Electronic Supplementary Information

Chiral tether-mediated stabilisation and helix-sense control of

complementary metallo-double helices

Miki Horie,[†] Naoki Ousaka,[‡] Daisuke Taura,[†] and Eiji Yashima^{*,†}

[†]Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan. [‡]Venture Business Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.

*To whom correspondence should be addressed.

E-mail: yashima@apchem.nagoya-u.ac.jp

Table of Contents:

Experimental Section	S2
Supporting Data	S16
Supporting References	S 31

Experimental Section

1. Materials and Instruments

Materials. All starting materials and dehydrated solvents were purchased from Aldrich Co. (Milwaukee, WI), Wako Pure Chemical Industries (Osaka, Japan), and Tokyo Kasei Kogyo (TCI) (Tokyo, Japan) unless otherwise noted. Bio-Beads SX-1 for the size exclusion column chromatography (SEC) was purchased from Bio-Rad Laboratories (Hercules, CA). Amidine monomer, **7b-H**,^{S1} amidine dimers, **1a**^{S2} and **1c**,^{S3} carboxylic acid dimer, **2**,^{S3} and the duplexes, **1a**·**2**,^{S2} and **1c**·**2**^{S3} were synthesized according to the reported methods.

Instruments. The melting points were measured using a Yanaco MP-500D melting point apparatus (Kyoto, Japan) and were uncorrected. The NMR spectra were obtained using a Bruker Ascend 500 or a Varian UNITY INOVA 500AS spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C and a Varian Mercury 300 spectrometer (121.5 MHz for ³¹P). Chemical shifts are reported in parts per million (δ) downfield from tetramethysilane (TMS) as the internal standard in CDCl₃ (¹H and ¹³C), while H₃PO₄ was used as the external standard for ³¹P NMR measurements. The electron and cold spray ionisation mass spectra (ESI-MS and CSI-MS) were recorded using a JEOL JMS-T100CS spectrometer (Akishima, Japan). The elemental analyses were performed by the laboratory of elemental analyses in the Department of Agriculture, Nagoya University. The IR spectra were recorded using a JASCO Fourier Transform IR-680 spectrophotometer (Hachioji, Japan). The absorption and CD spectra were measured in a 1.0-mm quartz cell on a JASCO V-570 spectrophotometer and a JASCO J-820 spectropolarimeter, respectively. The temperature was controlled by a JASCO PTC-423L apparatus.

2. Synthetic Procedures

Scheme S1. Synthesis of Amidine Dimer 1b.

1b. To a solution of **7b-H** (111 mg, 0.200 mmol) and $Pt(PPh_3)_2Cl_2$ (79 mg, 0.10 mmol) in degassed Et_2NH (13 mL) was added CuI (2.4 mg, 0.013 mmol) at room temperature under N₂. After the mixture was stirred at reflux for 4 h under N₂, the solvent was evaporated to dryness. The residue was dissolved in CHCl₃ (50 mL), and the solution was washed subsequently with 0.5 M HCl (50

mL), water (50 mL), 0.5 M NaOH (3 × 50 mL), water (50 mL), and brine (50 mL), and then dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford **1b** (168 mg, 91.7% yield) as a pale yellow solid. Mp: 153–155 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C, as **1b**·(CH₃CO₂H)₂): δ 11.82 (br s, 4H, NH), 7.84–7.78 (m, 12H, ArH) 7.62 (t, *J* = 7.8 Hz, 2H, ArH), 7.54 (d, *J* = 8.5 Hz, 4H, ArH), 7.49–7.43 (m, 14H, ArH), 7.41–7.36 (m, 12H, ArH), 7.09 (d, *J* = 8.5 Hz, 4H, ArH), 6.32 (d, *J* = 8.4 Hz, 4H, ArH), 2.61–2.52 (m, 4H, CHN), 2.09 (s, CH₃CO₂), 1.57–1.49 (m, 4H, CH₂), 1.46–1.33 (m, 8H, CH₂), 1.29–1.13 (m, 8H, CH₂), 1.07–0.95 (m, 4H, CH₂), 0.87–0.64 (m, 16H, CH₂), 0.27 (s, 18H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C, as **1b**·(CH₃CO₂H)₂): δ 176.59, 161.56, 141.79, 140.55, 138.98, 135.23, 134.59, 132.65, 131.53, 131.51, 131.27, 131.04, 130.60, 130.56, 130.03, 129.23, 128.85, 128.70, 128.08, 127.63, 123.72, 122.32, 104.29, 96.32, 54.56, 32.41, 32.27, 25.42, 24.61, 0.06. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C, as **1b**·(CH₃CO₂H)₂): δ 19.33 (*J*_{P-Pt} = 2622 Hz). IR (KBr, cm⁻¹): 3433 (*v*_{N-H}), 2156 (*v*_{C=C}), 2108 (*v*_{C=C}), 1636 (*v*_{C=N}). HRMS(ESI-MS): *m*/z calcd for [M(C₁₁₂H₁₁₆N₄P₂PtSi₂) + 2H]²⁺, 915.9012; found 915.8972.

1b·2. The amidine strand **1b** (55 mg, 0.030 mmol) and carboxylic acid strand **2** (45 mg, 0.030 mmol) were dissolved in CHCl₃ (1.0 mL). The solution was then filtered through a membrane filter ($\phi = 0.45 \ \mu$ m). The filtrate was evaporated *in vacuo* to afford the duplex **1b·2** (99 mg, 99% yield) as a pale yellow solid. Mp: 200 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened, suggesting that the molecular motion of the complexes is highly restricted probably due to the steric repulsion of triphenylphosphine ligands.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 19.12 ($J_{P-Pt} = 2631 \text{ Hz}$). IR (KBr, cm⁻¹): 3448 (v_{N-H}), 2156 ($v_{C=C}$), 2107 ($v_{C=C}$), 1637 ($v_{C=N}$). CSI-MS: m/z calcd for [M(C₂₀₀H₁₈₈N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1668.61; found 1668.63. Anal. Calcd for C₂₀₀H₁₈₈N₄O₄P₄Pt₂Si₄: C, 71.96; H, 5.68; N, 1.68. Found: C, 71.69; H, 5.38; N, 1.59.

Scheme S2. Synthesis of 3a-d.

(S,S)-**3a** and (R,R)-**3a.** To a solution of **1a**·**2** (31 mg, 9.6 µmol) in dry CHCl₃ (16 mL) was added (2*S*,4*S*)-2,4-bis(diphenylphosphino)pentane [(*S*,*S*)-DPPPe] (8.46 mg, 19.2 µmol) at room temperature under Ar. The mixture was stirred at room temperature for 2 h under Ar, and the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (*S*,*S*)-**3a** (25 mg, 87% yield) as a pale yellow solid. In the same way, (*R*,*R*)-**3a** was also prepared using (*R*,*R*)-DPPPe in 87% yield.

