Supporting information for

Dehydrogenation of Formic Acid by Ir-bisMETAMORPhos Complexes: Experimental and Computational Insight invq the Role of a Cooperative Ligand

Sander Oldenhof,^a Martin Lutz,^b Bas de Bruin,^a Jarl Ivar van der Vlugt,^a Joost N. H. Reek^{*a}

^a S. Oldenhof, Prof. Dr. B. de Bruin, Dr. Ir. J. I. van der Vlugt, Prof. Dr. J. N. H. Reek, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The Netherlands), E-mail: j.n.h.reek@uva.nl

^b Dr. M. Lutz, Bijvoet Center for Biomolecular Research Utrecht University, Padualaan 8, 3584 CH Utrecht (The Netherlands).

Table of content

General information	S 3
Syntheses, charaterization	S 4
VT-NMR of diastereo-pure complex 2a	S10
VT-NMR of diastereo-pure complex 2a with 1eq. HCOOH	S11
Crystal structures of 2c	S12
Diastereomeric structure used in calculations	S14
Energies and imaginairy frequencies of calculated structures	S14
Energy profiles structures 3I and 4I	S15
Energy profiles structures 5I and 6I	S16
Energy profile structure 7I	S17
Energy profiles with CF ₃ and CH ₃ sustituents	S18
NMR spectra	S19
References	S36

General information

General procedures: All reactions were carried out in dry glassware under nitrogen atmosphere using standard Schlenk techniques unless stated otherwise. THF, dioxane, toluene, pentane were distilled from sodium under dinitrogen, CH₂Cl₂ and diethylether were collected from an MB SPS-800. Deuterated solvents were degassed by four freeze-pump-thaw cycles and dried over molecular sieves (4Å). NMR spectra were measured on a Bruker AMX 400 (¹H: 400.1 MHz, ¹³C: 100.6 MHz and ³¹P: 162.0 MHz) or on a Varian Mercury 300 (¹H: 300.1 MHz) spectrometer at 298 K unless noted otherwise. High resolution mass spectra were recorded on a JEOL JMS SX/SX102A four sector mass spectrometer; for FAB-MS 3-nitrobenzyl alcohol was used as matrix. ESI (electrospray ionization) mass spectra were obtained on a time-of-flight JEOL AccuTOF LC-plus mass spectrometer (JMS-T100LP) equipped with a CSI or ESI source. Calculated spectra were obtained with JEOL Isotopic Simulator (version 1.3.0.0).

Materials: All reagents were purchased from commercial suppliers and used without further purification: Dichlorophenylphosphine (Sigma Aldrich), diethylamine (Sigma Aldrich), 9,9-dimethyl-xanthene (Sigma Aldrich), TMEDA (Sigma Aldrich), nBuLi (Acros organics), phosphorus trichloride (Sigma Aldrich), 4-butylbenzene-1-sulfonamide (ABCR GmbH), 4-(trifluoromethyl)benzenesulfonamide (ABCR GmbH), 2,4,6-tris(isopropyl)benzenesulfonamide (ABCR GmbH), Ir(acac)(COD) (Strem Chemicals), formic acid (Acros organics).

Catalytic dehydrogenation experiments

Catalyst **2a**, **2b** or **2c** (5.0 μ mol) was added to toluene (1 mL) in a Schlenk equipped with a condenser and connected to a water replacement set-up.^[S1] The reaction mixture was heated to the required temperature and stirred for 10 minutes. Formic acid was added to the reaction mixture (188.6 μ L, 5 mmol) and the evolved gas was collected.

The set-up was calibrated with a Brooks flow-meter type 1054-3C and evolved gases were analyzed with a G·A·S Compact GC (Rt-MSieve 5A 20 m \times 0.32 mm + Rt-Q-bond 2 m \times 0.32 mm). The amounts of mol converted were determined from the volumes of gas collected using equation 1a and 1b.

1a

1b

Determination of molecular volume of H₂ and CO₂

$$V_{H2} = \frac{RT}{p} + b - \frac{a}{RT} = 24.49 \frac{L}{mol}$$

R: 8.3145 m³ Pa•mol⁻¹•K⁻¹ T: 298.15 K p: 101325 Pa b: 26.7 • 10^{-6} m³•mol⁻¹ a: 2.49 • 10^{-10} Pa•m³•mol⁻²

$$V_{CO2} = \frac{RT}{p} + b - \frac{a}{RT} = 24.42 \frac{L}{mol}$$

R: 8.3145 m³ Pa•mol⁻¹•K⁻¹ T: 298.15 K p: 101325 Pa b: 42.7 • 10⁻⁶ m³•mol⁻¹ a: 36.5 • 10⁻¹⁰ Pa•m³•mol⁻²

Computational details:

Geometry optimizations were carried out with the Turbomole program package^{S2}, coupled to the PQS Baker optimizer^{S3} via the BOpt package^{S4}, at the spin unrestricted ri-DFT level using the BP86 functional^{S5}, the resolution-of-identity (ri) method^{S6}, and the def2-TZVP basis set^{S7} for the geometry optimizations. Energy profiles are shown below and all structure are conveniently added as separate .xyz and .pdb files.

Synthesis and characterization.

