Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Atom-Economic Generation of Gold Carbenes: Gold-Catalyzed Formal [3+2] Cycloaddition between Ynamides and Isoxazoles

Ai-Hua Zhou, Qiao He, Chao Shu, Yong-Fei Yu, Shuang Liu, Tian Zhao, Wei Zhang, Xin Lu,* and Long-Wu Ye*

State Key Laboratory for Physical Chemistry of Solid Surfaces & The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen 361005, Fujian, P. R. China

Content	Page number
General	2
Preparation of Starting Materials	2
General Procedure: Gold Catalysis	15
Computational Studies	38
¹ H and ¹³ C NMR Spectra	66

General Information. Ethyl acetate (ACS grade), hexanes (ACS grade) and anhydrous 1, 2dichloroethane (ACS grade) were obtained commercially and used without further purification. Methylene chloride, tetrahydrofuran and diethyl ether were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization.

¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. For ¹H NMR spectra, chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. For ¹³C NMR spectra, chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard.

Representative synthetic procedures for the preparation of ynamides 1 (1g-1m, 1o-p):¹

$$\begin{array}{cccc} R^{1} & FeCI_{3} \bullet 6H_{2}O & (0.1 \text{ equiv}) \\ H & & & \\ H & & \\ & & (1.2 \text{ equiv}) \end{array} \end{array} \xrightarrow{\begin{array}{c} FeCI_{3} \bullet 6H_{2}O & (0.1 \text{ equiv}) \\ \hline DMEDA & (0.2 \text{ equiv}) \\ \hline K_{2}CO_{3} & (2.0 \text{ equiv}), \text{ toluene, } 100 \ ^{\circ}C & Gp' \end{array} \xrightarrow{\begin{array}{c} R^{1} \\ N & = & \\ Gp' \end{array}} R^{2}$$

Representative synthetic procedures for the preparation of ynamides 1 (1d-1f, 1n):²

$$\begin{array}{c} CuSO_4 \bullet 5H_2O (0.1 \text{ equiv}) \\ R^1 N PG \\ H \\ (1.2 \text{ equiv}) \end{array} + Br \underbrace{=}_{R^2} R^2 \qquad \underbrace{\begin{array}{c} 1,10 \text{ -phenanthroline } (0.2 \text{ equiv}) \\ K_2CO_3 (3.0 \text{ equiv}), \text{ toluene, } 80 \text{ }^{\circ}\text{C} \end{array}}_{GP} \begin{array}{c} R^1 \\ R^1 \\ GP \end{array}$$

The data of the following ynamides **1a-1c** were reported in our previous work.³

N-benzyl-2-nitro-N-(phenylethynyl)benzenesulfonamide (1d)

¹H NMR (500 MHz, CDCl₃) δ 8.14 (dd, 1H, *J* = 1.0 Hz, *J* = 8.0 Hz), 7.78 – 7.58 (m, 3H), 7.44 – 7.38 (m, 2H), 7.38 – 7.27 (m, 3H), 7.27 – 7.15 (m, 5H), 4.81 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.9, 134.6, 134.4, 131.9, 131.7, 131.2, 130.8, 128.8, 128.6, 128.5, 128.2, 128.0, 124.4, 122.1, 80.9, 72.5, 56.2; IR (neat): 2236, 1631, 1543, 1454, 1371, 779, 752, 691; MS (ESI, m/z) 415 (M + Na⁺); HRESIMS Calcd for [C₂₁H₁₆N₂NaO₄S]⁺ (M + Na⁺) 415.0723, found: 415.0728.

N-(4-methoxybenzyl)-2-nitro-N-(phenylethynyl)benzenesulfonamide (1e)

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, 1H, J = 1.2 Hz, J = 7.6 Hz), 7.80 – 7.68 (m, 3H), 7.39 – 7.34 (m, 2H), 7.30 – 7.19 (m, 5H), 6.91 – 6.86 (m, 2H), 4.75 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 147.5, 134.6, 131.7, 131.1, 130.8, 130.2(3), 130.1(7), 128.0, 127.8, 126.1, 124.1, 121.8, 113.7, 80.8, 72.3, 55.5, 54.8; IR (neat): 2916, 2239, 1611, 1543, 1513, 1371, 915, 851, 752, 691; MS (ESI, m/z) 445 (M + Na⁺); HRESIMS Calcd for [C₂₂H₁₈N₂NaO₅S]⁺ (M + Na⁺) 445.0829, found: 445.0834.

3-(phenylethynyl)oxazolidin-2-one (1f)

This compound is known and the spectroscopic data match those reported.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.39 (m, 2H), 7.30 – 7.25 (m, 3H), 4.49 (t, 2H, *J* = 8.0 Hz), 4.01 (t, 2H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 131.0, 127.9, 127.7, 121.8, 79.0, 70.4, 62.9, 46.5.

N-methyl-N-(phenylethynyl)methanesulfonamide (1g)

This compound is known and the spectroscopic data match those reported.^{4 1}H NMR (500 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.32 – 7.28 (m, 3H), 3.30 (s, 3H), 3.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 131.3, 128.2, 127.9, 122.2, 83.0, 69.2, 39.0, 36.5.

N-butyl-N-(phenylethynyl)methanesulfonamide (1h)

This compound is known and the spectroscopic data match those reported.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.39 (m, 2H), 7.33 – 7.28 (m, 3H), 3.54 (t, 2H, *J* = 7.2 Hz), 3.12 (s, 3H), 1.81 – 1.74 (m, 2H), 1.48 – 1.42 (m, 2H), 0.98 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 131.4, 128.2, 127.9, 122.6, 81.6, 70.9, 51.4, 38.1, 30.2, 19.4, 13.5.

N-benzyl-N-(phenylethynyl)methanesulfonamide (1i)

This compound is known and the spectroscopic data match those reported.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.43 – 7.34 (m, 5H), 7.29 – 7.26 (m, 3H), 4.71 (s, 2H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 131.2, 128.8, 128.7, 128.1, 127.9, 122.3, 81.9, 71.5, 55.7, 38.8.

N-allyl-N-(phenylethynyl)methanesulfonamide (1j)

This compound is known and the spectroscopic data match those reported.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.36 (m, 2H), 7.36 – 7.28 (m, 3H), 6.00 (ddt, 1H, J = 6.4 Hz, J = 10.0 Hz, J = 16.8 Hz), 5.49 –

5.35 (m, 2H), 4.17 (dt, 2H, *J* = 1.2 Hz, *J* = 6.4 Hz), 3.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 131.4, 130.8, 128.2, 127.9, 122.4, 120.4, 81.5, 71.0, 54.2, 38.8.

N-benzyl-N-(p-tolylethynyl)methanesulfonamide (1k)

This compound is known and the spectroscopic data match those reported.^{1 1}H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.41 – 7.33 (m, 3H), 7.25 – 7.23 (m, 2H), 7.08 (d, 2H, *J* = 7.6 Hz), 4.68 (s, 2H), 2.90 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 134.4, 131.3, 129.0, 128.9, 128.7, 128.6, 119.1, 81.1, 71.4, 55.7, 38.7, 21.3.

N-benzyl-N-((4-fluorophenyl)ethynyl)methanesulfonamide (11)

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.29 (m, 7H), 7.00 – 6.94 (m, 2H), 4.69 (s, 2H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 247.8 Hz), 133.4 (d, J = 8.3 Hz), 133.4, 128.9, 128.8, 128.7,118.4 (d, J = 3.3 Hz), 115.5 (d, J = 21.9 Hz), 81.5, 70.4, 55.8, 38.9; IR (neat): 2916, 2237, 1600, 1509, 1358, 835, 785, 757; MS (ESI, m/z) 326 (M + Na⁺); HRESIMS Calcd for [C₁₆H₁₄FNNaO₂S]⁺ (M + Na⁺) 326.0621, found: 326.0629.