(*S*,*S*)-**3a.** Mp: 245 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 12.42 (br s, 2H, NH), 12.02 (br s, 2H, NH), 8.11–8.03 (m, 4H, ArH), 7.80–7.69 (m, 8H, ArH), 7.67–7.56 (m, 10H, ArH), 7.54–7.44 (m, 12H, ArH), 7.40–7.30 (m, 20H, ArH), 7.24–7.14 (m, 16H, ArH), 7.11–7.05 (m, 2H, ArH), 6.84–6.75 (m, 4H, ArH), 6.55–6.42 (m, 4H, ArH), 6.30–6.15 (m, 4H, ArH), 3.85–3.56 (m, 4H, CHP), 3.24–3.11 (m, 2H, CH₂), 3.03–2.87 (m, 4H, CHN), 2.85–2.72 (m, 2H, CH₂), 1.48–1.33 (m, 12H, CH₃), 0.95 (d, *J* = 6.4 Hz, 6H, CH₃), 0.79 (d, *J* = 6.3 Hz, 6H, CH₃), 0.28 (s, 18H, SiCH₃), 0.27 (s, 18H, SiCH₃), 0.21–0.14 (m, 6H, CH₃), 0.08–0.04 (m, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 177.03, 161.68, 143.28, 141.06, 140.45, 140.41, 138.56, 138.53, 137.71, 137.54, 135.54, 135.22, 134.59, 132.84, 132.54, 131.68, 131.58, 131.29, 131.13, 130.42, 129.98, 129.87, 129.79, 129.67, 129.48, 128.86, 128.75, 128.44, 128.21, 128.08, 128.01, 127.82, 127.53, 127.40, 126.28, 124.15, 122.71, 121.28, 105.86, 104.47, 96.95, 93.09, 46.82, 46.80, 38.93, 29.10, 28.23, 22.88, 22.69, 22.48, 22.07, 15.62, 14.91, 0.42, 0.12. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 26.48 (*J*_{P-Pt} = 2618 Hz). IR (KBr, cm⁻¹): 3422 (*v*_{N-H}), 2156 (*v*_{C=C}), 2105 (*v*_{C=C}), 1637 (*v*_{C=N}). HRMS(CSI-MS): *m*/z calcd for [M(C₁₇₄H₁₇₂N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1504.5431; found 1504.5415.

(*R*,*R*)-**3a.** Mp: 245 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 12.44 (br s, 2H, NH), 12.03 (br s, 2H, NH), 8.11–8.04 (m, 4H, ArH), 7.80–7.69 (m, 8H, ArH), 7.66–7.56 (m, 10H, ArH), 7.54–7.44 (m, 12H, ArH), 7.40–7.30 (m, 20H, ArH), 7.24–7.14 (m, 16H, ArH), 7.11–7.05 (m, 2H, ArH), 6.83–6.76 (m, 4H, ArH), 6.54–6.42 (m, 4H, ArH), 6.30–6.15 (m, 4H, ArH), 3.85–3.57 (m, 4H, CHP), 3.25–3.11 (m, 2H, CH₂), 3.04–2.87 (m, 4H, CHN), 2.85–2.72 (m, 2H, CH₂), 1.48–1.33 (m, 12H, CH₃), 0.95 (d, *J* = 6.4 Hz, 6H, CH₃), 0.79 (d, *J* = 6.4 Hz, 6H, CH₃), 0.28 (s, 18H, SiCH₃), 0.27 (s, 18H, SiCH₃), 0.21–0.14 (m, 6H, CH₃), 0.08–0.04 (m, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 177.03, 161.69, 143.27, 141.07, 140.43, 140.41, 138.55, 138.53, 137.74, 137.56, 135.57, 135.23, 134.59, 132.84, 132.55, 131.69, 131.59, 131.30, 131.11, 130.44, 129.99, 129.89, 129.81, 129.66, 129.48, 128.86, 128.75, 128.44, 128.21, 128.08, 128.02, 127.82, 127.54, 127.41, 126.30, 124.16, 122.71, 121.30, 105.87, 104.47, 96.96, 93.10, 46.83, 46.83, 38.92, 29.14, 28.20, 22.87, 22.69, 22.48, 22.07, 15.62, 14.91, 0.42, 0.12. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 26.54 (*J*_{P-Pt} = 2546 Hz), 25.80 (*J*_{P-Pt} = 2615 Hz). IR (KBr, cm⁻¹): 3422 (*v*_{N-H}), 2155 (*v*_{C=C}), 2104 (*v*_{C=C}), 1637 (*v*_{C=N}). HRMS(CSI-MS): *m*/z calcd for [M(C₁₇₄H₁₇₂N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1504.5431; found 1504.5405.

(*S*,*S*)-**3b** and (*R*,*R*)-**3b**. To a solution of **1b**·**2** (32 mg, 9.6 μ mol) in dry CHCl₃ (16 mL) was added (*S*,*S*)-DPPPe (8.46 mg, 19.2 μ mol) at room temperature under Ar. After the mixture was stirred at room temperature for 2 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (*S*,*S*)-**3b** (27 mg, 88% yield) as a pale yellow solid. In the same way, (*R*,*R*)-**3b** was also prepared using (*R*,*R*)-DPPPe in 85% yield.

(*S*,*S*)-**3b.** Mp: 265 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 12.51 (br d, 2H, NH), 11.71 (br d, 2H, NH), 8.25–8.18 (m, 4H, ArH), 7.87-7.81 (m, 4H, ArH), 7.75–7.70 (m, 4H, ArH), 7.65–7.58 (m, 12H, ArH), 7.57–7.53 (m, 8H, ArH), 7.45–7.41 (m, 4H, ArH), 7.38–7.24 (m, 24H, ArH), 7.23–7.05 (m, 10H, ArH), 6.94–6.89 (m, 2H, ArH), 6.54–6.45 (m, 4H, ArH), 6.38–6.33 (m, 4H, ArH), 5.99–5.93 (m, 4H, ArH), 4.02–3.90 (m, 2H, CHP), 3.60–3.44 (m, 4H, CHP and CH₂), 2.66–2.54 (m, 4H, CH₂ and CHN), 2.52–2.42 (m, 2H, CHN), 1.79–1.70 (m, 6H, CH₃), 1.66–1.22 (m, 26H, CH₂ and CH₃), 1.15–1.03 (m, 4H, CH₂), 0.93–0.53 (m, 14H, CH₂), 0.28 (s, 18H, SiCH₃), 0.27 (s, 18H, SiCH₃), 0.17–0.09 (m, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 176.71, 161.34, 143.11, 141.43, 140.55, 140.41, 138.94, 138.86, 137.86, 137.13, 135.09, 134.80, 134.55, 133.02, 132.56, 132.39, 131.77, 131.65, 131.27, 131.16, 130.56, 130.36, 130.06, 130.03, 129.75,

129.67, 129.44, 129.37, 129.30, 128.98, 128.71, 128.60, 128.20, 128.11, 127.91, 127.80, 127.75, 127.65, 126.12, 124.23, 122.55, 121.09, 106.09, 104.51, 97.15, 93.22, 54.16, 53.92, 39.21, 32.72, 32.52, 32.33, 29.84, 29.11, 25.27, 25.14, 24.63, 16.06, 15.55, 0.41, 0.13. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 27.02 ($J_{\text{P-Pt}}$ = 2545 Hz), 25.11 ($J_{\text{P-Pt}}$ = 2650 Hz). IR (KBr, cm⁻¹): 3422 ($v_{\text{N-H}}$), 2156 ($v_{\text{C=C}}$), 2105 ($v_{\text{C=C}}$), 1637 ($v_{\text{C=N}}$). HRMS(CSI-MS): m/z calcd for [M(C₁₈₆H₁₈₈N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1584.6058; found 1584.6020.

