivalent flip disordered thiophene units were constrained to have identical positions and ADPs. The Au-C and Au-N distances of the flip disordered tpy ligand were restrained to be similar to that of the major moiety complex. All disordered atoms were subjected to a rigid bond restraint (RIGU in Shelxl). Overlapping atoms C22B and S2 were restrained to have similar ADPs (SIMU in Shelxl). Overlapping atoms C15

and C15C, C16 and C16C, C5 and C6C, and C4 and C7C were constrained to have identical ADPs.

Complex 31: The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now, with the two components being related by a 180 degree rotation around the reciprocal c-axis. The two components were initially integrated using Saint and corrected for absorption using twinabs. The exact twin matrix identified by the integration program was found to be -0.99994 -0.00155 0.00043, 0.00707 -0.99999 -0.00013, 0.25079 0.00006 0.99995. Integration proofed problematic due to excessive multiple overlap of reflections, resulting in large numbers of rejected reflections. Attempts were made to adjust integration parameters to avoid excessive rejections (through adjustments to integration queue size, blending of profiles, integration box slicing and twin overlap parameters), which led to less but still substantial numbers of rejected reflections. With no complete data set obtainable through simultaneous integration of both twin domains, the data were instead handled as if not twinned, with only the major domain integrated, and converted into an hklf 5 type format hkl file after integration using the "Make HKLF5 File" routine as implemented in WinGX. The twin law matrix was used as obtained from SAINT, see above. The Overlap R1 and R2 values used were 0.41, i.e. reflections with a discriminator function less or equal to overlap radius of 0.41 were counted overlapped, all others as single. The discriminator function used was the "delta function on index non-integrality". No reflections were omitted. The structure was solved using direct methods with the hklf 4 type file and was refined using the hklf 5 type file, resulting in a BASF value of 0.150(2). A refinement using the incomplete data obtained through SAINT and TWINABS gave similar refinement statistics, but with higher overall R values and with less well defined ADPs (several atoms NPD or close to NPD). No Rint value is obtainable for the hklf 5 type file using the WinGX routine. The value from a refinement with the uncorrected hklf 4 type file is given instead.

Complex **4c**: The structure is partially racemically twinned (Flack parameter 0.224(16)) and emulates a higher symmetry centrosymmetric structure with a mirror plane bisecting the main molecule of the structure. For the C and N atoms directly located on the pseudo mirror plane, large correlation of position and ADP results, leading to deformed or non-positive definite ADPs. The thermal parameters of the affected atoms were restrained to be close to isotropic (ISOR 0.003 restraint of Shelxl for atoms N1, C1, C2, C6, C11, C10 and C20). A partially occupied methylene chloride molecule is disordered within channels parallel to the c-axis. Packing of the solvate molecules in the channels is incommensurate with the lattice dimensions, and molecules show large ADPs that stretch along the channel direction if unrestrained. For refinement, the methylene chloride position was split into two partially occupied molecules translated from each other by 1.1 and 2.4 Å along the channel. C-Cl distances were restrained to be similar (SADI), atoms were subjected to a rigid bond restraint (RIGU), and to be approximately isotropic (ISOR 0.01). Subject to these conditions occupancy ratios refined to 0.367(16) and 0.250(16), with a total occupancy for the site of 0.617(16).

Calculations. Spin-restricted density-functional theory calculations were executed within the program Gaussian09.⁴ Geometry optimizations proceeded without imposition of symmetry. The parameter-free exchange and correlation functionals of Perdew, Burke, and Ernzerhof, were used.⁵ Basis sets were the TZVP basis of Godbout, Andzelm, and co-workers for nonmetal atoms.⁶ For gold, the SDD effective core potential and basis set were employed;⁷ scalar relativistic effects are included implicitly. Frequency calculations returned all real harmonic vibrational frequencies. All calculations include continuum CH_2Cl_2 solvation using the integral equation formalism of the polarizable continuum model (IEFPCM).^{8–11} Relative energies are calculated from sums of electronic and thermal free energies.

Figure S1. Crystal structure of dichloro(2-(4-fluorophenyl)pyridine)gold(III) (**1a**) showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S2. Crystal structure of 3a showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S3. Crystal structure of **3c** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S4. Crystal structure of **3d** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S5. Crystal structure of **3j** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. This structure is disordered. (a) Thermal ellipsoid depiction showing both domains.

(b) Thermal ellipsoid depiction showing only major domain.