(E)-N-benzyl-N-(4-phenylbut-3-en-1-yn-1-yl)methanesulfonamide (1m)

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.23 (m, 10H), 6.82 (d, 1H, J = 16.4 Hz), 6.21 (d, 1H, J = 16.0 Hz), 4.67 (s, 2H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 136.1, 134.4, 128.9, 128.8, 128.7, 128.6, 128.3, 126.0, 107.1, 83.9, 71.1, 55.8, 38.9; IR (neat): 2917, 2219, 1630, 1493, 1357, 871, 749,

701; MS (ESI, m/z) 334 (M + Na⁺); HRESIMS Calcd for $[C_{18}H_{17}NNaO_2S]^+$ (M + Na⁺) 334.0872, found: 334.0875.

N-benzyl-N-(cyclopropylethynyl)methanesulfonamide (1n)

1n

This compound is known and the spectroscopic data match those reported.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.30 (m, 5H), 4.56 (s, 2H), 2.86 (s, 3H), 1.33 – 1.27 (m, 1H), 0.82 – 0.74 (m, 2H), 0.66 – 0.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.5, 128.4, 128.2, 128.1, 75.2, 68.3, 55.2, 37.8, 8.4, -1.2.

N-(2-bromoethyl)-N-(phenylethynyl)methanesulfonamide (1p)

Compound **1p** was prepared according to the known procedures.^{6 1}H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.34 – 7.27 (m, 3H), 3.95 (t, 2H, *J* = 6.8 Hz), 3.65 (t, 2H, *J* = 6.8 Hz), 3.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 131.6, 128.3, 122.0, 80.1, 71.8, 52.4, 39.0, 28.0; IR (neat): 2918, 2233, 1631, 1492, 1442, 1356, 862, 754, 690; MS (ESI, m/z) 324 (M + Na⁺); HRESIMS Calcd for [C₁₁H₁₂BrNNaO₂S]⁺ (M + Na⁺) 323.9664, found: 323.9664.

N-(hex-1-yn-1-yl)-N-phenylmethanesulfonamide (1q)

1q

This compound is known and the spectroscopic data match those reported.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.46 – 7.38 (m, 2H), 7.37 – 7.29 (m, 1H), 3.06 (s, 3H), 2.35 (t, 2H, *J* = 7.2 Hz), 1.58 – 1.51 (m, 2H), 1.48 – 1.37 (m, 2H), 0.92 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 129.1, 127.8, 125.2, 73.0, 70.9, 35.9, 30.7, 21.8, 18.0, 13.4.

Representative synthetic procedures for the preparation of isoxazoles 2:7

Compounds 2a, 2j and 2m are commercially available.

5-butyl-3-pentylisoxazole (2b)

¹H NMR (400 MHz, CDCl₃) δ 5.81 (s, 1H), 2.69 (t, 2H, J = 7.6 Hz), 2.62 (t, 2H, J = 7.6 Hz), 1.75 – 1.57 (m, 4H), 1.46 – 1.29 (m, 6H), 0.99 – 0.84 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 163.9, 100.1, 31.1, 30.3, 27.1, 26.5, 25.6, 22.2, 13.7, 13.6; IR (neat): 2918, 2849, 1632, 1602, 1275, 749; MS (ESI, m/z) 218 (M + Na⁺); HRESIMS Calcd for [C₁₂H₂₁NNaO]⁺ (M + Na⁺) 218.1515, found: 218.1519.

5-butyl-3-phenylisoxazole (2c)

This compound is known and the spectroscopic data match those reported.⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.47 – 7.41 (m, 3H), 6.29 (t, 1H, *J* = 0.8 Hz), 2.84 – 2.76 (m, 2H), 1.82 – 1.66 (m,

2H), 1.47 – 1.40 (m, 2H), 0.96 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 162.2, 129.6, 128.7, 126.6, 98.7, 29.5, 26.4, 22.1, 13.6.

3-(4-florophenyl)-5-butylisoxazole (2d)

This compound is known and the spectroscopic data match those reported.⁸ ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.13 (t, 2H, J = 8.5 Hz), 6.24 (s, 1H), 2.79 (t, 2H, J = 7.5 Hz), 1.77 – 1.69 (m, 2H), 1.48 – 1.39 (m, 2H), 0.96 (t, 3H, J = 7.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 163.7 (d, J = 247.9 Hz), 128.6 (d, J = 8.3 Hz), 125.7 (d, J = 3.3 Hz), 115.9 (d, J = 21.7 Hz), 98.6, 29.6, 26.5, 22.2, 13.6.

3-(4-bromophenyl)-5-butylisoxazole (2e)

This compound is known and the spectroscopic data match those reported.⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.57 – 7.53 (m, 2H), 6.25 (t, 1H, *J* = 0.8 Hz), 2.77 (t, 2H, *J* = 7.6 Hz), 1.75 – 1.68 (m, 2H), 1.45 – 1.39 (m, 2H), 0.95 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 161.3, 131.9, 128.3, 128.1, 123.9, 29.5, 26.4, 22.1, 13.6.

5-butyl-3-(p-tolyl)isoxazole (2f)

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, 2H, *J* = 8.4 Hz), 7.24 (d, 2H, *J* = 8.0 Hz), 6.25 (s, 1H), 2.77 (t, 2H, *J* = 7.6 Hz), 2.38 (s, 3H), 1.75 – 1.68 (m, 2H), 1.45 – 1.39 (m, 2H), 0.95 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 162.2, 139.7, 129.4, 126.5, 98.6, 29.5, 26.4, 22.1, 21.3, 13.6; IR (neat): 2958, 2933, 1613 ,1574, 1529, 1433, 870, 800; MS (ESI, m/z) 238 (M + Na⁺), found: 238.1; HRESIMS Calcd for [C₁₄H₁₇NNaO]⁺ (M + Na⁺) 238.1202, found: 238.1205.

5-butyl-3-(4-methoxyphenyl)isoxazole (2g)

This compound is known and the spectroscopic data match those reported.⁸ ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.70 (m, 2H), 7.05 – 6.90 (m, 2H), 6.24 (t, 1H, *J* = 1.0 Hz), 3.87 (s, 3H), 2.80 (t, 2H, *J* = 7.5 Hz), 1.81 – 1.71 (m, 2H), 1.51 – 1.38 (m, 2H), 0.98 (t, 3H, *J* = 7.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 161.9, 160.8, 128.1, 1220, 114.2, 98.5, 55.3, 29.6, 26.4, 22.2, 13.6.

(E)-5-butyl-3-styrylisoxazole (2h)

2h

¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.37 – 7.28 (m, 3H), 7.11 (s, 2H), 6.20 (s, 1H), 2.73 (t, 2H, *J* = 7.6 Hz), 1.73 – 1.65 (m, 2H), 1.45 – 1.37 (m, 2H), 0.94 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100

MHz, CDCl₃) δ 173.4, 161.5, 135.8, 135.2, 128.7, 128.6, 126.8, 116.3, 97.6, 29.4, 26.2, 22.0, 13.6; IR (neat): 2960, 2931, 1643, 1596, 1444, 820, 754, 696; MS (ESI, m/z) 250 (M + Na⁺); HRESIMS Calcd for [C₁₅H₁₇NNaO]⁺ (M + Na⁺) 250.1202, found: 250.1212.

3,5-diphenylisoxazole (2i)

This compound is known and the spectroscopic data match those reported.⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 4H), 7.51 – 7.43 (m, 6H), 6.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 162.9, 130.1, 129.9, 129.0, 128.9, 128.8, 127.3, 126.7, 125.7, 97.4.

5-methoxy-3-phenylisoxazole (2k)

Compound **2k** was prepared according to the known procedures.⁹ This compound is known and the spectroscopic data match those reported.⁹ ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.73 (m, 2H), 7.51 – 7.38 (m, 3H), 5.52 (s, 1H), 4.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 164.0, 129.9, 129.4, 128.6, 126.3, 75.2, 58.7.

3-phenylisoxazole (21)

Compound **21** was prepared according to the known procedures.¹⁰ This compound is known and the spectroscopic data match those reported.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, 1H, *J* = 1.6 Hz), 7.84 – 7.81 (m, 2H), 7.48 – 7.43 (m, 3H), 6.65 (d, 1H, *J* = 1.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 158.8, 130.0, 128.9, 128.7, 126.8, 102.4.

Representative synthetic procedures for the preparation of isoxazoles 4:¹¹

Compound 4i (3,4,5-trimethylisoxazole) is commercially available.