(R,R)-**3b.** Mp: 270 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 12.46 (br d, 2H, NH), 11.66 (br d, 2H, NH), 8.24–8.18 (m, 4H, ArH), 7.87–7.80 (m, 4H, ArH), 7.75–7.69 (m, 4H, ArH), 7.65–7.58 (m, 12H, ArH), 7.57–7.53 (m, 8H, ArH), 7.45–7.41 (m, 4H, ArH), 7.38–7.24 (m, 24H, ArH), 7.22-7.05 (m, 10H, ArH), 6.95-6.89 (m, 2H, ArH), 6.54-6.45 (m, 4H, ArH), 6.38-6.33 (m, 4H, ArH), 5.99–5.94 (m, 4H, ArH), 4.02–3.90 (m, 2H, CHP), 3.60–3.44 (m, 4H, CHP and CH₂), 2.66–2.54 (m, 4H, CH₂ and CHN), 2.52–2.42 (m, 2H, CHN), 1.80–1.70 (m, 6H, CH₃), 1.67–1.22 (m, 26H, CH₂ and CH₃), 1.15–1.03 (m, 4H, CH₂), 0.93–0.53 (m, 14H, CH₂), 0.28 (s, 18H, SiCH₃), 0.27 (s, 18H, SiCH₃), 0.17–0.09 (m, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 176.71, 161.35, 143.13, 141.45, 140.55, 140.43, 138.94, 138.86, 137.87, 137.16, 135.14, 134.81, 134.55, 133.04, 132.57, 132.38, 131.78, 131.66, 131.27, 131.17, 130.57, 130.37, 130.06, 130.03, 129.77, 129.68, 129.44, 129.38, 129.30, 128.98, 128.72, 128.61, 128.22, 128.13, 127.93, 127.80, 127.76, 127.66, 126.13, 124.25, 122.56, 121.11, 106.09, 104.52, 97.16, 93.24, 54.18, 53.93, 39.25, 32.73, 32.53, 32.34, 29.86, 29.11, 25.28, 25.14, 24.64, 16.06, 15.55, 0.41, 0.14. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 27.02 ($J_{\text{P-Pt}}$ = 2548 Hz), 25.12 ($J_{\text{P-Pt}}$ = 2646 Hz). IR (KBr, cm⁻¹): 3423 ($v_{\text{N-H}}$), 2156 $(v_{C=C})$, 2105 $(v_{C=C})$, 1637 $(v_{C=N})$. HRMS(CSI-MS): m/z calcd for $[M(C_{186}H_{188}N_4O_4P_4Pt_2Si_4) + 2H]^{2+}$, 1584.6058; found 1584.6077.

(*S*,*S*)-**3c.** To a solution of **1c**·**2** (33 mg, 9.6 µmol) in dry CHCl₃ (16 mL) was added (*S*,*S*)-DPPPe (8.46 mg, 19.2 µmol) at room temperature under Ar. After the mixture was stirred at room temperature for 1 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (*S*,*S*)-**3c** (28 mg, 90% yield) as a pale yellow solid. Mp: 270 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 14.04 (d, *J* = 8.5 Hz, 2H, NH), 12.68 (d, *J* = 8.9 Hz, 2H, NH), 8.46–8.38 (m, 4H, ArH), 7.94–7.88 (m, 4H, ArH), 7.76–7.69 (m, 8H, ArH), 7.67–7.60 (m, 6H, ArH), 7.58 (d, *J* = 8.5 Hz, 4H, ArH), 7.52–7.22 (m, 36H, ArH), 7.18–7.10 (m, 6H, ArH), 7.00–6.95 (m, 4H, ArH), 6.90–6.85 (m, 4H, ArH), 6.79–6.74 (m, 2H, ArH), 6.69–6.64 (m, 2H, ArH),

6.62–6.52 (m, 12H, ArH), 6.45 (d, *J* = 8.5 Hz, 4H, ArH), 6.37 (d, *J* = 8.3 Hz, 4H, ArH), 6.25–6.20 (m, 4H, ArH), 3.85–3.77 (m, 2H, CHN), 3.74–3.57 (m, 6H, CHN and CHP), 3.50–3.38 (m, 2H, CH₂), 2.76–2.67 (m, 2H, CH₂), 1.90–1.80 (m, 6H, CH₃), 1.30–1.22 (m, 6H, CH₃), 0.81 (d, *J* = 6.9 Hz, 6H, CH₃), 0.28 (s, 18H, SiCH₃), 0.28 (s, 18H, SiCH₃), 0.18 (d, *J* = 6.8 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 176.65, 162.82, 143.17, 143.04, 142.78, 141.90, 141.56, 140.78, 138.98, 138.69, 137.05, 136.74, 135.50, 134.32, 132.97, 132.58, 132.48, 131.55, 131.44, 131.31, 130.90, 130.70, 130.40, 130.28, 130.04, 129.72, 129.65, 129.46, 129.10, 129.04, 128.81, 128.73, 128.26, 128.13, 127.88, 127.77, 127.64, 127.56, 126.90, 126.73, 126.31, 126.24, 123.36, 122.22, 121.50, 109.20, 106.23, 104.44, 96.48, 94.83, 55.54, 55.38, 39.46, 23.85, 29.28, 22.22, 21.93, 16.02, 15.77, 0.38, 0.23. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 30.02 (*J*_{P-Pt} = 2559 Hz), 25.25 (*J*_{P-Pt} = 2663 Hz). IR (KBr, cm⁻¹): 3422 (*v*_{N-H}), 2156 (*v*_{C=C}), 2105 (*v*_{C=C}), 1637 (*v*_{C=N}). HRMS(CSI-MS): *m*/z calcd for [M(C₁₉₄H₁₈₀N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1628.5745; found 1628.5792.

(R,R)-3c. To a solution of 1c·2 (31 mg, 9.0 µmol) in dry CHCl₃ (15 mL) was added (R,R)-DPPPe (7.9 mg, 18 µmol) under Ar. After the mixture was stirred at room temperature for 16 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3×10 mL) and dried in vacuo, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (R,R)-3c (26) mg, 87% yield) as a pale yellow solid. Mp: 250 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 13.00 (br s, 2H, NH), 12.29 (br s, 2H, NH), 8.00-7.89 (m, 4H, ArH), 7.82-7.54 (m, 14H, ArH), 7.50 (d, J = 8.5 Hz, 4H, ArH), 7.48-7.40 (m, 6H, ArH), 7.37-7.16 (m, 40H, ArH), 7.09-6.87 (m, 16H, 16H), 7.09-6.87 (m, 16H), 7.09 (m,ArH), 6.85–6.74 (m, 8H, ArH), 6.71 (d, J = 8.5 Hz, 4H, ArH), 6.35–6.28 (m, 4H, ArH), 6.24–5.99 (m, 4H, ArH), 3.97–3.45 (m, 2H, CHP and CHN), 3.26–2.99 (m, 2H, CH₂), 2.87–2.60 (m, 2H, CH₂), 1.49–1.39 (m, 6H, CH₃), 1.38–1.23 (m, 6H, CH₃), 0.44–0.29 (m, 6H, CH₃), 0.26 (s, 18H, SiCH₃), 0.24 (s, 18H, SiCH₃), 0.21 (d, J = 7.0 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 176.68, 162.84, 143.32, 142.42, 142.38, 141.59, 141.17, 140.65, 138.47, 138.41, 138.09, 137.98, 135.26, 135.01, 134.37, 132.82, 132.51, 132.15, 131.69, 131.52, 131.41, 130.90, 130.36, 130.30, 130.05, 129.75, 129.46, 129.31, 129.08, 128.79, 128.70, 128.63, 128.13, 127.96, 127.91, 127.82, 127.68, 127.51, 127.46, 127.29, 126.88, 126.72, 126.49, 123.84, 122.93, 121.29, 105.81, 104.64, 96.74, 92.85, 55.46, 55.43, 39.05, 28.97, 28.30, 22.90, 21.61, 15.73, 14.78, 0.46, 0.11. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 26.61 (J_{Pt-P} = 2549 Hz), 25.44 (J_{Pt-P} = 2609 Hz). IR (KBr, cm⁻¹): 3423 (v_{N-H}), 2156 $(v_{C=C})$, 2105 $(v_{C=C})$, 1638 $(v_{C=N})$. HRMS(CSI-MS): m/z calcd for $[M(C_{194}H_{180}N_4O_4P_4P_4P_2Si_4) +$ 2H]²⁺, 1628.5745; found 1628.5727.