Figure S6. Crystal structure of **31** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S7. Crystal structure of **3n** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S8. Crystal structure of **4a** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S9. Crystal structure of **4b** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S10. Crystal structure of **4c** showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Table S1. Relative sums of electronic and thermal free energies of 1-naphthyl complexes **4b** (observed) and **4b'**. The calculation includes continuum CH₂Cl₂ solvation (IEFPCM).

Table S2. Relative sums of electronic and thermal free energies of enolate complexes. The calculation includes continuum CH_2Cl_2 solvation (IEFPCM).

Table S3. Optimized Cartesian coordinates (Å) of 4a.

4a (observed)

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	79	0	0.136538	-0.697606	0.000375
2	6	0	0.475347	1.297227	-0.001341
3	6	0	1.843928	1.625976	-0.002481
4	6	0	2.215569	2.970014	-0.009667
5	б	0	1.255989	3.966977	-0.013361
б	6	0	-0.100963	3.652424	-0.007256
7	б	0	-0.472625	2.305099	-0.005196
8	6	0	2.814012	0.530667	-0.001049
9	6	0	4.198015	0.677732	-0.001000
10	б	0	5.004554	-0.445927	0.001291
11	6	0	4.425111	-1.707069	0.003496
12	б	0	3.046765	-1.794033	0.003382
13	7	0	2.275863	-0.707309	0.001258
14	1	0	3.262798	3.250249	-0.016098
15	1	0	1.566595	5.006466	-0.022893
16	1	0	-1.526748	2.055587	-0.008325
17	1	0	4.640119	1.664628	-0.002584
18	1	0	6.082868	-0.337345	0.001381
19	1	0	5.023092	-2.608759	0.005295
20	1	0	2.521963	-2.742440	0.004985
21	6	0	-1.143122	4.728273	0.022227
22	1	0	-2.055942	4.411383	-0.485277
23	1	0	-1.412249	4.974569	1.054481
24	1	0	-0.782682	5.644152	-0.449336
25	17	0	-0.083948	-3.094340	0.002716
26	6	0	-1.870354	-0.487187	-0.000858
27	6	0	-2.570051	-0.426025	1.199572
28	6	0	-2.568530	-0.425993	-1.202188
29	6	0	-3.955115	-0.299137	1.206335
30	6	0	-3.953590	-0.299085	-1.210690
31	6	0	-4.618582	-0.236982	-0.002590
32	1	0	-2.045799	-0.475186	2.147031
33	1	0	-2.043089	-0.475121	-2.148989
34	1	0	-4.511698	-0.250654	2.134957
35	1	0	-4.509006	-0.250680	-2.140015
36	9	0	-5.962091	-0.110973	-0.003441

Table S4. Optimized Cartesian coordinates (Å) of 4a'.

4a′

Center Number	Atomic Number	Atomic Type	Coorc X	linates (Ang Y	stroms) Z
	 79	·		713239	0 00003
2	7 (7	0	-0.557543	1 307322	0.000000
2	, 6	0	-1 868916	1 646995	0 000001
4	е б	0	-2.206611	2,996962	0.000002
5	6	0	-1 2200011	3 961206	-0 000002
5	е б	0	0.124720	3,596717	-0.000006
7	б б	0	0.401248	2,241156	-0.000004
8	6	0	-2.813882	0.533614	0.000002
9	6	0	-4.199439	0.705670	0.000001
10	6	0	-5.029517	-0.403537	0.000000
11	6	0	-4.480523	-1.680671	0.000001
12	6	0	-3.099126	-1.851933	0.000002
13	6	0	-2.252449	-0.754217	0.00003
14	1	0	-3.248679	3.286711	0.000004
15	1	0	-1.496411	5.010485	-0.000002
16	1	0	1.418415	1.873011	-0.000005
17	1	0	-4.639487	1.696651	-0.000001
18	1	0	-6.105553	-0.271892	-0.000001
19	1	0	-5.132262	-2.548247	0.000001
20	1	0	-2.681102	-2.853140	0.00003
21	б	0	1.225389	4.608433	-0.000014
22	1	0	2.204798	4.129515	0.000029
23	1	0	1.160691	5.251990	-0.880827
24	1	0	1.160645	5.252057	0.880746
25	17	0	0.081381	-3.009815	-0.000015
26	б	0	1.903644	-0.527237	0.00002
27	б	0	2.617619	-0.457023	-1.195624
28	б	0	2.617617	-0.457007	1.195629
29	б	0	4.001437	-0.306697	-1.208196
30	б	0	4.001434	-0.306682	1.208202
31	б	0	4.665016	-0.233932	0.00003
32	1	0	2.099344	-0.519592	-2.147580
33	1	0	2.099340	-0.519561	2.147586
34	1	0	4.557942	-0.251785	-2.136924
35	1	0	4.557938	-0.251756	2.136930
36	9	0	6.008513	-0.088205	0.000002

Table S5. Optimized Cartesian coordinates (Å) of 4b.