3,5-dimethyl-4-phenylisoxazole (4a)

4a

This compound is known and the spectroscopic data match those reported.^{12 1}H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.40 – 7.31 (m, 1H), 7.28 – 7.22 (m, 2H), 2.41 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 158.3, 130.2, 128.8, 128.6, 127.2, 116.4, 11.2, 10.5.

4-(4-fluorophenyl)-3,5-dimethylisoxazole (4b)

This compound is known and the spectroscopic data match those reported.¹³ ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 2H), 7.19 – 7.10 (m, 2H), 2.39 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 162.2 (d, *J* = 235.7 Hz), 158.5, 130.8 (d, *J* = 8.1 Hz), 126.4 (d, *J* = 3.3 Hz), 115.8 (d, *J* = 21.5 Hz), 115.7, 11.4, 10.6.

4-(4-chlorophenyl)-3,5-dimethylisoxazole (4c)

¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, 2H, *J* = 7.2 Hz), 7.11 (d, 2H, *J* = 7.2 Hz), 2.31 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 157.8, 133.0, 130.0, 128.6, 115.2, 11.0, 10.2; IR (neat): 1631, 1595, 1502, 1485, 1395, 890, 832; MS (ESI, m/z) 230 (M + Na⁺); HRESIMS Calcd for [C₁₁H₁₀ClNNaO]⁺ (M + Na⁺) 230.0343, found: 230.0349.

4-(4-bromophenyl)-3,5-dimethylisoxazole (4d)

This compound is known and the spectroscopic data match those reported.^{11 1}H NMR (400 MHz, CDCl₃) δ 7.57 (d, 2H, *J* = 8.8 Hz), 7.13 (d, 2H, *J* = 8.4 Hz), 2.39 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 158.3, 137.9, 131.9, 130.8, 130.6, 129.3, 121.6, 115.6, 11.5, 10.6.

4-(3,5-dimethylisoxazol-4-yl)benzoate (4e)

4e

This compound is known and the spectroscopic data match those reported.^{13 1}H NMR (400 MHz, CDCl₃) δ 8.11 (d, 2H, *J* = 8.0 Hz), 7.35 (d, 2H, *J* = 6.8 Hz), 3.95 (s, 3H), 2.44 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 165.7, 158.3, 135.2, 130.0, 129.2, 128.9, 115.9, 52.2, 11.6, 10.8.

4-(4-methylphenyl)-3,5-dimethylisoxazole (4f)

This compound is known and the spectroscopic data match those reported.^{13 1}H NMR (400 MHz, CDCl₃) δ 7.25 (d, 2H, *J* = 8.4 Hz), 7.14 (d, 2H, *J* = 8.0 Hz), 2.40 (s, 3H), 2.39 (s, 3H), 2.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.8, 158.6, 137.2, 129.4, 128.8, 127.3, 116.4, 21.0, 11.4, 10.6.

4-(4-methoxyphenyl)-3,5-dimethylisoxazole (4g)

This compound is known and the spectroscopic data match those reported.^{13 1}H NMR (400 MHz, CDCl₃) δ 7.17 (d, 2H, *J* = 8.4 Hz), 6.97 (d, 2H, *J* = 8.4 Hz), 3.85 (s, 3H), 2.38 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 158.8, 158.5, 130.0, 122.4, 116.0, 114.1, 55.0, 11.2, 10.5.

4-(3,4-dimethoxyphenyl)-3,5-dimethylisoxazole (4h)

¹H NMR (400 MHz, CDCl₃) δ 6.94 (d, 1H, *J* = 8.0 Hz), 6.80 (dd, 1H, *J* = 2.0 Hz, *J* = 8.0 Hz), 6.75 (d, 1H, *J* = 2.0 Hz), 3.92 (s, 3H), 3.90 (s, 3H), 2.40 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 158.0, 148.6, 148.0, 122.4, 121.1, 115.9, 111.9, 111.0, 55.4, 55.3, 10.8, 10.1; IR (neat): 2932, 1603, 1582, 1519, 1441, 1299, 863, 812, 765; MS (ESI, m/z) 256 (M + Na⁺); HRESIMS Calcd for [C₁₃H₁₅NNaO₃]⁺ (M + Na⁺) 256.0944, found: 256.0945.

3,5-dimethyl-4-nonylisoxazole (4j)

Compound **4j** was prepared according to the known procedure.^{14 1}H NMR (400 MHz, CDCl₃) δ 2.32 – 2.24 (m, 5H), 2.20 (s, 3H), 1.50 – 1.38 (m, 2H), 1.37 – 1.19 (m, 12H), 0.88 (t, 3H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 159.5, 113.6, 31.7, 29.6, 29.4, 29.3, 29.2, 29.1, 22.5, 22.0, 13.9, 10.7, 10.0; IR (neat): 2926, 2854, 1638, 1452, 1424, 1194, 747; MS (ESI, m/z) 246 (M + Na⁺); HRESIMS Calcd for [C₁₄H₂₅NNaO]⁺ (M + Na⁺) 246.1828, found: 246.1838.

methyl 3,5-dimethylisoxazole-4-carboxylate (4k)

4k

Compound **4k** was prepared according to the known procedure.¹⁵ This compound is known and the spectroscopic data match those reported.¹⁵ ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 2.65 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 162.5, 159.5, 108.3, 51.2, 12.9, 11.4.

5-methyl-3,4-diphenylisoxazole (4l)

Compound **41** was prepared according to the known procedure.¹⁶ This compound is known and the spectroscopic data match those reported.^{16 1}H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.39 – 7.27 (m, 6H), 7.19 – 7.14 (m, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 161.1, 130.3, 129.7, 129.2, 129.1, 128.6, 128.4, 127.6, 115.7, 11.5.

General procedure for the synthesis of 3:

Isoxazole **2** (0.60 mmol) and (**Ar**O)₃PAuNTf₂ (13.5 mg, 0.015 mmol) were added to a suspension of the ynamide **1** (0.30 mmol) in DCE (6.0 mL) at room temperature. The reaction mixture was then stirred at 80 °C and the progress of the reaction was monitored by TLC. The reaction typically took 3 h. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired product **3**.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-phenylmethanesulfonamide (3a)

3a

Compound **3a** was prepared in 89% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1a** according to the general procedure (Table 2, entry 1). ¹H NMR (400 MHz, CDCl₃) δ 8.84 (s, 1H), 7.35 – 7.27 (m, 5H), 7.23 – 7.18 (m, 1H), 7.16 – 7.04 (m, 4H), 2.76 (s, 3H), 2.54 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 141.0, 134.8, 134.5, 130.3, 129.1, 128.1, 127.6, 126.7, 125.4, 123.0, 121.8, 120.5, 40.2, 30.5, 14.1; IR (neat): 3317, 2926, 1632, 1605, 1526, 1377, 1152, 866, 788, 703; MS (ESI, m/z) 391 (M + Na⁺); HRESIMS Calcd for [C₂₀H₂₀N₂NaO₃S]⁺ (M + Na⁺) 391.1087, found: 391.1087.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-4-methyl-N-phenylbenzenesulfonamide (3b)

Compound **3b** was prepared in 63% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1b** according to the general procedure (Table 2, entry 2). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.51 (d, 2H, J = 8.4 Hz), 7.28 – 7.12 (m, 6H), 7.06 (t, 2H, J = 7.6 Hz), 6.89 – 6.85 (m, 2H), 6.60 – 6.55 (m, 2H), 2.56 (s, 3H), 2.46 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 144.2, 144.1, 135.9, 134.0, 133.7, 130.2, 129.5, 128.8, 127.9, 127.6, 127.0, 126.9, 126.7, 123.1, 122.1, 120.8, 30.5, 21.5, 14.3; IR (neat): 3332, 2922, 2850, 1632, 1352, 1164, 951, 696; MS (ESI, m/z) 467 (M + Na⁺); HRESIMS Calcd for [C₂₆H₂₄N₂NaO₃S]⁺ (M + Na⁺) 467.1400, found: 467.1407.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-4-bromo-N-phenylbenzenesulfonamide (3c)