(9,10-dihydroanthracene-1,8-diyl)bis(phenylphosphine oxide) (a)

To a solution of dichlorophenylphosphine (6.98 g, 5.29 mL, 39.0 mmol) in Et₂O (150 mL) at 0 °C was added diethylamine (5.73 g, 8.08 mL, 78.38 mmol) dropwise under vigorous stirring. A white precipitate formed while the reaction mixture was allowed to warm up to room temperature and stirred for 16 hours. The reaction mixture was filtered, concentrated and *N*,*N*-(diethylamino)chlorophenylphosphine was obtained as a yellow oil, which was used immediately for follow-up synthesis due to its instability. ³¹P{¹H} NMR (162.0 MHz, Et₂O unlocked): $\delta = 138.96$.

To a solution of 9,9-dimethylxanthene (4.0 g, 19.02 mmol) and TMEDA (4.53 g, 5.85 mL, 39.0 mmol) in diethylether (150 mL) was added a solution of nBuLi (15.3 mL, 2.5 M in hexane, 38.24 mmol) at 0 °C and a deep purple/brown solution was obtained. The reaction mixture was allowed to warm up to room temperature and stirred overnight. *N*,*N*-(diethylamino)-chlorophenylphosphine (39.0 mmol) in diethylether (75 mL) was added dropwise to the reaction mixture and a clear yellow suspension was obtained and stirred for 16 hours. ³¹P{¹H} NMR (162.0 MHz, Et₂O unlocked): $\delta = 52.55$ (s), 51.74 (s), [racemic mixture of diastereomers (*RR/SS*, *SR/RS*) of the phosphinamine]. The reaction mixture was carefully quenched with a 2 M HCl solution (100 mL) and stirred for 1 hour. The phases were separated and the aqueous phase was extracted with ethylacetate (3×). The organic phases were combined and concentrated. Azeotropic drying with toluene (2×) and stripping with

diethylether (3×) yielded a white foam. Purification by column chromatograpy (SiO₂/H₂O 8:2, eluens Et₂O/MeOH 97:3, deposited in CH₂Cl₂) yielded **a** as a racemic mixture of diastereomers (*RR/SS*, *RS/SR*) as a white foam (4.11g, 47% yield). ³¹P{¹H} NMR (162 MHz, CDCl₃): $\delta = 11.76$ (s), 11.28 (s);

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 11.76$ (dq, J = 506.8, 14.2 Hz), 11.28 (dq, J = 506.2, 14.1 Hz);

¹**H** NMR (400 MHz, CD₂Cl₂): $\delta = 8.22$ (d, J = 506.8, 4H, P<u>H</u>), 8.16 (d, J = 506.2, 4H, P<u>H</u>), 7.83-7.45 (m, 56H), 7.30 (m, 8H), 1.76 (s, 6H, CH₃-Xanthene), 1.74 (s, 12H, CH₃-Xanthene), 1.67 (s, 6H, CH₃-Xanthene);

¹³C{¹H} NMR (100 MHz, CD₂Cl₂): $\delta = 150.90$ (d, J = 3.11 Hz), 150.78 (d, J = 3.16 Hz), 132.80 (d, J = 2.86 Hz), 132.68 (d, J = 2.90 Hz), 132.12 (d, J = 25.62 Hz), 131.83 (d, J = 2.14 Hz), 131.76 (d, overlapping), 131.73 (d, overlapping), 131.66 (d, J = 1.85), 331.11 (s), 131.09 (d, J = 25.93 Hz), 131.04 (s), 130.61 (s), 130.55 (s), 129.24 (d, J = 6.47 Hz), 129.11 (d, J = 6.47 Hz), 124.64 (d, J = 11.01 Hz), 124.52 (d, J = 11.01 Hz), 120.0 (d, J = 23.56 Hz), 119.04 (d, J = 23.56 Hz), 34.46 (s), 33.71 (s), 32.90 (s), 31.98 (s);

HR MS (FAB⁺): m/z calcd. for C₂₇H₂₅O₃P₂ [M+H]⁺: 459.1279, observed: 459.1275.

(9,9-dimethyl-9H-xanthene-4,5-diyl)bis(chloro(phenyl)phosphine) (b)

Compound **a** (1.39 g, 3.03 mmol) was dissolved in neat PCl_3 (5 mL) at 0 °C and heated to 60 °C for 14 hours, during which time a yellow/orange suspension was obtained. The reaction mixture was cooled to room temperature, concentrated, dissolved in 10 mL toluene and evaporated (3×) to leave a yellow foam. Compound **b** (stereo-isomers *RR*, *SS*, *RS*, *SR*) is unstable and should be used immediately.

³¹**P**{¹**H**} NMR (162.0 MHz, THF unlocked): $\delta = 73.71$ (s), 73.65 (s).

N, N' - ((9, 9 - dimethyl - 9H - xan thene - 4, 5 - diyl) bis(phenylphosphinediyl)) bis(4 - butyl benzene sulfonamide) (La)

Commercially available 4-butylbenzene-1-sulfonamide (1.30 g, 6.08 mmol) was dissolved in 10 mL of toluene and azeotropically dried. The compound was dissolved in THF (25 mL) and nBuLi (2.55 mL, 2.5 M in hexane, 6.36 mmol) was added dropwise at 0 °C, resulting in a white/grey slurry. Compound **b** (3.04 mmol) was dissolved in THF (30 mL) and slowly added to the slurry to give a clear yellow solution that was stirred at room temperature for 14 hours. The reaction mixture was concentrated and purified by column chromatograpy (SiO₂, eluens toluene/ethyl acetate 9:1, deposited in CH₂Cl₂). Fractions

were combined and concentrated, stripping with Et_2O (3×) yielded **La** as a white foam (0.9 g, 1.06 mmol, 35% yield). Compound **La** was obtained pure in its mesomeric form (*RS/SR*) and this species exists in two tautomeric forms **La1** and **La2**, with a ratio of 1 : 0.4, respectively, according to ¹H and ³¹P NMR integrations.