4b (observed)

Center Number	Atomic Number	Atomic Type	Coord X	linates (Angs Y	stroms) Z
1	 79	0	-0.346245	-0.679304	-0.245709
2	6	0	-0.715094	1.307476	-0.148956
3	б	0	-2.066114	1.607608	0.108769
4	б	0	-2.454010	2.943032	0.209020
5	б	0	-1.526921	3.959397	0.057465
6	6	0	-0.188639	3.673095	-0.200348
7	б	0	0.200211	2.333760	-0.297626
8	б	0	-3.000836	0.493079	0.266584
9	б	0	-4.364499	0.613195	0.518309
10	б	0	-5.139099	-0.525776	0.643587
11	б	0	-4.548643	-1.775307	0.516596
12	б	0	-3.191403	-1.835369	0.267683
13	7	0	-2.451022	-0.733963	0.149169
14	1	0	-3.487234	3.200772	0.411772
15	1	0	-1.848011	4.992088	0.143248
16	1	0	1.241389	2.105332	-0.492270
17	1	0	-4.816316	1.591060	0.614871
18	1	0	-6.201488	-0.438156	0.839120
19	1	0	-5.121989	-2.688366	0.607405
20	1	0	-2.660047	-2.773441	0.155290
21	6	0	0.814083	4.769441	-0.392947
22	1	0	1.785063	4.496753	0.025083
23	1	0	0.964298	4.971346	-1.458366
24	1	0	0.482593	5.697992	0.074633
25	6	0	1.617307	-0.426549	-0.666555
26	6	0	2.582929	-0.315571	0.369026
27	6	0	2.006446	-0.389766	-1.980992
28	6	0	2.250488	-0.338634	1.745046
29	6	0	3.957966	-0.164282	0.010384
30	6	0	3.366114	-0.241814	-2.327800
31	6	0	3.213164	-0.224288	2.712020
32	6	0	4.928136	-0.052089	1.034478
33	6	0	4.320816	-0.131645	-1.355309
34	6	0	4.568421	-0.080464	2.354537
35	1	0	1.272477	-0.476151	-2.774599
36	1	0	1.209087	-0.451245	2.027521
37	1	0	3.645463	-0.217826	-3.375701
38	1	0	2.933099	-0.246172	3.759412

40 1 0 5.367886 -0.017877 -1.61688 41 1 0 5.323280 0.006966 3.12815 42 17 0 -0.078465 -3.070619 -0.30060
--

Table S6. Optimized Cartesian coordinates (Å) of 4b'.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 79	0	-0.204526	-0.421057	-0.267448
2	7	0	-0.477896	1.613175	-0.156498
3	б	0	-1.756222	2.015670	0.063532
4	6	0	-2.026570	3.378559	0.158446
5	6	0	-1.005999	4.299958	0.032799
6	6	0	0.290951	3.857170	-0.189023
7	6	0	0.515705	2.500439	-0.278363
8	6	0	-2.740848	0.948227	0.184397
9	6	0	-4.101753	1.173616	0.398595
10	б	0	-4.970939	0.101917	0.499510
11	6	0	-4.507661	-1.210482	0.393561
12	б	0	-3.143269	-1.420857	0.174634
13	б	0	-2.254638	-0.365026	0.070620
14	1	0	-3.041452	3.709008	0.332343
15	1	0	-1.219927	5.359600	0.108086
16	1	0	1.120478	4.543747	-0.291964
17	1	0	1.500702	2.090138	-0.453612
18	1	0	-4.496421	2.180268	0.482935
19	1	0	-6.028244	0.285072	0.661183
20	1	0	-2.775550	-2.438767	0.083541
21	6	0	-5.447766	-2.368632	0.535174
22	1	0	-5.523220	-2.677330	1.583009
23	1	0	-6.453410	-2.109874	0.198278
24	1	0	-5.101219	-3.232892	-0.034233
25	б	0	1.847863	-0.325827	-0.672394
26	6	0	2.830970	-0.301055	0.357191
27	6	0	2.258668	-0.273264	-1.983340
28	б	0	2.495396	-0.358808	1.732922
29	6	0	4.214683	-0.207181	0.010563
30	б	0	3.624762	-0.182919	-2.328509
31	б	0	3.458182	-0.325196	2.706747
32	6	0	5.185888	-0.176823	1.039442