3d. To a solution of 1a·2 (11 mg, 3.6 µmol) in dry CHCl₃ (6 mL) was added 1,3-bis(diphenylphosphino)propane (DPPPr) (3.0 mg, 7.2 µmol) at room temperature under Ar. After the mixture was stirred at room temperature for 2 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane $(3 \times 5 \text{ mL})$ and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford **3d** (10 mg, 96% yield) as a pale yellow solid. Mp: 215 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 12.37 (br d, 2H, NH), 7.90–7.84 (m, 8H, ArH), 7.71–7.64 (m, 8H, ArH), 7.62–7.57 (m, 6H, ArH), 7.55 (d, *J* = 8.5 Hz, 4H, ArH), 7.50–7.42 (m, 10H, ArH), 7.41–7.34 (m, 8H, ArH), 7.33–7.25 (m, 16H, ArH), 7.24–7.17 (m, 6H, ArH), 7.15 $(d, J = 8.4 \text{ Hz}, 4\text{H}, \text{ArH}), 7.13-7.06 \text{ (m, 6H, ArH)}, 6.62 \text{ (d, } J = 8.4 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{Hz}, 4\text{H}, \text{ArH}), 6.40 \text{ (d, } J = 8.3 \text{ Hz}, 4\text{Hz}, 4\text$ Hz, 4H, ArH), 3.17-2.88 (m, 16H, CH₂ and CHN), 0.56 (d, J = 6.4 Hz, 12H, CH₃), 0.53 (d, J = 6.4Hz, 12H, CH₃), 0.28 (s, 18H, SiCH₃), 0.26 (s, 18H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 177.03, 161.63, 143.20, 140.65, 140.52, 138.83, 138.52, 137.68, 137.27, 134.46, 133.45, 133.32, 133.10, 132.86, 132.57, 132.29, 132.21, 132.09, 132.07, 131.89, 131.68, 131.46, 131.39, 130.90, 130.83, 130.69, 130.53, 130.44, 129.93, 129.56, 129.02, 128.84, 128.69, 128.60, 128.53, 128.07, 127.43, 126.33, 124.02, 122.61, 121.36, 105.87, 104.39, 96.57, 93.55, 46.83, 29.85, 23.91, 22.77, 22.38, 0.34, 0.16. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 13.52 (J_{P-Pt} = 2574 Hz), 13.26 (J_{P-Pt} = 2616 Hz). IR (KBr, cm⁻¹): 3422 (v_{N-H}), 2156 ($v_{C=C}$), 2104 ($v_{C=C}$), 1637 ($v_{C=N}$). HRMS(CSI-MS): m/zcalcd for $[M(C_{170}H_{164}N_4O_4P_4Pt_2Si_4) + 2H]^{2+}$, 1476.5118; found 1476.5059.

Scheme S3. Synthesis of 4a-c.

(S,S)-4a and (R,R)-4a. To a solution of 1a·2 (31 mg, 9.6 µmol) in dry CHCl₃ (10 mL) was added (2S,3S)-(–)-bis(diphenylphosphino)butane [(S,S)-CHIRAPHOS] (12 mg, 29 µmol) at room temperature under Ar. After the mixture was stirred at room temperature for 5 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-4a (25 mg,

87% yield) as a pale yellow solid. In the same way, (R,R)-4a was also prepared using (R,R)-CHIRAPHOS in 85% yield.

(*S*,*S*)-**4a.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 43.10 (*J*_{P-Pt} = 2245 Hz), 43.01 (*J*_{P-Pt} = 2249 Hz). IR (KBr, cm⁻¹): 3423 (*v*_{N-H}), 2155 (*v*_{C=C}), 2111 (*v*_{C=C}), 1638 (*v*_{C=N}). CSI-MS: *m*/*z* calcd for [M(C₁₇₂H₁₆₈N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1490.53; found 1490.61. Anal. Calcd for C₁₇₂H₁₆₈N₄O₄P₄Pt₂Si₄: C, 69.29; H, 5.68; N, 1.88. Found: C, 69.29; H, 5.53; N, 1.75.

(*R*,*R*)-**4a.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 43.24 (*J*_{P-Pt} = 2223 Hz), 42.68 (*J*_{P-Pt} = 2236 Hz). IR (KBr, cm⁻¹): 3423 (*v*_{N-H}), 2155 (*v*_{C=C}), 2111 (*v*_{C=C}), 1638 (*v*_{C=N}). CSI-MS: *m*/*z* calcd for [M(C₁₇₂H₁₆₈N₄O₄P₄Pt₂Si₄) + 2H]²⁺, 1490.53; found 1490.59. Anal. Calcd for C₁₇₂H₁₆₈N₄O₄P₄Pt₂Si₄: C, 69.29; H, 5.68; N, 1.88. Found: C, 69.30; H, 5.73; N, 1.84.

(S,S)-4b and (R,R)-4b. To a solution of 1b·2 (32 mg, 9.6 µmol) in dry CHCl₃ (10 mL) was added (S,S)-CHIRAPHOS (12 mg, 29 µmol) at room temperature under Ar. After the mixture was stirred at room temperature for 8 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-4b (26 mg, 86% yield) as a pale yellow solid. In the same way, (R,R)-4b was also prepared using (R,R)-CHIRAPHOS in 84% yield.

(*S*,*S*)-**4b.** Mp: 210 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 43.16 (J_{P-Pt} = 2230 Hz), 42.76 (J_{P-Pt} = 2245 Hz). IR (KBr, cm⁻¹): 3422 (v_{N-H}), 2155 ($v_{C=C}$), 2111 ($v_{C=C}$), 1637 ($v_{C=N}$). CSI-MS: *m*/*z* calcd for [M(C₁₈₄H₁₈₄N₄O₄P₄Pt₂Si₄) + H]⁺, 3140.17; found 3140.24. Anal. Calcd for C₁₈₄H₁₈₄N₄O₄P₄Pt₂Si₄: C, 70.34; H, 5.90; N, 1.78. Found: C, 70.33; H, 6.02; N, 1.78.