Compound **3c** was prepared in 80% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1c** according to the general procedure (Table 2, entry 3). ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 7.53 – 7.51 (m, 2H), 7.44 – 7.41 (m, 2H), 7.25 – 7.18 (m, 4H), 7.14 – 7.10 (m, 2H), 6.96 – 6.92 (m, 2H), 6.63 – 6.61 (m, 2H), 2.55 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 140.9, 137.8, 134.2, 133.8, 132.2, 130.1, 129.3, 129.1, 128.3, 127.8, 127.4, 127.3, 126.8, 123.5, 121.5, 120.8, 30.6, 14.3; IR (neat): 3268, 2924, 2852, 1634, 1573, 1434, 1358, 1153, 852, 788, 701; MS (ESI, m/z) 531 (M + Na⁺); HRESIMS Calcd for [C₂₅H₂₁BrN₂NaO₃S]⁺ (M + Na⁺) 531.0348, found: 531.0351.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-benzyl-2-nitrobenzenesulfonamide (3d)

Compound **3d** was prepared in 75% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1d** according to the general procedure (Table 2, entry 4). ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 7.69 (t, 2H, *J* = 7.5 Hz), 7.63 – 7.52 (m, 2H), 7.31 – 7.20 (m, 5H), 7.16 (t, 1H, *J* = 7.5 Hz), 7.07 (t, 2H, *J* = 7.5 Hz), 6.60 (d, 2H, *J* = 7.0 Hz), 4.68 (s, 2H), 2.36 (s, 3H), 1.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.1, 147.5, 136.1, 134.4, 133.9, 133.6, 132.0, 131.8, 131.8, 129.5, 128.8, 128.6, 128.1, 127.8, 127.2,

124.6, 123.7, 120.4, 119.1, 56.7, 30.4, 14.0; IR (neat): 3231, 1639, 1543, 1438, 1367, 1150, 876, 763, 736, 700; MS (ESI, m/z) 512 (M + Na⁺); HRESIMS Calcd for $[C_{26}H_{23}N_3NaO_5S]^+$ (M + Na⁺) 512.1251, found: 512.1258.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-(4-methoxybenzyl)-2-nitrobenzenesulfonamide (3e)

Compound **3e** was prepared in 85% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1e** according to the general procedure (Table 2, entry 5). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.77 – 7.66 (m, 2H), 7.66 – 7.55 (m, 2H), 7.22 – 7.11 (m, 3H), 7.07 (t, 2H, *J* = 7.6 Hz), 6.82 (d, 2H, *J* = 8.4 Hz), 6.62 (d, 2H, *J* = 7.2 Hz), 4.61 (s, 2H), 3.79 (s, 3H), 2.38 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.12, 159.5, 147.6, 134.2, 133.8, 133.7, 132.3, 132.0, 131.7, 130.3, 129.6, 128.3, 127.9, 127.2, 124.7, 123.8, 120.6, 119.2, 114.1, 56.5, 55.2, 30.5, 14.1; IR (neat): 3316, 2927, 1634, 1612, 1513, 1435, 1339, 1152, 798, 764, 704; MS (ESI, m/z) 542 (M + Na⁺); HRESIMS Calcd for [C₂₇H₂₅N₃NaO₆S]⁺ (M + Na⁺) 542.1356, found: 542.1359.

3-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)oxazolidin-2-one (3f)

3f

Compound **3f** was prepared in 95% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1f** according to the general procedure (Table 2, entry 6). ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.42 – 7.32 (m, 5H), 4.29 – 4.25 (m, 2H), 3.47 – 3.43 (m, 2H), 2.36 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 158.3, 134.4, 132.6, 130.2, 128.3, 127.5, 120.4, 120.2, 63.0, 46.6, 30.6, 13.7; IR (neat): 3233, 2923, 1743(s), 1650, 1527, 1495, 1442, 1405, 1137, 762, 730, 705; MS (ESI, m/z) 307 (M + Na⁺); HRESIMS Calcd for [C₁₆H₁₆N₂NaO₃]⁺ (M + Na⁺) 307.1053, found: 307.1053.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-methylmethanesulfonamide (3g)

Compound **3g** was prepared in 68% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1g** according to the general procedure (Table 2, entry 7). ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.47 – 7.29 (m, 5H), 3.12 (s, 3H), 2.56 (s, 3H), 2.51 (s, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 134.9, 133.6, 130.3, 128.6, 127.9, 123.2, 121.6, 120.8, 39.4, 38.0, 30.6, 14.3; IR (neat): 3558, 2920, 2850, 1657, 1632, 1469, 1341, 1151, 795, 765, 704; MS (ESI, m/z) 329 (M + Na⁺); HRESIMS Calcd for [C₁₅H₁₈N₂NaO₃S]⁺ (M + Na⁺) 329.0930, found: 329.0936.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-butylmethanesulfonamide (3h)

Compound **3h** was prepared in 85% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1h** according to the general procedure (Table 2, entry 8). ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1H), 7.43 – 7.35 (m, 3H), 7.33 – 7.30 (m, 2H), 3.33 – 3.29 (m, 2H), 2.64 (s, 3H), 2.50 (s, 3H), 1.85 (s, 3H), 1.51 – 1.41 (m, 2H), 1.29 – 1.19 (m, 2H), 0.86 (t, 3H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 134.9, 134.0, 130.2, 128.5, 127.8, 122.1, 121.1, 120.8, 51.3, 39.0, 31.0, 30.6, 19.6, 14.3, 13.6; IR (neat): 3305, 2958, 2929, 1634, 1525, 1434, 1340, 1147, 965, 763, 704; MS (ESI, m/z) 371 (M + Na⁺); HRESIMS Calcd for [C₁₈H₂₄N₂NaO₃S]⁺ (M + Na⁺) 371.1400, found: 371.1402.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide (3i)

Compound **3i** was prepared in 95% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1i** according to the general procedure (Table 2, entry 9). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.42 – 7.36 (m, 3H), 7.29 – 7.27 (m, 3H), 7.24 – 7.18 (m, 4H), 4.49 (s, 2H), 2.66 (s, 3H), 2.34 (s, 3H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 135.9, 134.7, 134.1, 130.1, 128.7, 128.6, 128.4, 128.1, 127.7, 122.5, 121.0, 120.5, 55.2, 39.8, 30.5, 14.0; IR (neat): 3319, 2927, 1638, 1525, 1434, 1341, 1152, 955, 763, 700; MS (ESI, m/z) 405 (M + Na⁺); HRESIMS Calcd for [C₂₁H₂₂N₂NaO₃S]⁺ (M + Na⁺) 405.1243, found: 405.1249.

N-(4-acetyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-allylmethanesulfonamide (3j)

3j

Compound **3j** was prepared in 86% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1j** according to the general procedure (Table 2, entry 10). ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.45 – 7.32 (m, 5H), 5.85 – 5.75 (m, 1H), 5.20 – 5.18 (m, 1H), 5.16 (s, 1H), 3.99 (d, 2H, *J* = 6.4 Hz), 2.60 (s, 3H), 2.48 (s, 3H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 134.8, 134.1, 133.0, 130.2, 128.4, 127.8, 122.5, 121.4, 120.6, 119.7, 54.7, 39.8, 30.6, 14.2; IR (neat): 3306, 2923, 2851, 1640, 1433, 1340, 1153, 703; MS (ESI, m/z) 355 (M + Na⁺); HRESIMS Calcd for [C₁₇H₂₀N₂NaO₃S]⁺ (M + Na⁺) 355.1087, found: 355.1089.

N-(4-acetyl-5-methyl-3-(p-tolyl)-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide (3k)

Compound **3k** was prepared in 96% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1k** according to the general procedure (Table 2, entry 11). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.30 – 7.27 (m, 3H), 7.23 – 7.19 (m, 4H), 7.14 – 7.12 (m, 2H), 4.48 (s, 2H), 2.70 (s, 3H), 2.40 (s, 3H), 2.33 (s,

3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 137.5, 136.1, 133.9, 131.6, 130.0, 129.2, 128.7, 128.6, 128.1, 122.4, 120.9, 120.6, 55.2, 39.8, 30.6, 21.2, 14.1; IR (neat): 3321, 3030, 2925, 1634, 1531, 1437, 1341, 1152, 825, 698; MS (ESI, m/z) 419 (M + Na⁺); HRESIMS Calcd for [C₂₂H₂₄N₂NaO₃S]⁺ (M + Na⁺) 419.1400, found: 419.1403.