³¹P{¹H} NMR (162 MHz, CD₂Cl₂): $\delta = 26.92$ (s, La1), 23.24 (d, J = 39.1 Hz, L1b), -6.13 (d, J = 39.1 Hz, La2);

³¹**P** NMR (162 MHz, CD_2Cl_2): $\delta = 26.92$ (s), 23.24 (d, J = 39.1 Hz), -6.13 (dd, J = 518.2, 39.1 Hz);

¹**H** NMR: (400 MHz, CD₂Cl₂): Major tautomer La1: $\delta = 7.76$ (dt, J = 7.23, 1.09 Hz, 2H), 7.49 (br m, 4H), 7.37 (br m, 2H), 7.21 (br m, 8H), 5.96 (br s, 2H, N<u>H</u>), 2.56 (t, J = 7.93 Hz, 4H, (C₃H₇)-C<u>H</u>₂-Ar), 1.57 (s, 3H, C<u>H</u>₃-Xanthene), 1.56-1.49 (m, 4H, (C₂H₅)-C<u>H</u>₂-CH₂-Ar), 1.47 (s, 3H, C<u>H</u>₃-Xanthene), 1.38-1.26 (m, 4H, CH₃-C<u>H</u>₂-(C₂H₄)-Ar), 0.91 (t, J = 7.3 Hz, 6H, C<u>H</u>₃-(C₃H₆)-Ar) Minor tautomer La2 δ = 8.68 (dd, J = 518.4, 5.6 Hz, 0.4H, P<u>H</u>) remaining signals are overlapped by tautomer La1; ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ = 151.57 (d, J = 16.8 Hz, d, La1), 148.08 (s, m, La1), 138.91 (s, p, La1), 130.77 (s), 130.56 (s), 130.16 (s), 130.06 (d, J = 8.55 Hz), 129.05 (s), 128.73 (s), 128.35 (s), 128.30 (s), 126.63 (s), 123.80 (s), 122.74 (d, J = 18.0 Hz, h/i, La1), 35.43 (s, q, La1), 34.22 (s, b, La1), 33.33 (s, a/a',La1), 33.14 (s, r, La1), 32.61 (s, a/a',La1), 22.25 (s, s, La1), 13.63 (s, t, La1);

HR MS (FAB⁺): m/z calcd. for C₄₇H₅₁N₂O₅P₂S₂ [M+H]⁺: 849.2715, observed: 849.2662;

Anal. Calcd. for C₄₇H₅₀N₂O₅P₂S₂: C, 66.49; H, 5.94; N, 3.30, found: C, 66.27; H, 5.99, N, 3.29.

N, N'-((9,9-dimethyl-9H-xanthene-4,5-diyl)bis(phenylphosphinediyl))bis(4-trifluoromethylbenzenesulfonamide) (Lb)

Commercially available 4-(trifluoromethyl)benzenesulfonamide (0.459 g, 2.04 mmol) was dissolved in 4 mL of toluene and azeotropically dried. The compound was dissolved in THF (15 mL) and nBuLi (0.86 mL, 2.5 M in hexane, 2.14 mmol) was added dropwise at 0 °C, resulting in a white slurry. Compound **b** (1.02 mmol) was dissolved in THF (10 mL) and slowly added to the slurry to give a clear yellow solution that was stirred at room temperature for 16 hours. The reaction mixture was concentrated and purified by column chromatograpy (SiO₂, eluens toluene/ethyl acetate 9:1, deposited in CH₂Cl₂). Fractions were combined and concentrated, stripping with Et₂O (3×) yielded **Lb** as a white foam (0.258 g, 0.3 mmol, 29% yield). Compound **Lb** was obtained pure in its mesomeric form (*RS/SR*) and this species exists in two tautomeric forms **Lb1**, **Lb2 and Lb3** with a ratio of 1 : 1.8 : 0.2, respectively, according to ¹H and ³¹P NMR integrations.

³¹P{H} NMR (162 MHz, CD₂Cl₂) δ 27.07 (s, Lb1), 24.07 (d, *J* = 40.7 Hz, Lb2), -4.10 (s, Lb3), -6.07 (d, *J* = 40.7 Hz, Lb2);

³¹**P NMR** (162 MHz, CD_2Cl_2) δ 27.07 (s), 24.07 (d, J = 40.7 Hz), -4.10 (d, J = 526.5 Hz), -6.07 (d, J = 520.7 Hz);

¹**H** NMR: (400 MHz, CD₂Cl₂): Major tautomer Lb2: $\delta = 8.76$ (dd, J = 520.5, 5.8 Hz, 1H, P<u>H</u>) 7.98 – 7.92 (m, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.30 – 7.17 (m, 10H), 7.09 (t, J = 7.4 Hz, 2H), 6.33 (d, J = 4.4 Hz, 1H, N<u>H</u>), 1.67 (s, 3H, C<u>H</u>₃-Xanthene), 1.47 (s, 3H, C<u>H</u>₃-Xanthene); Tautomer Lb1 $\delta = 6.21$ (s, 1H, N<u>H</u>), 1.50 (s, 3H, C<u>H</u>₃-Xanthene), 1.40 (s, 3H, C<u>H</u>₃-Xanthene), remaining signals are overlapped by tautomer Lb2 /3;