(*R*,*R*)-**4b.** Mp: 215 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃,

25 °C): δ 43.03 ($J_{\text{P-Pt}}$ = 2214 Hz), 42.87 ($J_{\text{P-Pt}}$ = 2227 Hz). IR (KBr, cm⁻¹): 3422 ($v_{\text{N-H}}$), 2155 ($v_{\text{C=C}}$), 2112 ($v_{\text{C=C}}$), 1637 ($v_{\text{C=N}}$). CSI-MS: m/z calcd for [M(C₁₈₄H₁₈₄N₄O₄P₄Pt₂Si₄) + H]⁺, 3140.17; found 3140.24. Anal. Calcd for C₁₈₄H₁₈₄N₄O₄P₄Pt₂Si₄: C, 70.34; H, 5.90; N, 1.78. Found: C, 70.22; H, 5.98; N, 1.70.

(S,S)-4c and (R,R)-4c. To a solution of 1c·2 (33 mg, 9.6 µmol) in dry CHCl₃ (16 mL) was added (S,S)-CHIRAPHOS (12 mg, 29 µmol) at room temperature under Ar. After the mixture was stirred at room temperature for 18 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-4c (23 mg, 74% yield) as a pale yellow solid. In the same way, (R,R)-4c was also prepared using (R,R)-CHIRAPHOS in 71% yield.

(*S*,*S*)-**4c.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 45.30 (*J*_{P-Pt} = 2231 Hz), 42.86 (*J*_{P-Pt} = 2198 Hz). IR (KBr, cm⁻¹): 3423 (*v*_{N-H}), 2155 (*v*_{C=C}), 2112 (*v*_{C=C}), 1637 (*v*_{C=N}). CSI-MS: *m*/*z* calcd for [M(C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄) + H]⁺, 3228.11; found 3228.20. Anal. Calcd for C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄: C, 71.40; H, 5.49; N, 1.73. Found: C, 71.38; H, 5.65; N, 1.77.

(*R*,*R*)-**4c.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 44.86 ($J_{\text{P-Pt}}$ = 2228 Hz), 42.86 ($J_{\text{P-Pt}}$ = 2237 Hz), 42.16 ($J_{\text{P-Pt}}$ = 2200 Hz), 41.91 ($J_{\text{P-Pt}}$ = 2213 Hz). IR (KBr, cm⁻¹): 3423 ($v_{\text{N-H}}$), 2155 ($v_{\text{C=C}}$), 2112 ($v_{\text{C=C}}$), 1637 ($v_{\text{C=N}}$). CSI-MS: *m*/*z* calcd for [M(C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄) + H]⁺, 3228.11; found 3228.23. Anal. Calcd for C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄: C, 71.40; H, 5.49; N, 1.73. Found: C, 71.40; H, 5.31; N, 1.70.

(S,S)-5a. To a solution of 1a (25 mg, 0.015 mmol) in dry CHCl₃ (10 mL) was added (S,S)-CHIRAPHOS (6.4 mg, 0.015 mmol) at room temperature under Ar. After the mixture was stirred at room temperature for 2 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane $(3 \times 10 \text{ mL})$ and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-5a (21 mg, 89% yield) as a pale yellow solid. Mp: 177–178 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C, as (*S*,*S*)-**5**a·(CH₃CO₂H)₂): δ 12.04 (br s, 4H, NH), 7.88–7.78 (m, 8H, ArH), 7.62 (t, J = 7.8 Hz, 2H, ArH), 7.58–7.42 (m, 24H, ArH), 7.25 (d, J = 8.9 Hz, 4H, ArH), 7.10 (d, J = 8.5 Hz, 4H, ArH), 3.10–3.02 (m, 4H, CHN), 2.44–2.39 (m, 2H, CHP), $1.11-1.06 (m, 6H, CH_3), 0.75 (d, J = 6.5 Hz, 6H, CH_3), 0.72 (d, J = 6.8 Hz, 6H, CH_3), 0.71 (d, J = 6.8 Hz, CH_3), 0.71 (d, J$ $6.8 \text{ Hz}, 6H, CH_3$, $0.63 (d, J = 6.4 \text{ Hz}, 6H, CH_3), 0.27 (s, 18H, SiCH_3)$. ¹³C NMR (125 MHz, CDCl₃, 25 °C, as (*S*,*S*)-**5**a·(CH₃CO₂H)₂): δ 176.58, 161.81, 141.76, 140.44, 138.72, 136.63, 134.68, 132.94, 132.73, 132.18, 131.95, 131.70, 131.20, 129.23, 128.86, 128.77, 128.53, 128.03, 123.73, 122.04, 104.25, 96.38, 47.10, 47.09, 37.53, 22.50, 22.45, 22.38, 22.12, 22.11, 14.92, 0.04. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C, as (S,S)-**5**a·(CH₃CO₂H)₂): δ 43.16 (J_{P-Pt} = 2232 Hz). IR (KBr, cm⁻¹): 3423 (v_{N-H}) , 2156 $(v_{C=C})$, 2115 $(v_{C=C})$, 1637 $(v_{C=N})$. HRMS(ESI-MS): m/z calcd for $[M(C_{92}H_{98}N_4P_2PtSi_2) +$ 2H]²⁺, 786.8307; found 786.8343.

(S,S)-5b. To a solution of 1b (37 mg, 0.020 mmol) in dry CHCl₃ (10 mL) was added (S,S)-CHIRAPHOS (8.5 mg, 0.020 mmol) at room temperature under Ar. After the mixture was stirred at room temperature for 2 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane $(3 \times 10 \text{ mL})$ and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-5b (30 mg, 88% yield) as a pale yellow solid. Mp: 190–192 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C, as (*S*,*S*)-**5**b·(CH₃CO₂H)₂): δ 12.04 (br s, 4H, NH), 7.90–7.82 (m, 4H, ArH), 7.80-7.73 (m, 4H, ArH), 7.64 (t, J = 7.8 Hz, 2H, ArH), 7.58–7.41 (m, 24H, ArH), 7.25 (d, J = 7.0 Hz, 4H, ArH), 7.11 (d, J = 8.2 Hz, 4H, ArH), 2.67–2.53 (m, 4H, CHN), 2.44-2.35 (m, 2H, CHP), 1.58-1.44 (m, 6H, CH₂), 1.42-1.18 (m, 10H, CH₂), 1.15-0.91 (m, 14H, CH₂ and CH₃), 0.84–0.58 (m, 10H, CH₂), 0.27 (s, 18H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C, as (S,S)-5b·(CH₃CO₂H)₂): δ 176.68, 161.68, 141.89, 140.55, 138.95, 136.76, 134.90, 132.88, 132.67, 132.09, 132.04, 131.94, 131.74, 131.25, 130.86, 130.08, 129.25, 128.90, 128.70, 128.51, 127.99, 123.74, 104.29, 96.33, 54.63, 54.61, 37.34, 32.44, 32.25, 32.20, 25.32, 25.25, 24.65, 21.44, 14.86, 0.06. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C, as (S,S)-**5b**·(CH₃CO₂H)₂): δ 42.91 (J_{P-Pt} = 2232 Hz). IR (KBr, cm⁻¹): 3423 (v_{N-H}), 2156 ($v_{C=C}$), 2115 ($v_{C=C}$), 1637 ($v_{C=N}$). HRMS(ESI-MS): m/z calcd for $[M(C_{104}H_{114}N_4P_2PtSi_2) + 2H]^{2+}$, 866.8933; found 866.8947.