N-(4-acetyl-3-(4-fluorophenyl)-5-methyl-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide (31)

Compound **3I** was prepared in 95% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1I** according to the general procedure (Table 2, entry 12). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.31 – 7.30 (m, 3H), 7.20 – 7.17 (m, 4H), 7.13 – 7.08 (m, 2H), 4.48 (s, 2H), 2.71 (s, 3H), 2.36 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 162.4 (d, *J* = 248.5 Hz), 135.9, 134.0, 131.8, 130.6, 128.8, 128.4, 121.6, 121.2, 120.7, 115.6 (d, *J* = 21.4 Hz), 55.3, 40.0, 30.7, 14.2; IR (neat): 3307, 2926, 2853, 1636, 1529, 1438, 1341, 1152, 841, 740, 698; MS (ESI, m/z) 423 (M + Na⁺); HRESIMS Calcd for [C₂₁H₂₁FN₂NaO₃S]⁺ (M + Na⁺) 423.1149, found: 423.1158.

$(E)-N-(4-acetyl-5-methyl-3-styryl-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide\ (3m)$

Compound **3m** was prepared in 75% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1m** according to the general procedure (Table 2, entry 13). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.41 – 7.31 (m, 10H), 7.28 – 7.20 (m, 1H), 6.69 (d, 1H, *J* = 16.4 Hz), 4.77 (s, 2H), 2.99 (s, 3H), 2.39 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 137.2, 136.0, 133.6, 131.2, 129.1, 128.7, 128.6, 128.2, 127.6, 126.1, 121.0, 120.3, 120.2, 119.1, 54.7, 40.4, 31.0, 14.4; IR (neat): 3314, 3028, 2926,

1630, 1443, 1337, 1151, 963, 801, 753, 698; MS (ESI, m/z) 431 (M + Na⁺); HRESIMS Calcd for $[C_{23}H_{24}N_2NaO_3S]^+$ (M + Na⁺) 431.1400, found: 431.1405.

N-(4-acetyl-3-cyclopropyl-5-methyl-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide (3n)

Compound **3n** was prepared in 58% yield by the reaction of 3,5-dimethylisoxazole **2a** with ynamide **1n** according to the general procedure (Table 2, entry 14). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.30 – 7.29 (m, 3H), 7.24 – 7.22 (m, 2H), 4.70 (s, 2H), 3.05 (s, 3H), 2.52 (s, 3H), 2.27 (s, 3H), 1.75 – 1.68 (m, 1H), 0.91 – 0.88 (m, 2H), 0.64 – 0.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 136.2, 133.8, 129.1, 128.7, 128.3, 121.6, 121.3, 121.0, 55.3, 40.0, 31.1, 14.5, 8.0, 7.1; IR (neat): 3434, 2924, 2851, 1630, 1440, 1334, 1149, 954, 734, 699; MS (ESI, m/z) 369 (M + Na⁺); HRESIMS Calcd for [C₁₈H₂₂N₂NaO₃S]⁺ (M + Na⁺) 369.1243, found: 369.1255.

N-benzyl-N-(4-pentanoyl-5-pentyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (30)

Compound **30** was prepared in 83% yield by the reaction of isoxazole **2b** with ynamide **1i** according to the general procedure (Table 3, entry 1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.46 – 7.34 (m, 3H), 7.34 – 7.26 (m, 5H), 7.26 – 7.17 (m, 2H), 4.50 (s, 2H), 2.73 (t, 2H, *J* = 7.6 Hz), 2.65 (s, 3H), 2.04 (t, 2H, *J* = 7.2 Hz), 1.45 – 1.32 (m, 4H), 1.23 – 1.14 (m, 2H), 1.14 – 1.04 (m, 2H), 1.03 – 0.91 (m, 2H), 0.86 (t, 3H, *J* = 7.2 Hz), 0.77 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 138.0, 136.2, 135.0, 130.1, 128.9, 128.7, 128.5, 128.2, 127.7, 122.0, 120.8, 120.2, 55.4, 42.3, 39.9, 31.3, 30.9, 27.1, 24.1, 22.3, 22.2, 13.8; IR (neat): 3321, 2955, 2929, 2858, 1649, 1605, 1522, 1456, 1339, 1152, 960, 762, 700; MS (ESI, m/z) 503 (M + Na⁺); HRESIMS Calcd for [C₂₈H₃₆N₂NaO₃S]⁺ (M + Na⁺) 503.2339, found: 503.2339.

N-benzyl-N-(4-pentanoyl-3,5-diphenyl-1H-pyrrol-2-yl)methanesulfonamide (3p)

Compound **3p** was prepared in 86% yield by the reaction of isoxazole **2c** with ynamide **1i** according to the general procedure (Table 3, entry 2). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.56 – 7.15 (m, 15H), 4.56 (s, 2H), 2.67 (s, 3H), 2.15 (t, 2H, *J* = 7.6 Hz), 1.41 – 1.30 (m, 2H), 1.08 – 0.92 (m, 2H), 0.66 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 136.0, 133.9, 133.3, 131.5, 129.8, 128.9, 128.7, 128.7, 128.4, 128.3, 128.2, 127.6, 122.9, 122.7, 121.6, 55.3, 42.6, 39.9, 26.5, 22.0, 13.6; IR (neat): 3438, 2918, 2849, 1657, 1547, 1342, 1152, 760, 698; MS (ESI, m/z) 509 (M + Na⁺); HRESIMS Calcd for [C₂₉H₃₀N₂NaO₃S]⁺ (M + Na⁺) 509.1869, found: 509.1875.

N-benzyl-N-(5-(4-fluorophenyl)-4-pentanoyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (3q)

Compound **3q** was prepared in 72% yield by the reaction of isoxazole **2d** with ynamide **1i** according to the general procedure (Table 3, entry 3). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.43 – 7.21 (m, 12H), 7.02 – 6.97 (m, 2H), 4.54 (s, 2H), 2.63 (s, 3H), 2.10 (t, 2H, *J* = 7.2 Hz), 1.36 – 1.28 (m, 2H), 0.99 – 0.95 (m, 2H), 0.65 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 162.7 (d, *J* = 247.2 Hz), 136.0, 133.9, 132.4, 130.7 (d, *J* = 8.2 Hz), 129.8, 128.9, 128.7, 128.5, 128.3, 127.7, 127.6 (d, *J* = 3.2 Hz), 122.8, 122.7, 121.5, 115.2 (d, *J* = 21.5 Hz), 55.3, 42.6, 40.0, 26.4, 22.0, 13.6; IR (neat): 3295, 3063, 2957, 1659, 1606, 1500, 1451, 1342, 1227, 1153, 841, 785, 760, 700; MS (ESI, m/z) 527 (M + Na⁺); HRESIMS Calcd for [C₂₉H₂₉FN₂NaO₃S]⁺ (M + Na⁺) 527.1775, found: 527.1768.

N-benzyl-N-(5-(4-bromophenyl)-4-pentanoyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (3r)

Compound **3r** was prepared in 76% yield by the reaction of isoxazole **2e** with ynamide **1i** according to the general procedure (Table 3, entry 4). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.44 – 7.37 (m, 5H), 7.33 – 7.29 (m, 3H), 7.25 – 7.21 (m, 4H), 7.15 – 7.12 (m, 2H), 4.54 (s, 2H) , 2.61 (s, 3H), 2.10 (t, 2H, *J* = 7.2 Hz), 1.36 – 1.28 (m , 2H), 0.99 – 0.96 (m, 2H), 0.65 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 135.9, 133.8, 131.9, 131.3, 130.3, 129.8, 128.9, 128.7, 128.5, 128.3, 127.8, 123.1, 122.7, 122.6, 121.7, 55.3, 42.6, 40.0, 26.4, 21.9, 13.6; IR (neat): 3297, 2956, 2870, 1658, 1605, 1492, 1450, 1341, 1152, 830, 760, 700; MS (ESI, m/z) 587 (M + Na⁺); HRESIMS Calcd for [C₂₉H₂₉BrN₂NaO₃S]⁺ (M + Na⁺) 587.0974, found: 587.0987.