Tautomer **Lb3** δ = 8.80 (s, 2H, P<u>H</u>) remaining signals are overlapped by tautomer **Lb1/2**;

¹³C{¹H} NMR (101 MHz, CD₂Cl₂): $\delta = 152.08$ (d, J = 16 Hz), 151.89 – 151.77 (m), 151.59 (d, J = 20.9 Hz), 149.18 (s), 145.54 (s), 145.43 (s), 136.24 – 136.04 (m), 135.90 (d, J = 10.0 Hz), 134.37 (s), 134.01 (d, J = 7.5 Hz), 133.66 (s), 133.63 (s), 133.52 (s), 133.31 (s), 132.45 (s), 132.38 (s), 132.33 (s), 132.15 (s), 132.10 (s), 131.80 (s), 131.68 (s), 131.39 (s), 131.21 (s), 131.19 (s), 131.01 (s), 130.83 (s, c/c⁺, Lb1/Lb2), 130.50 (s, c/c⁺, Lb1/Lb2), 130.46 (s, c/c⁺, Lb1/Lb2), 130.27 (s), 130.12 (s), 129.93 (s), 129.83 (s), 129.79 (s), 129.53 (s), 129.46 (s), 129.32 (s), 129.13 (s), 129.07 (s), 128.92 (s), 128.78 (s), 128.73 (s), 127.76 (d, J = 13.5 Hz), 127.62 (s), 126.82 (s), 126.68 - 126.46 (m), 126.41 – 126.18 (m), 126.04 – 125.79 (m), 125.35 (s), 125.07 (s), 124.95 (s), 124.47 (s), 124.35 (m, i⁺/h⁺, Lb1), 123.28 (d, J = 18.3 Hz, i⁺/h⁺, Lb2), 122.47 (m, q/q⁺, Lb2 / Lb3), 113.03 (s, i⁺/h, Lb2), 111.97 (s, i⁺/h, Lb2), 34.85 (s, b, Lb2), 34.66 (s, b, Lb1), 34.53 (s, b, Lb3), 33.68 (s, a/a⁺, Lb2), 33.42 (s, a/a⁺, Lb3), 32.65 (s, a/a⁺, Lb1), 32.01 (s, a/a⁺, Lb3), 29.88 (s, a/a⁺, Lb1), 29.56 (s, a/a⁺, Lb2).

¹⁹**F NMR** (282 MHz, CD₂Cl₂) δ -63.25 (m);

HR MS (ESI⁺): m/z calcd. for C₅₇H₇₀ N₂O₅P₂S₂ [M+H]⁺: 873.1210, observed: 873.1234;

Anal. Calcd. for C₄₁H₃₂F₆N₂O₅P₂S₂: C, 56.42; H, 3.70; N, 3.21, found: C, 56.62; H, 3.72, N, 3.17.

N,*N*'-((9,9-dimethyl-9H-xanthene-4,5-diyl)bis(phenylphosphinediyl))bis(2,4,6-triisopropylbenzenesulfonamide) (Lc)

Commercially available 2,4,6-triisopropylbenzenesulfonamide (1.73 g, 6.10 mmol) was dissolved in 8 mL of toluene and azeotropically dried. The compound was dissolved in THF (25 mL) and nBuLi (2.56 mL, 2.5 M in hexane, 6.4 mmol) was added dropwise at 0 °C, resulting in a white slurry. Compound **b** (3.05 mmol) was dissolved in THF (20 mL) and slowly added to the slurry to give a clear yellow solution that was stirred at room temperature for 16 hours. The reaction mixture was concentrated and purified by column chromatograpy (SiO₂, eluens toluene/ethyl acetate 100:2 to 100:6, deposited in CH₂Cl₂). Fractions were combined and concentrated, stripping with Et₂O (3×) yielded **Lc** as a white foam (1.15 g, 1.16 mmol, 38% yield). Compound **Lc** was obtained pure in its mesomeric form (*RS/SR*) and this species exists in two tautomeric forms **Lc1**, **Lc2 and Lc3** with a ratio of 1 : 1.9 : 0.1, respectively, according to ¹H and ³¹P NMR integrations.

³¹P{H} NMR (162 MHz, CD₂Cl₂) δ 23.89 (s, Lc1), 21.81 (d, *J* = 31.0 Hz, Lc2), -7.76 (s, Lc3), -10.10 (d, *J* = 31.0 Hz, Lc2). ³¹P NMR (162 MHz, CD₂Cl₂) δ 23.89 (s), 21.81 (br. d, *J* = 31.0 Hz), -10.10 (br. dd, *J* = 521.8 31.0 Hz).