(S,S)-5c. To a solution of 1c (38 mg, 0.020 mmol) in dry CHCl₃ (10 mL) was added (S,S)-CHIRAPHOS (8.5 mg, 0.020 mmol) at room temperature under Ar. After the mixture was stirred at room temperature for 2 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane $(3 \times 10 \text{ mL})$ and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-5c (30 mg, 85% yield) as a pale yellow solid. Mp: 177–179 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C, as (*S*,*S*)-**5**c·(CH₃CO₂H)₂): δ 12.57 (br s, 4H, NH), 7.85–7.75 (m, 8H, ArH), 7.67 (t, J = 7.8 Hz, 2H, ArH), 7.60–7.37 (m, 18H, ArH), 7.28–7.14 (m, 14H, ArH), 7.05–6.96 (m, 8H, ArH), 6.78 (d, J = 8.3 Hz, 4H, ArH), 6.64 (d, J = 8.4 Hz, 4H, ArH), 6.41 (d, J = 8.3 Hz, 4H, ArH), 3.94–3.86 (m, 4H, CHN), 2.42–2.36 (m, 2H, CHP), 1.13–1.05 (m, 6 6H, CH₃), 0.69 (d, J = 6.8 Hz, 6H, CH₃), 0.62 (d, J = 6.9 Hz, 6H, CH₃), 0.25 (s, 18H, SiCH₃). 13 C NMR (125 MHz, CDCl₃, 25 °C, as (S,S)-**5**c·(CH₃CO₂H)₂): δ 177.28, 163.10, 142.63, 142.44, 141.27, 138.40, 136.54, 134.23, 133.03, 132.32, 131.92, 131.64, 131.07, 130.69, 129.93, 129.09, 128.76, 128.68, 128.58, 128.52, 128.04, 127.75, 126.75, 126.66, 123.30, 122.17, 104.37, 96.01, 55.64, 55.58, 37.54, 22.23, 22.11, 21.23, 14.85, 0.04. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C, as (S,S)-5c·(CH₃CO₂H)₂): δ 42.76 (J_{P-Pt} = 2229 Hz). IR (KBr, cm⁻¹): 3433 (v_{N-H}), 2155 ($v_{C=C}$), 2114 (v_{C} $_{=C}$, 1637 ($v_{C=N}$). HRMS(ESI-MS): m/z calcd for $[M(C_{112}H_{106}N_4P_2PtSi_2) + 2H]^{2+}$, 910.8620; found 910.8655.

(*R*,*R*)-**5c.** To a solution of **1c** (38 mg, 0.020 mmol) in dry CHCl₃ (10 mL) was added (*R*,*R*)-CHIRAPHOS (8.5 mg, 0.020 mmol) at room temperature under Ar. After the mixture was stirred at room temperature for 4 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (*R*,*R*)-**5c** (29 mg, 81% yield) as a pale yellow solid. Mp: 173–175 °C. ¹H NMR (500 MHz, CDCl₃, 25 °C, as (*R*,*R*)-**5c** ·(CH₃CO₂H)₂): δ 12.93 (br s, 4H, NH), 7.86–7.79 (m, 4H, ArH), 7.72–7.62 (m, 8H, ArH), 7.55–7.37 (m, 16H, ArH), 7.27–7.14 (m, 14H, ArH), 7.10–6.99 (m, 8H, ArH), 6.73 (d, *J* = 8.2 Hz, 4H, ArH), 6.65 (d, *J* = 8.3 Hz, 4H, ArH), 6.41 (d, *J* = 8.3 Hz, 4H, ArH), 3.95–3.84 (m, 4H, CHN), 2.39–2.30 (m, 2H, CHP), 1.15–1.03 (m, 6H, CH₃), 0.71 (d, *J* = 6.8 Hz, 6H, CH₃), 0.58 (d, *J* = 6.8 Hz, 6H, CH₃), 0.25 (s, 18H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C, as (*R*,*R*)-**5c** ·(CH₃CO₂H)₂): δ 176.99, 163.12, 142.67, 142.59, 141.28, 138.52, 136.84, 134.16, 132.72, 132.30, 131.91, 131.81, 131.67, 131.08, 130.62, 129.88, 129.11, 129.05, 128.95, 128.73, 128.63, 128.55, 128.43, 128.08, 127.96, 127.66, 126.76, 126.68, 123.24, 122.26, 104.42, 95.96, 55.62, 55.58, 36.74, 22.34, 22.07, 21.97, 14.57, 0.05. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C, as (*R*,*R*)-**5c** ·(CH₃CO₂H)₂): δ 42.15 (*J*_{F-R} = 2223 Hz). IR (KBr, cm⁻¹): 3433 (v_{NH}),

2155 ($v_{C=C}$), 2114 ($v_{C=C}$), 1637 ($v_{C=N}$). HRMS(ESI-MS): m/z calcd for [M($C_{112}H_{106}N_4P_2PtSi_2$) + 2H]²⁺, 910.8620; found 910.8648.

(S,S)-6 and (R,R)-6. To a solution of 2 (30 mg, 0.020 mmol) in dry CHCl₃ (10 mL) was added (S,S)-CHIRAPHOS (8.5 mg, 0.020 mmol) at room temperature under Ar. After the mixture was stirred at room temperature for 2 h under Ar, the solvent was evaporated to dryness. The residue was washed with *n*-hexane (3 × 10 mL) and dried *in vacuo*, and then purified by SEC (Bio-Beads SX-1, CHCl₃ as eluent) to afford (S,S)-6 (29 mg, 98% yield) as a pale yellow solid. In the same way, (R,R)-6 was also prepared using (R,R)-CHIRAPHOS in 85% yield.

(*S*,*S*)-**6.** Mp: 200 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.93–7.80 (m, 8H, ArH), 7.53-7.39 (m, 20H, ArH), 7.31 (d, J = 8.2 Hz, 4H, ArH), 7.26–7.24 (m, 2H, ArH), 7.21–7.10 (m, 8H, ArH), 2.45–2.37 (m, 2H, CHP), 1.11–1.02 (m, 6H, CH₃), 0.26 (s, 18H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 173.21, 140.95, 139.81, 136.74, 136.69, 136.64, 133.01, 131.98, 131.79, 131.36, 130.90, 129.69, 129.50, 129.33, 128.83, 128.65, 128.55, 128.41, 128.07, 127.61, 122.38, 105.31, 94.86, 36.85, 14.81, 0.17. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 42.90 ($J_{P-Pt} = 2239$ Hz). IR (KBr, cm⁻¹): 3448 (v_{O-H}), 2155 ($v_{C=C}$), 2111 ($v_{C=C}$), 1702 ($v_{C=O}$). HRMS(ESI-MS): *m/z* calcd for [M(C₈₀H₇₀O₄P₂PtSi₂) – H]⁻, 1406.3862; found 1406.3851.

(*R*,*R*)-**6.** Mp: 195 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.93–7.80 (m, 8H, ArH), 7.54–7.39 (m, 20H, ArH), 7.31 (d, *J* = 8.2 Hz, 4H, ArH), 7.26–7.24 (m, 2H, ArH), 7.21–7.10 (m, 8H, ArH), 2.45–2.37 (m, 2H, CHP), 1.11–1.02 (m, 6H, CH₃), 0.26 (s, 18H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 172.84, 140.96, 139.67, 136.72, 136.67, 136.62, 133.04, 131.98, 131.80, 131.35, 130.92, 129.68, 129.40, 129.29, 128.84, 128.68, 128.59, 128.42, 128.00, 127.67, 122.37, 105.31, 94.85, 36.91, 14.83, 0.17. ³¹P NMR (121.5 MHz, CDCl₃, 25 °C): δ 43.16 (*J*_{P-Pt} = 2241 Hz). IR (KBr, cm⁻¹): 3448 (v_{O-H}), 2155 ($v_{C=C}$), 2113 ($v_{C=C}$), 1701 ($v_{C=O}$). HRMS(ESI-MS): *m/z* calcd for [M(C₈₀H₇₀O₄P₂PtSi₂) – H]⁻, 1406.3862; found 1406.3912.