N-benzyl-N-(4-pentanoyl-3-phenyl-5-(p-tolyl)-1H-pyrrol-2-yl)methanesulfonamide (3s)

Compound **3s** was prepared in 85% yield by the reaction of isoxazole **2f** with ynamide **1i** according to the general procedure (Table 3, entry 5). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.41 – 7.34 (m, 3H), 7.31 – 7.27 (m, 7H), 7.22 – 7.11 (m, 4H), 4.53 (s, 2H) , 2.64 (s, 3H), 2.33 (s, 3H), 2.14 (t, 2H, *J* = 7.2 Hz), 1.38 – 1.30 (m, 2H), 1.00 – 0.97 (m, 2H), 0.65 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 138.3, 136.1, 134.0, 133.5, 129.7, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 127.5, 122.6, 121.3, 55.3, 42.5, 39.8, 26.5, 22.0, 21.1, 13.6; IR (neat): 3296, 2957, 2870, 1642, 1606, 1502, 1449, 1343, 1153, 958, 822, 732, 700; MS (ESI, m/z) 523 (M + Na⁺); HRESIMS Calcd for [C₃₀H₃₂N₂NaO₃S]⁺ (M + Na⁺) 523.2026, found: 523.2021.

N-benzyl-N-(5-(4-methoxyphenyl)-4-pentanoyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (3t)

Compound **3t** was prepared in 96% yield by the reaction of isoxazole **2g** with ynamide **1i** according to the general procedure (Table 3, entry 6). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.40 – 7.19 (m, 12H), 6.84 – 6.82 (m, 2H), 4.53 (s, 2H) , 3.77 (s, 3H), 2.62 (s, 3H), 2.12 (t, 2H, *J* = 7.6 Hz), 1.36 – 1.29 (m, 2H), 0.99 – 0.95 (m, 2H), 0.65 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 159.6, 136.0, 134.1, 133.5, 130.0, 129.7, 128.8, 128.6, 128.3, 128.1, 127.4, 123.8, 122.6, 122.4, 121.0, 113.6, 55.3, 55.1, 42.4, 39.8, 26.5, 21.9, 13.5; IR (neat): 3297, 2957, 2870, 1643, 1610, 1502, 1452, 1342, 1153, 959, 836, 760, 700; MS (ESI, m/z) 539 (M + Na⁺); HRESIMS Calcd for [C₃₀H₃₂N₂NaO₄S]⁺ (M + Na⁺) 539.1975, found: 539.1972.

(E)-N-benzyl-N-(4-pentanoyl-3-phenyl-5-styryl-1H-pyrrol-2-yl)methanesulfonamide (3u)

Compound **3u** was prepared in 95% yield by the reaction of isoxazole **2h** with ynamide **1i** according to the general procedure (Table 3, entry 7). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.59 (d, 1H, *J* = 16.8 Hz), 7.42 – 7.13 (m, 15H), 6.61 (d, 1H, *J* = 16.8 Hz), 4.54 (s, 2H), 2.66 (s, 3H), 2.04 (t, 2H, *J* = 7.6 Hz), 1.41 – 1.33 (m, 2H), 1.01 – 0.97 (m, 2H), 0.67 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.5, 135.7, 134.2, 132.5, 130.0, 129.6, 128.9, 128.7, 128.6, 128.5, 128.3, 127.9, 126.6, 123.4, 122.8, 121.7, 117.8, 55.2, 42.2, 40.1, 26.3, 22.0, 13.6; IR (neat): 3313, 2956, 2929, 1650, 1453, 1340, 1152, 804, 755, 700; MS (ESI, m/z) 535 (M + Na⁺); HRESIMS Calcd for [C₃₁H₃₂N₂NaO₃S]⁺ (M + Na⁺) 535.2026, found: 535.2037.

N-(4-benzoyl-3,5-diphenyl-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide (3v)

Compound **3v** was prepared in 96% yield by the reaction of isoxazole **2i** with ynamide **1i** according to the general procedure (Table 3, entry 8). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.59 – 7.57 (m, 2H), 7.32 – 7.07 (m, 18H), 4.62 (s, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 138.4, 136.0, 133.1, 133.0, 132.1, 130.4, 129.7, 129.4, 129.0, 128.6, 128.2, 128.1, 127.8, 127.6, 127.1, 123.8, 122.8, 119.6, 55.2, 40.0; IR (neat): 3305, 3061, 2929, 1735, 1641, 1596, 1495, 1456, 1343, 1152, 763, 739, 696; MS (ESI, m/z) 529 (M + Na⁺); HRESIMS Calcd for [C₃₁H₂₆N₂NaO₃S]⁺ (M + Na⁺) 529.1556, found: 529.1546.

N-(4-benzoyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)-N-benzylmethanesulfonamide (3w)

Compound **3w** was prepared in 96% yield by the reaction of isoxazole **2j** with ynamide **1i** according to the general procedure (Table 3, entry 9). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.54 – 7.53 (m, 2H), 7.29 – 7.20 (m, 6H), 7.15 – 6.99 (m, 7H) , 4.59 (s, 2H), 2.64 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 139.3, 135.9, 133.5, 133.4, 131.5, 129.4, 129.3, 128.9, 128.5, 128.1, 127.9, 127.5, 126.6, 123.1, 120.8, 119.4, 55.3, 39.9, 12.9; IR (neat): 3309, 2918, 2848, 1629, 1527, 1449, 1341, 1150, 764, 738, 696; MS (ESI, m/z) 467 (M + Na⁺); HRESIMS Calcd for [C₂₆H₂₄N₂NaO₃S]⁺ (M + Na⁺) 467.1400, found: 467.1406.

methyl 5-(N-benzylmethylsulfonamido)-2,4-diphenyl-1H-pyrrole-3-carboxylate (3x)

Compound **3x** was prepared in 90% yield by the reaction of isoxazole **2k** with ynamide **1i** according to the general procedure (Table 3, entry 10). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.43 – 7.26 (m, 15H), 4.56 (s, 2H), 3.45 (s, 3H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 136.2, 135.3, 133.9, 131.3, 129.8, 128.9, 128.8, 128.3, 128.2, 128.0, 127.3, 123.8, 123.1, 110.7, 55.5, 50.7, 40.0; IR (neat): 3302, 1709, 1606, 1495, 1455, 1341, 807, 761, 698; MS (ESI, m/z) 483 (M + Na⁺); HRESIMS Calcd for [C₂₆H₂₄N₂NaO₄S]⁺ (M + Na⁺) 483.1349, found: 483.1355.

N-benzyl-N-(4-formyl-3,5-diphenyl-1H-pyrrol-2-yl)methanesulfonamide (3y)

Compound **3y** was prepared in 62% yield by the reaction of isoxazole **2l** with ynamide **1i** according to the general procedure (Table 3, entry 11). ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 8.36 (s, 1H), 7.48 – 7.29 (m, 15H), 4.63 (s, 2H), 2.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 139.0, 136.3, 132.3, 130.0, 129.5, 129.3, 129.1, 129.0, 128.9, 128.7, 128.5, 128.5, 128.0, 124.0, 123.6, 118.5, 55.6, 40.1; IR (neat): 3434, 2919, 2849, 1641, 1345, 1150, 764, 697; MS (ESI, m/z) 453 (M + Na⁺); HRESIMS Calcd for [C₂₅H₂₂N₂NaO₃S]⁺ (M + Na⁺) 453.1243, found: 453.1253.

N-benzyl-N-(4-formyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (3z)

Compound **3z** was prepared in 60% yield by the reaction of isoxazole **2m** with ynamide **1i** according to the general procedure (Table 3, entry 12). ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.78 (s, 1H), 7.66 – 7.08 (m, 11H), 4.59 (s, 2H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 136.0, 131.7, 129.9, 128.9, 128.7, 128.4, 128.0, 124.2, 123.5, 123.3, 122.7, 55.4, 40.1; IR (neat): 3396, 2918, 2849, 1657,

1342, 1151, 796, 762, 699; MS (ESI, m/z) 377 (M + Na⁺); HRESIMS Calcd for $[C_{19}H_{18}N_2NaO_3S]^+$ (M + Na⁺) 377.0930, found: 377.0932.