¹**H** NMR: (400 MHz, CD₂Cl₂): Major tautomer Lc2: $\delta = 8.57$ (dd, J = 519.0, 4.1 Hz, 1H, <u>PH</u>), 7.68 – 7.39 (m, 4H), 7.36 – 7.21 (m, 2H), 7.17 (s, 1H), 7.13 (s, 1H), 7.06 (s, 1H), 7.22 – 6.80 (m, 11H), 5.41 (d, J = 5.4 Hz, 1H, <u>NH</u>), 4.54 – 4.37 (m, 2H, (CH₃)₂-<u>CH</u>-Ar (para)), 4.18 – 3.98 (m, 2H, (CH₃)₂-<u>CH</u>-Ar (NH-ortho)), 3.01 – 2.79 (m, 2H, (CH₃)₂-<u>CH</u>-Ar (PH-ortho)), 1.74 (s, 3H, C<u>H</u>₃-Xanthene), 1.54 (s, 3H, C<u>H</u>₃-Xanthene), 1.29 – 1.23 (m, 24H, (<u>CH</u>₃)₂-CH-Ar (ortho)), 1.09 (d, J = 6.8, 6H, (<u>CH</u>₃)₂-CH-Ar (PH-para)), 1.08 (d, J = 6.8, 6H, (<u>CH</u>₃)₂-CH-Ar (NH-para));

Tautomer Lc1 δ = 5.53 (br s, 2H, <u>NH</u>), 1.69 (s, 3H, C<u>H</u>₃-Xanthene), 1.52 (s, 3H, C<u>H</u>₃-Xanthene), 1.19 (d, *J* = 6.8 Hz, 12H, (<u>CH</u>₃)₂-CH-Ar (ortho)), 1.06 (d, *J* = 6.7 Hz, 6H, (<u>CH</u>₃)₂-CH-Ar (para)) remaining signals are overlapped by tautomer Lc2/3; Tautomer Lc3 δ = 8.83 (s, 2H, PH) remaining signals are overlapped by tautomer Lc1/2;

¹³C{¹H} NMR (75 MHz, CD₂Cl₂): $\delta = 153.85$ (d, J = 20.3 Hz), 151.52 (s), 150.65 (s), 149.07 (s), 140.51 (s), 138.59 (s), 138.15 (d, J = 11.6 Hz), 136.02 (d, J = 18.4 Hz), 133.33 (s), 133.29 (s), 132.94 (s), 132.87 (s), 132.55 (s), 132.07 (s), 131.95 (s), 131.90 (s), 131.71 (s), 131.68 (s), 131.48 (s), 131.24 (s), 130.99 (s), 130.95 (s), 130.86 (s), 130.64 (s), 129.88 (s), 129.64 (s), 129.56 (s), 129.50 (s), 129.32 (s), 129.27 – 128.99 (m), 128.91 (s), 127.13 (s), 125.64 (s), 125.12 (s), 124.96 (s), 124.89 (s), 124.69 (s, o/o⁴, Lc1/2), 124.59 (s), 124.52 (s, o/o⁴, Lc1/2), 123.63 (s, o/o⁴, Lc1/2), 114.38 (s), 113.02 (s). 34.50 (br. s, b, Lc1/2), 34.42 (s, a/a⁴, Lc1/2), 30.41 (s, a/a⁴, Lc1/2), 30.18 (s, a/a⁴, Lc1/2), 29.34 (s, a/a⁴, Lc1/2), 25.01 (s, q/q⁴/r/r⁴/t/t⁴, Lc1/2), 24.89 (s, q/q⁴/r/r⁴/t/t⁴, Lc1/2), 24.88 (s, q/q⁴/r/r⁴/t/t⁴, Lc1/2), 23.78 (s, q/q⁴/r/r⁴/t/t⁴, Lc1/2), 23.74 (s, q/q⁴/r/r⁴/t/t⁴, Lc1/2), 23.58 (s, q/q⁴/r/r⁴/t/t⁴, Lc1/2), 23.55 (s), q/q⁴/r/r⁴/t/t⁴, Lc1/2);

HR MS (ESI⁺): *m*/*z* calcd. for C₅₇H₇₀ N₂O₅P₂S₂ [M+H]⁺: 989.4280, observed: 989.4367; [M+Na]⁺: 1011.4099, observed: 1011.4174;

Anal. Calcd. for C₅₇H₇₀N₂O₅P₂S₂: C, 69.20; H, 7.13; N, 2.83, found: C, 69.14; H, 7.16, N, 2.81.

Complex 1a

Commercially available Ir(acac)(COD) (6 mg, 0.015 mmol) was dissolved in CH_2Cl_2 (1 mL) together with ligand La (12.8 mg, 0.015 mmol). The reaction mixture turned bright orange instantly and was stirred for 15 minutes. Evaporation of solvent and volatiles left an orange solid in near-quantitative yield.

³¹**P**{¹**H**} **NMR** (162 MHz, CD_2Cl_2): $\delta = 31.39$ (s);

¹**H** NMR: (400 MHz, CD₂Cl₂): δ = 13.25 (br. s, 1H), 7.83 (m, 2H), 7.76 (br. s, 3H), 7.51 (br. s, 6H), 7.42 (d, *J* = 7.3 Hz, 4Hz), 7.37 (d, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 7.8 Hz, 3H), 6.81 (d, *J* = 7.5 Hz, 4H), 2.53 (t, *J* = 7.9 Hz, 4H, (C₃H₇)-C<u>H</u>₂-Ar), 1.79 (s, 3H, C<u>H</u>₃-Xanthene), 1.64-1.52 (m, 4H, (C₂H₅)-C<u>H</u>₂-CH₂-Ar), 1.51 (s, 3H, C<u>H</u>₃-Xanthene), 1.34 (q, *J* = 7.3 Hz, CH₃-C<u>H</u>₂-(C₂H₄)-Ar, 4H), 0.93 (t, *J* = 7.4 Hz, 6H, C<u>H</u>₃-(C₃H₆)-Ar).