General Procedures for the Preparation of the Model Compounds 5a-c·6. The carboxylic acid strand 6 (5.00 μ mol) was dissolved with the corresponding amidine strand (5a-c) (5.00 μ mol) in CHCl₃ (0.5 mL). The solution was filtered through a membrane filter ($\phi = 0.45 \mu$ m), and the filtrate was evaporated *in vacuo* to afford the corresponding duplex as a pale yellow solid.

(*S*,*S*)-**5**a·(*S*,*S*)-**6.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 43.33 ($J_{\text{P-Pt}}$ = 2220 Hz), 42.71 ($J_{\text{P-Pt}}$ = 2220 Hz). IR (KBr, cm⁻¹): 3423 ($v_{\text{N-H}}$), 2155 ($v_{\text{C}=\text{C}}$), 2111 ($v_{\text{C}=\text{C}}$), 1637 ($v_{\text{C}=\text{N}}$). CSI-MS: *m*/*z* calcd for [M(C₁₇₂H₁₆₈N₄O₄P₄Pt₂Si₄) + H]⁺, 2980.05; found 2979.97. Anal. Calcd for C₁₇₂H₁₆₈N₄O₄P₄Pt₂Si₄: C, 69.29; H, 5.68; N, 1.88. Found: C, 69.28; H, 5.66; N, 1.72.

(S,S)-**5b**·(S,S)-**6.** Mp: 210 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 43.12 ($J_{\text{P-Pt}}$ = 2238 Hz), 42.84 ($J_{\text{P-Pt}}$ = 2230 Hz). IR (KBr, cm⁻¹): 3423 ($v_{\text{N-H}}$), 2155 ($v_{\text{C=C}}$), 2111 ($v_{\text{C=C}}$), 1637 ($v_{\text{C=N}}$). CSI-MS: *m*/*z* calcd for [M(C₁₈₄H₁₈₄N₄O₄P₄Pt₂Si₄) + H]⁺, 3140.17; found 3140.13. Anal. Calcd for C₁₈₄H₁₈₄N₄O₄P₄Pt₂Si₄: C, 70.34; H, 5.90; N, 1.78. Found: C, 70.23; H, 5.93; N, 1.76.

(*S*,*S*)-**5c**·(*S*,*S*)-**6.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 45.30 ($J_{P-Pt} = 2222 \text{ Hz}$), 42.87 ($J_{P-Pt} = 2199 \text{ Hz}$). IR (KBr, cm⁻¹): 3423 (v_{N-H}), 2155 ($v_{C=C}$), 2111 ($v_{C=C}$), 1637 ($v_{C=N}$). CSI-MS: *m*/*z* calcd for [M(C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄) + H]⁺, 3228.11; found 3227.92. Anal. Calcd for C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄: C, 71.40; H, 5.49; N, 1.73. Found: C, 71.37; H, 5.52; N, 1.77.

(R,R)-**5c**·(R,R)-**6.** Mp: 205 °C (dec.). ¹H NMR (500 MHz, CDCl₃, 25 °C): Most of the signals were highly broadened probably due to its non-cross-linked duplex structure.^{S3 31}P NMR (121.5 MHz, CDCl₃, 25 °C): δ 44.61 ($J_{\text{P-Pt}}$ = 2232 Hz), 42.56 ($J_{\text{P-Pt}}$ = 2239 Hz), 41.86 ($J_{\text{P-Pt}}$ = 2212 Hz), 41.70 ($J_{\text{P-Pt}}$ = 2219 Hz). IR (KBr, cm⁻¹): 3423 ($v_{\text{N-H}}$), 2155 ($v_{\text{C=C}}$), 2112 ($v_{\text{C=C}}$), 1638 ($v_{\text{C=N}}$). CSI-MS: *m/z* calcd for [M(C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄) + H]⁺, 3228.11; found 3227.92. Anal. Calcd for C₁₉₂H₁₇₆N₄O₄P₄Pt₂Si₄: C, 71.40; H, 5.49; N, 1.73. Found: C, 71.42; H, 5.47; N, 1.72.

3. General Procedures for Enantioselective Ligand-exchange Reaction

Stock solutions of $1c\cdot 2$ (1.0 mM) (solution I), *rac*-DPPPe (16 mM) (solution II), and 1,3,5-trioxane (8.0 mM, as an internal standard) (solution III) were prepared in degassed CDCl₃. Aliquots of I (0.40 µmol, 400 µL), II (1.6 µmol, 100 µL), III (0.40 µmol, 50 µL), and degassed

CDCl₃ (250 μ L) were added to an NMR tube (5-mm (i.d.)) under Ar. The reaction progress was monitored by ¹H NMR spectroscopy at 25 °C to determine the yield and the diastereomeric excess (*de*) of **3c** (Fig. 4).

Supporting Data

Fig. S1. Partial ³¹P NMR (121.5 MHz) spectra of (A) $\mathbf{1b} \cdot (CH_3CO_2H)_2$, (B) $\mathbf{1b} \cdot \mathbf{2}$, (C-G) $\mathbf{3a} \cdot \mathbf{d}$, (H-K) $\mathbf{4a} \cdot \mathbf{c}$, (L) (*S*,*S*)-6, and (M-P) $\mathbf{5a} \cdot \mathbf{c}$ in CDCl₃ at 25 °C. The coupling constants (¹J_{P-Pt}) are shown in each spectrum.

Fig. S2. Experimental (bottom) and simulated (upper) cold-spray ionisation (CSI) mass spectra of the duplexes **3a-d** and **4a-c**.

Fig. S3. Variable-temperature (from -49 to -44 °C) ¹H NMR (500 MHz, 2.0 mM) spectra of **3d** in CDCl₃.

Fig. S4. The energy-minimized double helical structures of (A) **3d**, (B) (*S*,*S*)-**3a**, (C) (*S*,*S*)-**3c**, and (D) (*R*,*R*)-**3c** obtained by the semiempirical molecular orbital calculation (PM6 method^{S4} in MOPAC2012^{S5}). Hydrogen atoms except for the amidinium protons are omitted for clarity. The Pt-Pt distances and the energy differences (ΔE) between the right- and left-handed double helical structures are also shown.

Fig. S5. The energy-minimized double helical structures of (A) right-handed (*S*,*S*)-**3c** and (B) left-handed (*R*,*R*)-**3c** obtained by the semiempirical molecular orbital calculation (PM6 method^{S4} in MOPAC2012^{S5}). Part of phenyl groups of the *m*-terphenyl groups (pink) and diphosphine ligands (DPPPe) (light blue) is highlighted as a space-filling model.

Fig. S6. Temperature-dependent CD and absorption spectral changes of (S,S)-3c (A) and (R,R)-3c (B) in CHCl₃. [3c] = 0.1 mM.

