SUPPORTING INFORMATION

Solid-State Principles Applied to Organic-Inorganic Perovskites: New Tricks for an Old Dog

Gregor Kieslich, Shijing Sun and Anthony K. Cheetham*

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK

SI-Table 1. The calculated effective radii $r_{eff} = r_{mass+} r_{ion}$ for different anions and amine based cations and corresponding tolerance factors (α) of lead iodides and manganese formates; h_{Xeff} and r_{mass} were calculated by using reported room temperature crystallographic data. In case where differences between the reported structures were observed, an average value was calculated and the error estimated to 6%.*

Cation		r _{mass}	r _{ion}	r _{Aeff}	Reference	α	α
						A-PbI ₃	A-Mn(HCOO) ₃
#1	Ammonium	0	146	146	1	0.76(3)	0.65(1)
#2	Hydroxylammonium	70	146	216	2	0.90(9)	0.81(2)
#3	Hydrazinium	71	146	217	3	0.91(2)	0.81(4)
#4	Methylammonium	71	146	217	4,5	0.91(2)	0.81(4)
#5	Azetidinium	204	146	250	4,6	0.98(0)	0.89(1)
#6	Formamidinium	107	146	253	5,7	0.98(7)	0.89(7)
#7	Imidazolium	107	146	258	8,9, 10	0.99(7)	0.90(9)
#8	Dimethylammonium	126	146	272	4,11,12	1.02(6)	0.94(1)
#9	Ethylammonium	128	146	274	4	1.03(0)	0.94(6)
#10	Guanidinium	132	146	278	13	1.03(9)	0.95(5)
#11	Tetramethylammonium	146	146	292	14,15	1.06(8)	0.98(7)
Anion							
Iod	ide, I ⁻	0	220	$r_{Xeff} =$ 220	1		
Cyanide, CN ⁻		0	146	$r_{Xeff} = $ 146 $h_{Xeff} = $ 395	16,8		
Formate**, HCOO ⁻		-	-	$r_{Xeff} =$ 136 $h_{Xeff} =$ 447	4,11,17		
Azide, N ₃ -		0	146	$r_{Xeff} = $ 146 $h_{Xeff} = $ 447	13,18,19		

* The effective height of the azide anion shows a larger flexibility than the other bridging anions (426 pm - 494 pm).

** The effective radius of the cylinder for the formate anion was estimated to be equal the ionic radius of oxygen.

References

- 1 R. D. Shannon, Acta Cryst. A, 1976, **32**, 751–767.
- 2 B. Liu, R. Shang, K.-L. Hu, Z.-M. Wang and S. Gao, *Inorg. Chem.*, 2012, **51**, 13363-13372.
- 3 S. Chen, R. Shang, K.-L. Hu, Z.-M. Wang and S. Gao, *Inorg. Chem. Front.*, 2014, 1,83-98.
- Z. Wang, B. Zhang, T. Otsuka, K. Inoue, H. Kobayashi and M. Kurmoo, *Dalton Trans.*, 2004, 15, 2209-2216.
- 5 C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis and *Inorg. Chem.*, 2013, 52, 9019-9038.
- 6 Y. Imai, B. Zhou, Y. Ito, H. Fijimori, A. Kobayashi, Z.-M.-Wang and H. Kobayashi, *Chem. -Asian J.*, 2012, 7, 2786-2790.
- 7 M. Maczka, A. Ciupa, A. Gagor, A. Sieradzki, A. Pikul, B. Macalik and M. Drozd, *Inorg. Chem.*, 2014, 53, 5260-5268.
- 8 W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa and K. Awaga, Angew. Chem. Int. Ed., 2010, 49, 6608-6610.
- 9 B.-Q. Wang, H.-B. Yan, Z.-Q. Huang and Z. Zang, Acta. Cryst., 2013, C69, 616-619.
- 10 B. Pato-Doldán, L.C. Gómez-Aquirre, J.M. Bermúdez-Garcia, M. Sánchez-Andújar, A. Fondado, J. Mira, S. Castro-Garcia and M. A. Senaris-Rodriguez, RSC Adv., 2013, 3, 22404-22411.
- 11 P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto and A. K. Cheetham, J. Am. Chem. Soc. 2009, 131, 13625-13627.
- 12 H.F. Clausen, R. D. Poulsen, A. D. Bond, M.-A. S. Chevallier and B. B. Iversen, *J. Solid State Chem.*, 2005, **178**, 3342-3351.
- 13 K.-L. Hu, M. Kurmoo, Z. Wang and S. Gao, Chem. Eur. J., 2009, 15, 12050-12064.
- 14 F.A. Mautner, H. Krischner and C. Kratky, *Monatsh. Chem.*, 1988, 119, 1245.
- 15 F. A. Mautner, S. Hanna, R. Cortés, L. Lezama, M. G. Barandika and T. Rojo, *Inorg. Chem.*, 1999, **38**, 4647-4652.
- 16 W. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu and R.-G. Xiong, J. Am. Chem. Soc., 2013, **135**, 5230-5233.
- Z. Wang, B. Zhang, K. Inoue, H. Fujiwara, T. Otsuka, H. Kobayashi and M. Kurmoo, *Inorg. Chem.*, 2007, 46, 437-445.
- 18 F. A. Mautner, R. Cortés, L. Lezama and T. Rojo, Angew. Chem. Int. Ed., 1996, 35, 78-80.
- 19 Z.-Y. Du, Y.-P. Zhao, W.-X. Zhang, H.-L. Zhou, C.-T. He, W. Xue, B.-Y. Wang and X.-M. Chen, Chem. Commun., 2014, 50, 1989-1991.