Complex 1b

Commercially available Ir(acac)(COD) (6 mg, 0.015 mmol) was dissolved in CH_2Cl_2 (1 mL) together with ligand **Lb** (13.1 mg, 0.015 mmol). The reaction mixture turned bright orange instantly and was stirred for 15 minutes. Evaporation of solvent and volatiles left an orange solid in near-quantitative yield.

³¹**P**{¹**H**} **NMR** (162 MHz, CD_2Cl_2): $\delta = 33.08$ (s);

¹**H** NMR: (400 MHz, CD₂Cl₂): δ = 13.53 (bs. s, 1H), 7.83 (ddd, *J* = 21.3, 11.3, 7.5 Hz, 3H), 7.68 (d, *J* = 8.1 Hz, 3H), 7.52 (m, *J* = 15.4 Hz, 7H), 7.39 (dd, *J* = 7.6, 1.2 Hz, 3H), 7.26 (m, *J* = 8.3 Hz, 5H), 7.17 (dd, *J* = 14.3, 6.6 Hz, 3H), 1.83 (s, 3H), 1.56 (s, 3H).

Complex 1c

Commercially available Ir(acac)(COD) (6 mg, 0.015 mmol) was dissolved in CH_2Cl_2 (1 mL) together with ligand Lc (14.8 mg, 0.015 mmol). The reaction mixture turned bright orange instantly and was stirred for 15 minutes. Evaporation of solvent and volatiles left an orange solid in near-quantitative yield.

³¹**P**{¹**H**} **NMR** (162 MHz, CD_2Cl_2): $\delta = 36.04$;

¹**H** NMR: (400 MHz, CD₂Cl₂): $\delta = 11.14$ (bs. s, 1H), 7.76 - 766 (m, 4H), 7.46 - 7.27 (m, 6H), 7.17 - 7.07 (m, 4H), 6.90 (s, 4H), 4.44 - 4.37 (m, 2H), 3.94 - 3.85 (m, 4H), 1.89 (s, 3H), 1.50 (s, 3H), 1.22 (dd, J = 6.9, 1.8 Hz, 12H), 0.93 (d, J = 6.7 Hz, 12H), 0.70 (d, J = 6.6 Hz, 12H).

Complex 2a^[1]

Complex **1a** was stirred at room temperature in CH_2Cl_2 (1 mL) for 30 hours, during which time a color change from orange to bright yellow, reaction mixture was concentrated. Complex **2a** was formed quantitatively as a diastereometric mixture.

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂, offset @ -10 ppm, with ratios): $\delta = 27.20$ (d, J = 19.7 Hz, 1.0), 26.18 (d, J = 20.6 Hz, 0.2), 14.49 (d, J = 19.8 Hz, 1.0), 14.25 (d, J = 7.4 Hz, 0.45), 13.35 (d, J = 20.0 Hz, 0.2), 9.16 (d, J = 7.5 Hz, 0.45), 7.43 (d, J = 20.3 Hz, 0.4), 6.57 (d, J = 20.4 Hz, 0.8), 1.78 (d, J = 21.3 Hz, 0.4), 0.12 (d, J = 21.3 Hz, 0.8);

¹**H NMR**: (400 MHz, CD₂Cl₂, hydride region with ratios): δ 8.01 – 7.93 (m), 7.88 – 7.79 (m), 7.74 – 7.63 (m), 7.59 – 7.42 (m), 7.40 – 7.21 (m), 7.20 – 7.11 (m), 7.11 – 7.06 (m), 7.06 – 6.95 (m), 6.95 – 6.84 (m), 6.84 – 6.74 (m), 6.65 (d, *J* = 9.2 Hz, 1H), 2.65 – 2.51 (m), 2.14 (s), 2.11 (s), 2.08 (s), 2.03 (s), 1.92 (s), 1.74 (s), 1.59 – 1.49 (m), 1.50 (s), 1.39 – 1.23 (m), 0.99 – 0.93 (m), 0.93 – 0.86 (m), -22.65 (t, *J* = 21.0 Hz, 0.2), -22.74 (t, *J* = 21.7 Hz, 1.0), -24.76 (t, *J* = 25.1 Hz, 0.8) -24.99 (t, *J* = 25.7 Hz, 0.8), -28.66 (t, *J* = 22.0 Hz, 1H, 0.45); **HR MS** (FAB⁺): *m/z* calcd. for C₄₇H₅₀IrN₂O₅P₂S₂ [M+H]⁺: 1041.2266, observed: 1041.2256; **Anal. Calcd.** for C₄₇H₄₉IrN₂O₅P₂S₂: C, 54.27; H, 4.75; N, 2.69, found: C, 54.05; H, 4.89, N, 2.73.

Complex 2b

Complex **1b** was stirred at room temperature in toluene (1 mL) for 40 hours at 70 °C, during which time a color change from orange to yellow, reaction mixture was concentrated. Complex **2b** was formed quantitatively as a diastereometric mixture.