33	6	0	4.583027	-0.150093	-1.353216
34	6	0	4.820123	-0.232863	2.357399
35	1	0	1.527315	-0.302910	-2.786241
36	1	0	1.449618	-0.439273	2.011606
37	1	0	3.908851	-0.142566	-3.375123
38	1	0	3.173844	-0.374259	3.752219
39	1	0	6.233514	-0.108004	0.762575
40	1	0	5.635365	-0.081656	-1.610622
41	1	0	5.575501	-0.209171	3.135237
42	17	0	-0.059192	-2.725828	-0.341143

 Table S7. Optimized Cartesian coordinates (Å) of 4c.

Center	Atomic	dinates (Ang	stroms)		
Number	Number	Туре	Х	Y	Z
1	 79	0	0.259267	-0.192866	-0.040062
2	б	0	-1.759642	-0.665652	-0.020375
3	б	0	-2.604457	0.460460	-0.037549
4	6	0	-3.987980	0.299598	-0.131566
5	б	0	-4.540819	-0.966727	-0.201536
6	б	0	-3.728734	-2.099830	-0.176746
7	б	0	-2.345478	-1.922446	-0.094784
8	6	0	-1.969606	1.774886	0.072457
9	6	0	-2.658647	2.981947	0.184473
10	6	0	-1.962555	4.162237	0.358185
11	б	0	-0.577379	4.129520	0.436520
12	6	0	0.052888	2.908365	0.308971
13	7	0	-0.617125	1.771752	0.110396
14	1	0	-4.648641	1.159121	-0.158619
15	1	0	-5.617643	-1.077916	-0.278342
16	1	0	-1.722483	-2.812082	-0.094112
17	1	0	-3.739403	2.991153	0.149120
18	1	0	-2.497804	5.100420	0.447632
19	1	0	0.008206	5.025446	0.594770
20	1	0	1.128575	2.824205	0.375025
21	б	0	-4.325647	-3.474007	-0.215194
22	1	0	-3.638857	-4.193575	-0.664814
23	1	0	-4.550173	-3.825912	0.797100
24	1	0	-5.260553	-3.487645	-0.778916
25	8	0	2.852324	-3.124447	1.023951
26	6	0	0.942132	-2.117439	0.001501
27	6	0	2.374512	-2.152349	0.467994
28	6	0	3.113063	-0.919032	0.140504

29	6	0	2.311751	0.173055	-0.218324
30	б	0	4.505146	-0.862187	0.131310
31	б	0	2.968548	1.321994	-0.659911
32	6	0	5.131977	0.298785	-0.286438
33	6	0	4.358368	1.381121	-0.698631
34	1	0	5.077218	-1.732794	0.436064
35	1	0	6.214196	0.361689	-0.311962
36	1	0	2.412992	2.184777	-1.012215
37	1	0	4.845391	2.281751	-1.059201
38	1	0	0.317498	-2.757857	0.623877
39	1	0	0.905986	-2.484807	-1.030040

Table S8. Optimized Cartesian coordinates (Å) of 4c'.

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Angs Y	stroms) Z
1	79	0	0.238251	-0.481828	-0.089576
2	7	0	-1.677690	-1.418421	-0.048125
3	б	0	-2.722875	-0.560832	-0.067073
4	6	0	-4.020891	-1.062316	-0.154104
5	б	0	-4.231607	-2.425946	-0.216457
6	б	0	-3.142365	-3.286352	-0.196048
7	6	0	-1.879698	-2.736593	-0.114057
8	б	0	-2.373862	0.857118	0.024730
9	б	0	-3.342264	1.854241	0.154328
10	б	0	-2.968528	3.176326	0.313754
11	6	0	-1.621436	3.529568	0.365281
12	6	0	-0.664153	2.520070	0.233301
13	б	0	-1.004086	1.188596	0.037287
14	1	0	-4.861652	-0.382608	-0.175699
15	1	0	-5.240197	-2.816758	-0.284490
16	1	0	-3.261121	-4.360666	-0.243387
17	1	0	-0.996075	-3.359691	-0.100365
18	1	0	-4.398224	1.607562	0.148975
19	1	0	-3.731431	3.940967	0.418732
20	1	0	0.379819	2.804947	0.305102
21	6	0	-1.207341	4.959325	0.540373
22	1	0	-1.933188	5.514997	1.137324
23	1	0	-0.231376	5.033339	1.023715
24	1	0	-1.130668	5.461430	-0.429694
25	8	0	3.355430	-2.457592	1.428861