Fig. **S7.** (A) CD and absorption spectra of (A) (S,S)-**3a**, (B) (S,S)-**3b**, (C) (S,S)-**3c**, (D) (R,R)-**3c**, and (E) **1c**·**2** in CHCl₃ (red lines) and DMSO (blue lines) at 25 °C; [**3a**-**c**] = [**1c**·**2**] = 0.1 mM.

Fig. S8. (A) Partial ¹H NMR (500 MHz, 1.0 mM) spectra of (a) (S,S)-6, (b) (S,S)-5a, (c) (S,S)-5a·(S,S)-6, and (d) (S,S)-4a in CDCl₃ at 25 °C. (B, C) CD and absorption spectra (0.1 mM) of (B) (S,S)-5a, (S,S)-6, and (S,S)-5a·(S,S)-6, and (S,S)-5a·(S,S)-6 in CHCl₃ at 25 °C.

Fig. S9. (A) Partial ¹H NMR (500 MHz, 1.0 mM) spectra of (a) (S,S)-6, (b) (S,S)-5b, (c) (S,S)-5b·(S,S)-6, and (d) (S,S)-4b in CDCl₃ at 25 °C. (B, C) CD and absorption spectra (0.1 mM) of (B) (S,S)-5b, (S,S)-6, and (S,S)-5b·(S,S)-6, and (S,S)-5b·(S,S)-6 in CHCl₃ at 25 °C.

Fig. S10. (A) Partial ¹H NMR (500 MHz, 1.0 mM) spectra of (a) (S,S)-6, (b) (S,S)-5c, (c) (S,S)-5c·(S,S)-6, and (d) (S,S)-4c in CDCl₃ at 25 °C. (B, C) CD and absorption spectra (0.1 mM) of (B) (S,S)-5c, (S,S)-6, and (S,S)-5c·(S,S)-6, and (S,S)-5c·(S,S)-6 in CHCl₃ at 25 °C.

Fig. S11. (A) Partial ¹H NMR (500 MHz, 1.0 mM) spectra of (a) (R,R)-6, (b) (R,R)-5c, (c) (R,R)-5c·(R,R)-6, and (d) (R,R)-4c in CDCl₃ at 25 °C. (B, C) CD and absorption spectra (0.1 mM) of (B) (R,R)-5c, (R,R)-6, and (R,R)-5c·(R,R)-6, and (R,R)-5c·(R,R)-6 in CHCl₃ at 25 °C.

Fig. S12. (A) CD and absorption spectra of (S,S)-4a (green lines), (S,S)-5a (blue lines), and (S,S)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra for an equimolar mixture of (S,S)-5a and (S,S)-6 (dashed black lines). (B) CD and absorption spectra of (S,S)-4b (green lines), (S,S)-5b (blue lines), and (S,S)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra for an equimolar mixture of (S,S)-5b (blue lines), and (S,S)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra for an equimolar mixture of (S,S)-5c (blue lines), and (S,S)-6 (red lines), (S,S)-5c (blue lines), and (S,S)-6 (red lines), (S,S)-5c (blue lines), and (S,S)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra of (S,S)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra for an equimolar mixture of (S,S)-5c and (S,S)-6c (adshed black lines). (D) CD and absorption spectra of (R,R)-4c (green lines), (R,R)-5c (blue lines), and (R,R)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra of (R,R)-4c (green lines), (R,R)-5c (blue lines), and (R,R)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra of (R,R)-4c (green lines), (R,R)-5c (blue lines), and (R,R)-6 (red lines) (0.1 mM) in DMSO at 25 °C, and the simulated CD and absorption spectra for an equimolar mixture of (R,R)-5c and (R,R)-6 (dashed black lines).

Fig. S13. CD and absorption spectra (0.1 mM) of (A) $1a\cdot 2$, (*S*,*S*)-4a, and (*R*,*R*)-4a, (B) $1b\cdot 2$, (*S*,*S*)-4b, and (*R*,*R*)-4b, and (C) $1c\cdot 2$, (*S*,*S*)-4c, and (*R*,*R*)-4c in CHCl₃ at 25 °C.

Fig. S14. Time-dependent ¹H NMR spectral changes of $1c\cdot 2$ after the addition of 2 equiv *rac*-DPPPe in CDCl₃ at 25 °C; $[1c\cdot 2]_0 = 0.5$ mM, [rac-DPPPe]_0 = 1.0 mM. In this reaction condition ([rac-DPPPe]_0 / $[1c\cdot 2]_0 = 2)$, the signals (marked with light-green circles) remained even after 24 h.

Fig. S15. Time-dependent ¹H NMR (500 MHz) spectral changes of (*S*,*S*)-**3c** after the addition of an equimolar (*R*,*R*)-**3c** in CDCl₃ at 25 °C. [(S,S)-3c] = [(R,R)-3c] = 0.5 mM.

Fig. S16. (A) Time-dependent ¹H NMR (500 MHz) spectral changes of (S,S)-**3c** (a) before and (b) 24 h after the addition of 2 equiv (R,R)-DPPPe in CDCl₃ at 25 °C; [(S,S)-**3c**] = 0.5 mM, [(R,R)-DPPPe] = 1.0 mM. (B) Time-dependent ¹H NMR (500 MHz) spectral changes of (R,R)-**3c** (a) before and (b) 24 h after the addition of 2 equiv (S,S)-DPPPe in CDCl₃ at 25 °C; [(R,R)-**3c**] = 0.5 mM, [(S,S)-DPPPe] = 1.0 mM.

Fig. S17. Plots of yields of (S,S)- and (R,R)-**3c** from the reaction of **1c**·**2** with 2.1 equiv (S,S)- and (R,R)-DPPPe versus time, respectively (in CDCl₃ at 25 °C). The reaction progresses were monitored by ¹H NMR measurements, and the yields were estimated by using an internal standard (1,3,5-trioxane); $[1c\cdot2]_0 = 0.5 \text{ mM}$, $[DPPPe]_0 = 1.1 \text{ mM}$.

Fig. S18. (Left, 1st addition) Plots of yields of three diastereomers **3c** and diastereomeric excess (de) of (S,S)- and (R,R)-**3c** from the reaction of **1c**·**2** with 2 equiv *rac*-DPPPe versus time (in CDCl₃ at 25 °C); $[1c\cdot2]_0 = 0.5 \text{ mM}$, $[rac\text{-DPPPe}]_0 = 1.0 \text{ mM}$. (Right, 2nd addition) Plots of yields of the diastereomers **3c** and *de* of (S,S)- and (R,R)-**3c** from the reaction of the mixture of the three diastereomers **3c** with additional 2 equiv of *rac*-DPPPe versus time (in CDCl₃ at 25 °C). The reaction progresses were monitored by ¹H NMR measurements, and the yields and *de* values were estimated by using an internal standard (1,3,5-trioxane).

References

- (S1) H. Yamada, Y. Furusho and E. Yashima, J. Am. Chem. Soc., 2012, **134**, 7250.
- (S2) T. Hasegawa, Y. Furusho, H. Katagiri and E. Yashima, Angew. Chem., Int. Ed., 2007, 46, 5885.
- (S3) Y. Furusho, Y. Tanaka and E. Yashima, *Org. Lett.*, 2006, **8**, 2583.
- (S4) J. J. P. Stewart, J. Mol. Model., 2007, **13**, 1173.
- J. J. P. Stewart, *MOPAC2012*, Stewart Computational Chemistry, Colorado Springs, CO, USA, http://openmopac.net/ 2012.