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂, offset @ -10 ppm, with ratios): $\delta = 28.70$ (d, J = 19.8 Hz, 1.0), 27.73 (d, J = 20.5 Hz, 0.2), 15.42 (d, J = 17.4 Hz, 0.1), 14.95 (d, J = 19.8 Hz, 1.0), 13.61 (d, J = 20.3 Hz, 0.2), 9.96 (d, J = 16.7 Hz, 0.1);

¹**H NMR**: (400 MHz, CD₂Cl₂, hydride region with ratios): δ 8.29 (d, J = 8.2 Hz), 8.24 (d, J = 8.1 Hz), 7.82 (dt, J = 16.6, 8.3 Hz), 7.70 (d, J = 7.8 Hz), 7.58 (t, J = 7.6 Hz), 7.55 – 7.35 (m), 7.33 – 7.19 (m), 7.19 – 7.06 (m), 7.06 – 6.98 (m), 6.98 – 6.87 (m), 6.84 – 6.77 (m), 6.63 – 6.53 (m), 1.92 (s), 1.54 (s), -22.56 (t, J = 21.5 Hz, 0.2), -22.64 (t, J = 22.0 Hz, 1.0), -28.76 (t, J = 22.1 Hz, 0.1);¹⁹**F NMR** (282 MHz, CD₂Cl₂) δ -63.22 (s), -63.52 (s); **HR MS** (CSI⁺): m/z calcd. for C₄₁H₃₁F₆IrN₂O₅P₂S₂ [M+H]⁺: 1065.0761, observed: 1065.0805; **Anal. Calcd.** for C₄₁H₃₁F₆IrN₂O₅P₂S₂: C, 46.28; H, 2.94; N, 2.63, found: C, 46.01; H, 3.04, N, 2.69.

Complex 2c

Complex 1c was stirred at room temperature in CH_2Cl_2 (1 mL) for 16 hours at room temperature, during which time a color change from orange to light yellow, reaction mixture was concentrated. Complex 2c was formed quantitatively as a diastereometric mixture.

³¹P{¹H} NMR (162 MHz, CD₂Cl₂, offset @ -10 ppm, with ratios): δ = 29.74 (d, *J* = 18.1 Hz, 1.0), 28.35 (d, *J* = 19.3 Hz, 0.5), 19.77 (d, *J* = 18.2 Hz, 1.0), 17.61 (d, *J* = 19.2 Hz, 0.5);

¹**H** NMR: (400 MHz, CD₂Cl₂, hydride region with ratios): 7.86 – 7.73 (m), 7.64 (d), 7.60 – 7.51 (m), 7.49 (d, J = 7.6 Hz), 7.43 (d, J = 15.3 Hz), 7.35 (ddd, J = 14.3, 7.6, 2.0 Hz), 7.28 – 7.16 (m), 7.14 (s), 7.12 (s), 7.06 – 7.03 (m), 7.03 (s), 6.95 (s), 6.94 (s), 6.91 – 6.81 (m), 6.77 – 6.69 (m), 6.58 (dd, J = 15.5, 7.6 Hz), 6.00 (s), 5.55 (s), 4.47 – 4.31 (m), 3.94 – 3.81 (m), 3.25 (m), 2.87 (m), 2.03 (s), 2.01 (s), 1.90 (s), 1.57 (s), 1.30 – 1.18 (m), 1.19 – 1.12 (m), 1.06 (d, J = 6.6 Hz), 1.00 (dd, J = 6.7, 4.8 Hz), 0.94 (d, J = 6.6 Hz), -21.87 (t, J = 21.5 Hz, 1.0), -22.93 (t, J = 21.1 Hz, 0.5); **HR MS** (CSI⁺): *m/z* calcd. for C₅₇H₆₉IrN₂O₅P₂S₂ [M+H]⁺: 1181.3830, observed: 1181.3726; **Anal. Calcd.** for C₅₇H₆₉IrN₂O₅P₂S₂: C, 58.00; H, 5.89; N, 2.37, found: C, 57.82; H, 5.93, N, 2.31.

VT-NMR of diastereo-pure complex 2a

18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 fl (ppm)

S1. Temperature dependence of ³¹P NMR of complex **2a** (diastereo-pure) in CD₂Cl₂.

VT-NMR of diastereo-pure complex 2a with 1eq. HCOOH

S3. VT ¹H NMR of complex 2a (diastereo-pure) with 1eq. of HCOOH in CD₂Cl₂.

Crystal structure of 2c

 $C_{57}H_{71}IrN_2O_6P_2S_2 \cdot CH_2Cl_2 \cdot 0.5(C_4H_{10}O)$, Fw = 1320.40, colourless needle, 0.52 x 0.12 x 0.11 mm³, triclinic, P $\overline{1}$ (no. 2), a = 11.6106(3), b = 17.2668(6), c = 18.6161(4) Å, α = 113.198(2), β = 95.475(2), γ = 105.211(1)°, V = 3226.02(16) Å³, Z = 2, D_x = 1.359 g/cm³, μ = 2.31 mm⁻¹. The crystal appeared to cracked into two fragments and was consequently integrated with two orientation matrices using the Eval15 software^[S8]. 50934 Reflections were measured on a Bruker Kappa ApexII diffractometer with sealed tube and Triumph monochromator (λ = 0.71073 Å) up to a resolution of (sin θ/λ)_{max} = 0.65 Å⁻¹ at a temperature of 150(2) K. Absorption correction and scaling based on multiple measured reflections was performed with TWINABS^[S9] (0.59-0.75 correction range). 14853 Reflections were unique (R_{int} = 0.018), of which 14073 were observed [I>2 σ (I)]. The structure was solved with the program SHELXT^[S10] and refined with SHELXL-2013^[S11] against F² of all reflections. Non-hydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen atoms of the metal complex were located in difference-Fourier maps, and in the solvent molecules included in calculated positions. All hydrogen atoms were refined with 30 restraints (for displacement parameters in the partially occupied diethyl ether). R1/wR2 [I > 2 σ (I)]: 0.0273 / 0.0777. R1/wR2 [all refl.]: 0.0293 / 0.0788. S = 1.073. Residual electron density between -1.14 and 3.46 e/Å³. Geometry calculations and checking for higher symmetry was performed with the PLATON program^[S12].