26	б	0	1.462571	-2.213674	-0.034868
27	б	0	2.727392	-1.789875	0.623029
28	б	0	3.121413	-0.426739	0.191076
29	б	0	2.068089	0.363960	-0.279509
30	б	0	4.433922	0.033364	0.185204
31	б	0	2.362306	1.602692	-0.838182
32	б	0	4.713643	1.279215	-0.352719
33	б	0	3.680382	2.047674	-0.880979
34	1	0	5.221579	-0.598294	0.582936
35	1	0	5.733053	1.647646	-0.381050
36	1	0	1.582071	2.224344	-1.258998
37	1	0	3.901935	3.009281	-1.332384
38	1	0	1.035347	-3.091521	0.453018
39	1	0	1.665017	-2.439810	-1.087482

Table S9. Optimized Cartesian coordinates (Å) of 4c".

Center Atomic Atomic				Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	 79	0	0.253213	-0.109078	0.032733	
2	6	0	-1.732106	-0.664142	0.008118	
3	6	0	-2.612511	0.420319	-0.105610	
4	6	0	-3.982467	0.194484	-0.247295	
5	6	0	-4.464144	-1.102799	-0.269171	
6	6	0	-3.602456	-2.195549	-0.146533	
7	6	0	-2.231981	-1.953593	-0.016559	
8	6	0	-1.998863	1.736943	-0.020598	
9	6	0	-2.686942	2.947075	0.005330	
10	6	0	-2.003027	4.131622	0.191639	
11	6	0	-0.627065	4.100129	0.372909	
12	6	0	0.013638	2.881082	0.322156	
13	7	0	-0.643944	1.738738	0.101852	
14	1	0	-4.680203	1.019003	-0.347791	
15	1	0	-5.529408	-1.274197	-0.384894	
16	1	0	-1.545437	-2.791873	0.062629	
17	1	0	-3.762834	2.947299	-0.105223	
18	1	0	-2.540283	5.072349	0.214458	
19	1	0	-0.051934	4.998607	0.551799	
20	1	0	1.079357	2.798703	0.470012	
21	6	0	-4.138933	-3.594563	-0.133066	
22	1	0	-3.411178	-4.302631	-0.533516	
23	1	0	-4.370304	-3.908240	0.890184	
24	1	0	-5.059275	-3.674669	-0.714707	

25	8	0	0.889450	-1.992007	0.087009
26	6	0	2.217832	-2.163367	0.246019
27	6	0	3.024055	-0.947438	0.043017
28	б	0	2.304969	0.253150	-0.121269
29	б	0	4.417357	-0.955845	-0.038435
30	б	0	3.023229	1.405014	-0.430017
31	б	0	5.110552	0.212238	-0.306609
32	б	0	4.411062	1.394101	-0.518759
33	1	0	4.964151	-1.883782	0.090175
34	1	0	6.193058	0.198009	-0.371792
35	1	0	2.516835	2.341422	-0.638748
36	1	0	4.944409	2.307134	-0.762231
37	6	0	2.699629	-3.380681	0.542264
38	1	0	3.761189	-3.552593	0.652176
39	1	0	2.029054	-4.221542	0.667335

REFERENCES

¹ A. P. Shaw, M. Tilset, R. H. Heyn, and S. Jakobsen, J. Coord. Chem., 2011, 64, 38-47.

² C. Structure, H. C, M. A. Cinellu, A. Zucca, S. Stoccoro, and G. M. A, J. Chem. Soc., Dalton Trans., **1995**, 2865–2872.

³ W. Henderson, B. K. Nicholson, S. J. Faville, D. Fan, and J. D. Ranford, J. Organomet. Chem., **2001**, 631, 41–46.

⁴ Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
⁵ J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

⁶ A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835.

⁷ M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. **1987**, 86, 866–872.

⁸ S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–129.

⁹ J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093.

¹⁰ E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. **1997**, 107, 3032–3041.

¹¹ B. Mennucci, E. Cancès, J. Tomasi, J. Phys. Chem. B 1997, 101, 10506–10517.