General procedure for the synthesis of 5:

Isoxazole **4** (0.60 mmol) and (**Ar**O)₃PAuNTf₂ (13.5 mg, 0.015 mmol) were added to a suspension of the ynamide **1** (0.30 mmol) in DCE (6.0 mL) at room temperature. The reaction mixture was then stirred at 80 °C and the progress of the reaction was monitored by TLC. The reaction typically took 3 h. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired product **5**.

N-benzyl-N-(5-methyl-3,4-diphenyl-1H-pyrrol-2-yl)methanesulfonamide (5a)

Compound **5a** was prepared in 78% yield by the reaction of isoxazole **4a** with ynamide **1i** according to the general procedure (Table 4, entry 1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.35 – 7.02 (m, 15H), 4.70 (s, 2H), 2.59 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 135.1, 134.6, 130.0, 129.8, 129.0, 128.7, 128.3, 128.1, 127.8, 126.5, 125.4, 124.0, 120.5, 120.4, 120.2, 56.1, 39.8, 11.9; IR (neat): 3372, 2921, 1641, 1327, 1146, 759, 700; MS (ESI, m/z) 439 (M + Na⁺); HRESIMS Calcd for [C₂₅H₂₄N₂NaO₂S]⁺ (M + Na⁺) 439.1451, found: 439.1438.

N-(5-methyl-3,4-diphenyl-1H-pyrrol-2-yl)-N-phenylmethanesulfonamide (5b)

Compound **5b** was prepared in 72% yield by the reaction of isoxazole **4a** with ynamide **1a** according to the general procedure (Table 4, entry 2). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.36 – 7.11 (m, 11H), 7.07 – 7.05 (m, 2H), 6.96 – 6.91 (m, 2H), 2.71 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 135.0, 134.2, 130.0, 129.2, 128.0, 127.9, 126.4, 126.0, 125.5, 124.6, 124.2, 121.4, 120.9, 120.8, 40.3, 12.1; IR (neat): 3359, 2921, 1640, 1602, 1492, 1342, 1153, 968, 770, 730, 700; MS (ESI, m/z) 425 (M + Na⁺); HRESIMS Calcd for [C₂₄H₂₂N₂NaO₂S]⁺ (M + Na⁺) 425.1294, found: 425.1296.

N-butyl-N-(5-methyl-3,4-diphenyl-1H-pyrrol-2-yl)methanesulfonamide (5c)

Compound **5c** was prepared in 85% yield by the reaction of isoxazole **4a** with ynamide **1h** according to the general procedure (Table 4, entry 3). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.25 – 7.10 (m, 8H), 7.06 – 7.04 (m, 2H), 3.50 (t, 2H, *J* = 7.6 Hz), 2.58 (s, 3H), 2.26 (s, 3H), 1.66 – 1.58 (m, 2H), 1.31 – 1.26 (m, 2H), 0.90 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 135.2, 134.7, 130.0, 129.9, 128.1, 127.8, 126.4, 125.4, 123.9, 120.7, 120.5, 120.4, 52.3, 39.1, 31.7, 19.7, 13.7, 11.9; IR (neat): 3352, 2958, 2871, 1604, 1500, 1329, 1150, 967, 770, 700; MS (ESI, m/z) 405 (M + Na⁺); HRESIMS Calcd for [C₂₂H₂₆N₂NaO₂S]⁺ (M + Na⁺) 405.1607, found: 405.1611.

(E)-N-benzyl-N-(5-methyl-4-phenyl-3-styryl-1H-pyrrol-2-yl)methanesulfonamide (5d)

Compound **5d** was prepared in 73% yield by the reaction of isoxazole **4a** with ynamide **1m** according to the general procedure (Table 4, entry 4). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.41 – 7.18 (m, 15H), 6.60 (dd, 2H, J = 1.6 Hz, J = 11.2 Hz), 4.84 (s, 2H), 3.03 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 136.38, 135.4, 130.5, 129.4, 128.7, 128.5, 128.2, 127.8, 127.0, 126.3, 125.7,

124.8, 121.0, 120.3, 119.7, 116.2, 45.1, 40.1, 11.5; IR (neat): 3444, 2923, 1635, 1495, 1455, 1323, 1151, 753, 700; MS (ESI, m/z) 465 (M + Na⁺); HRESIMS Calcd for $[C_{27}H_{26}N_2NaO_2S]^+$ (M + Na⁺) 465.1607, found: 465.1613.

N-benzyl-N-(4-(4-fluorophenyl)-5-methyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (5e)

Compound **5e** was prepared in 78% yield by the reaction of isoxazole **4b** with ynamide **1i** according to the general procedure (Table 4, entry 5). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.39 – 7.15 (m, 8H), 7.09 – 7.03 (m, 2H), 7.02 – 6.94 (m, 2H), 6.93 – 6.84 (m, 2H), 4.68 (s, 2H), 2.59 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0 (d, *J* = 233.0 Hz), 137.0, 134.5, 131.4 (d, *J* = 7.7 Hz), 131.1 (d, *J* = 3.2 Hz), 129.8, 129.0, 128.7, 128.3, 128.1, 126.6, 123.9, 120.6, 120.5, 119.3, 114.7 (d, *J* = 21.0 Hz), 56.0, 39.8, 11.8; IR (neat): 3356, 2916, 2849, 1711, 1508, 1334, 1265, 1151, 838, 740, 701; MS (ESI, m/z) 457 (M + Na⁺); HRESIMS Calcd for [C₂₅H₂₃FN₂NaO₂S]⁺ (M + Na⁺) 457.1356, found: 457.1352.

N-benzyl-N-(4-(4-chlorophenyl)-5-methyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (5f)

Compound **5f** was prepared in 72% yield by the reaction of isoxazole **4c** with ynamide **1i** according to the general procedure (Table 4, entry 6). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.32 – 7.15 (m, 8H), 7.13 – 7.07 (m, 2H), 7.07 – 7.05 (m, 2H), 6.94 – 6.92 (m, 2H), 4.68 (s, 2H), 2.58 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 134.3, 133.6, 131.2, 129.7, 1128.9, 128.6, 128.4, 128.1, 128.0, 126.6, 124.1, 120.6, 120.4, 119.0, 56.0, 40.0, 11.7; IR (neat): 3357, 2924, 1638, 1496, 1331,

1149, 833, 764 , 699; MS (ESI, m/z) 473 (M + Na⁺); HRESIMS Calcd for $[C_{25}H_{23}ClN_2NaO_2S]^+$ (M + Na⁺) 473.1061, found: 473.1063.

 $N-benzyl-N-(4-(4-bromophenyl)-5-methyl-3-phenyl-1H-pyrrol-2-yl) methanesulfonamide\ (5g)$

Compound **5g** was prepared in 81% yield by the reaction of isoxazole **4d** with ynamide **1i** according to the general procedure (Table 4, entry 7). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.39 – 7.18 (m, 10H), 7.06 (d, 2H, J = 6.8 Hz), 6.88 (d, 2H, J = 8.4 Hz), 4.67 (s, 2H), 2.58 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 134.3, 134.2, 131.6, 131.0, 129.8, 129.0, 128.7, 128.4, 128.1, 126.7, 124.1, 120.67, 120.5, 119.4, 119.1, 56.0, 39.8, 11.8; IR (neat): 3352, 2922, 2851, 1603, 1495, 1331, 1149, 764, 699; MS (ESI, m/z) 517 (M + Na⁺); HRESIMS Calcd for [C₂₅H₂₃BrN₂NaO₂S]⁺ (M + Na⁺) 517.0556, found: 517.0559.

methyl 4-(5-(N-benzylmethylsulfonamido)-2-methyl-4-phenyl-1H-pyrrol-3-yl)benzoate (5h)

Compound **5h** was prepared in 92% yield by the reaction of isoxazole **4e** with ynamide **1i** according to the general procedure (Table 4, entry 8). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.86 – 7.84 (m, 2H), 7.32 – 7.21 (m, 8H), 7.08 – 7.05 (m, 4H), 4.68 (s, 2H), 3.86 (s, 3H), 2.59 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 140.3, 136.7, 134.2, 129.8, 129.6, 129.1, 128.9, 128.6, 128.4, 128.1, 126.8, 126.7, 124.8, 120.9, 120.6, 119.2, 56.0, 51.9, 39.9, 11.9; IR (neat): 3347, 2926, 1716(s), 1607,

1436, 1333, 1278, 1150, 776, 735, 702; MS (ESI, m/z) 497 (M + Na⁺); HRESIMS Calcd for $[C_{27}H_{26}N_2NaO_4S]^+$ (M + Na⁺) 497.1505, found: 497.1515.