CCDC 1020151 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S4: Displecement ellipsoid plot of **2c** in the crystal (50% probability level). Dichloromethane and diethyl ether solvent molecules and C-H hydrogen atoms in the metal complex are omitted for clarity.

Diastereomeric structure used in calculations

Energies and imaginairy frequencies of calculated structures

Structure	SCF	imaginairy frequency
1	-3497,75372	
2	-3497,78130	
31	-3687,64937	
311	-3687,61999	-81,820000
3111	-3498,96500	
3IV	-3498,92829	-1143,810059
3IV'	-3498,93657	-454,299988
41	-3687,66088	
411	-3687,62186	-336,519989
4111	-3498,95775	
4IV	-3498,91508	-1369,430054
4IV'	-3688,81986	-919,200012
51	-3687,67416	
511	-3687,65150	
5111	-3687,61982	-230,509995
5IV	-3498,93008	
5V	-3498,92683	-78,129997
61	-3687,66344	
611	-3687,64222	
6111	-3687,63084	-163,179993
71	-3687,65060	
711	-3687,62691	
7111	-3687,61419	-237,690020
7IV	-3498,94369	
81	-3687,64763	
2-CF ₃	-4172,20640	
5I-CF₃	-4361,59084	
5II-CF₃	-4362,07590	
5III-CF₃	-4362,04346	-239,220001
6I-CF₃	-4362,08918	
6II-CF₃	-4362,06680	

6III-CF ₃	-4362,05498	-138,169998
2-CH ₃	-3576,44453	
5I-CH₃	-3766,33745	
5II-CH₃	-3766,31484	
5III-CH ₃	-3766,28365	-229,729996
6I-CH ₃	-3766,32655	
6II-CH₃	-3766,30561	
6III-CH ₃	-3766,29462	-166,929996

Energy profiles of structures 3I and 4I

Figure S5. Potential energy surfaces (DFT, BP86, def2-TZVP) for dehydrogenation of formic acid by **3I and 4I** (ΔG°_{298K} in kcal mol⁻¹).

Figure S6. Potential energy surfaces (DFT, BP86, def2-TZVP) for dehydrogenation of formic acid by **5I and 6I** (ΔG°_{298K} in kcal mol⁻¹).

Energy profile of structure 7I

Rearrangement of HCOOH in **7I** to orient the substrate in the right position for direct hydride-transfer to yield structure **7II** was found to be endergonic by 23.5 kcal mol⁻¹. The transition state (**7III**) of the direct hydride-transfer toward the dihydride structure **7IV** was found to be significantly higher (29.9 kcal mol⁻¹) than for the axial structures **5III** and **6III**. Similar to the transition states previously found (**5III** and **6III**) hydrogen-bonding interactions were also observed in **7III**. The release of H_2 has been described above, for complete energy profile of **7I** see supporting information. Starting from complex **8I**, rearrangement of HCOOH to enable direct hydride-transfer led to an unstable species and no transition state could be identified.

Figure S7. Potential energy surfaces (DFT, BP86, def2-TZVP) for dehydrogenation of formic acid by **7I** (ΔG°_{298K} in kcal mol⁻¹).

Energy profile with CF₃ and CH₃ sustituents

Figure S8. Potential energy surfaces (DFT, BP86, def2-TZVP) for dehydrogenation of formic acid by with CF₃ and CH₃ substituents (ΔG°_{298K} in kcal mol⁻¹).

¹H NMR ligand La

¹³C NMR ligand La

¹H NMR ligand Lb

¹³C NMR ligand Lb

¹⁹F NMR ligand Lb

³¹P NMR ligand Lc

¹³C NMR ligand Lc

³¹P NMR 2a

³¹ P	NMR	2b
-----------------	-----	----

Munimered and Mu	Minordian water and a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4	1 40 38 36 34 32 30 28 26 24 22 20 10 8 6 4
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Wild rould when when when when when when when when
WWW/WWW/WW/WW/W/W/W///////////////////	Widework/Wide
34 32 30 28	WMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
	WMMMyMuMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

¹H NMR 2b

¹⁹F NMR 2b

³¹P NMR 2c

¹H NMR 2c

References

- [S1] S. Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132, 1496-1497.
- [S2] R. Ahlrichs, Turbomole Version 5, 2002, Theoretical Chemistry Group, University of Karlsruhe.
- [S3] PQS version 2.4, 2001, Parallel Quantum Solutions, Fayettevile, Arkansas (USA); the Baker optimizer is available separately from PQS upon request: I. Baker, *J. Comput. Chem.* 1986, **7**, 385-395.
- [S4] P. H. M. Budzelaar, J. Comput. Chem. 2007, 28, 2226-2236.
- [S5] (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100. (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822-8824.
- [S6] M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148.
- [S7] A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571–2577.
- [S8] A. M. M. Schreurs, X. Xian, L. M. J. Kroon-Batenburg, J. Appl. Cryst. 2010, 43, 70-82.
- [S9] G. M. Sheldrick (1999). TWINABS, Universität Göttingen, Germany.
- [S10] G. M. Sheldrick (2013). SHELXT, Universität Göttingen, Germany.
- [S11] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- [S12] A.L. Spek, Acta Cryst. 2009, D65, 148-155.