N-benzyl-N-(5-methyl-3-phenyl-4-(p-tolyl)-1H-pyrrol-2-yl)methanesulfonamide (5i)

Compound **5i** was prepared in 95% yield by the reaction of isoxazole **4f** with ynamide **1i** according to the general procedure (Table 4, entry 9). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.32 – 7.18 (m, 8H), 7.10 – 7.08 (m, 2H), 7.00 – 7.98 (m, 2H), 6.92 – 6.90 (m, 2H), 4.69 (s, 2H), 2.57 (s, 3H), 2.28 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 134.8, 134.7, 132.1, 129.8, 129.8, 129.0, 128.6, 128.5, 128.0, 126.3, 123.8, 120.5, 120.3, 120.0, 56.1, 39.8, 21.0, 11.8; IR (neat): 3365, 2918, 1657, 1631, 1510, 1453, 1330, 1151, 823, 764, 699; MS (ESI, m/z) 453 (M + Na⁺); HRESIMS Calcd for [C₂₆H₂₆N₂NaO₂S]⁺ (M + Na⁺) 453.1607, found: 453.1603.

N-benzyl-N-(4-(4-methoxyphenyl)-5-methyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (5j)

Compound **5j** was prepared in 87% yield by the reaction of isoxazole **4g** with ynamide **1i** according to the general procedure (Table 4, entry 10). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.33 – 7.18 (m, 8H), 7.10 – 7.07 (m, 2H), 6.95 – 6.93 (m, 2H), 6.75 – 6.73 (m, 2H), 4.69 (s, 2H), 3.74 (s, 3H), 2.57 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 137.0, 134.7, 131.0, 129.8, 128.9, 128.6, 128.2, 128.0, 127.6, 126.3, 123.7, 120.4, 120.2, 119.7, 113.3, 56.1, 55.0, 39.8, 11.7; IR (neat): 3357, 2918,

1658, 1510, 1331, 1244, 1148, 834, 764, 700; MS (ESI, m/z) 469 (M + Na⁺); HRESIMS Calcd for $[C_{26}H_{26}N_2NaO_3S]^+$ (M + Na⁺) 469.1556, found: 469.1558.

N-benzyl-N-(4-(3,4-dimethoxyphenyl)-5-methyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (5k)

Compound **5k** was prepared in 78% yield by the reaction of isoxazole **4h** with ynamide **1i** according to the general procedure (Table 4, entry 11). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.43 – 7.17 (m, 8H), 7.10 (d, 2H, *J* = 7.2 Hz), 6.74 (d, 1H, *J* = 8.4 Hz), 6.64 (dd, 1H, 2.0 Hz, *J* = 8.4 Hz), 6.46 (d, 1H, *J* = 2.0 Hz), 4.69 (s, 2H), 3.83 (s, 3H), 3.53 (s, 3H), 2.60 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 146.7, 136.9, 134.8, 129.9, 128.9, 128.7, 128.6, 128.2, 128.0, 127.9, 126.4, 123.5, 121.8, 120.5, 120.2, 119.9, 113.6, 110.7, 56.0, 55.6, 55.3, 39.8, 11.9; IR (neat): 3348, 2926, 1604, 1513, 1451, 1327, 1149, 960, 761, 700; MS (ESI, m/z) 499 (M + Na⁺); HRESIMS Calcd for [C₂₇H₂₈N₂NaO₄S]⁺ (M + Na⁺) 499.1662, found: 499.1662.

N-benzyl-N-(4,5-dimethyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (5l)

Compound **51** was prepared in 83% yield by the reaction of isoxazole **4i** with ynamide **1i** according to the general procedure (Table 4, entry 12). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.42 – 7.36 (m, 2H), 7.35 – 7.21 (m, 8H), 4.63 (s, 2H), 2.59 (s, 3H), 2.03 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.2, 129.6, 128.9, 128.6, 128.5, 128.0, 126.6, 123.1, 121.4, 119.4, 113.0, 55.9, 39.7, 11.1, 9.7; IR (neat): 3358, 2919, 2849, 1658, 1345, 1150, 700; MS (ESI, m/z) 377 (M + Na⁺); HRESIMS Calcd for [C₂₀H₂₂N₂NaO₂S]⁺ (M + Na⁺) 377.1294, found: 377.1297.

N-(3-acetyl-2,3-dimethyl-4-phenyl-3H-pyrrol-5-yl)-N-benzylmethanesulfonamide (5l')

¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.37 (m, 1H), 7.37 – 7.33 (m, 2H), 7.29 – 7.24 (m, 3H), 7.13 – 7.08 (m, 2H), 4.54 (d, 1H, *J* = 15.2 Hz), 4.27 (d, 1H, *J* = 15.2 Hz), 3.02 (s, 3H), 1.91 (s, 3H), 1.86 (s, 3H), 1.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 167.6, 162.0, 135.2, 134.8, 131.6, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 88.1, 52.1, 42.6, 24.9, 18.3, 11.7.; IR (neat): 2928, 1714, 1347, 1152, 773, 701; MS (ESI, m/z) 419 (M + Na⁺); HRESIMS Calcd for [C₂₂H₂₄N₂NaO₃S]⁺ (M + Na⁺) 419.1400, found: 419.1402.

N-benzyl-N-(4-decanoyl-5-methyl-3-phenyl-1H-pyrrol-2-yl)methanesulfonamide (5m)

Compound **5m** was prepared in 78% yield by the reaction of isoxazole **4j** with ynamide **1i** according to the general procedure (Table 4, entry 13). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.38 – 7.25 (m, 8H), 7.21 – 7.19 (m, 2H), 4.59 (s, 2H), 2.59 (s, 3H), 2.27 (t, 2H, *J* = 7.6 Hz), 2.03 (s, 3H), 1.28 – 1.14 (m, 14H), 0.87 (t, 3H, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 135.5, 129.8, 128.8, 128.5, 128.3, 127.9, 126.6, 122.7, 121.2, 119.2, 118.5, 55.8, 39.5, 31.8, 31.0, 29.5, 29.2, 24.2, 22.6, 14.1, 11.1; IR (neat): 3368, 2924, 2853, 1641, 1605, 1454, 1332, 1150, 799, 761, 700; MS (ESI, m/z) 489 (M + Na⁺); HRESIMS Calcd for [C₂₈H₃₈N₂NaO₂S]⁺ (M + Na⁺) 489.2546, found: 489.2550.

methyl 5-(N-benzylmethylsulfonamido)-2-methyl-4-phenyl-1H-pyrrole-3-carboxylate (5n)

Compound **5n** was prepared in 77% yield by the reaction of isoxazole **4k** with ynamide **1i** according to the general procedure (Table 4, entry 14). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.39 – 7.23 (m, 10H), 4.52 (s, 2H), 3.56 (s, 3H), 2.60 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 136.2, 134.4, 134.3, 129.8, 128.8, 128.7, 128.14, 127.8, 127.1, 123.1, 121.1, 110.1, 55.5, 50.5, 39.8, 13.6; IR (neat): 3319, 2924, 1692, 1678, 1606, 1449, 1336, 1150, 761, 699; MS (ESI, m/z) 421 (M + Na⁺); HRESIMS Calcd for [C₂₁H₂₂N₂NaO₄S]⁺ (M + Na⁺) 421.1192, found: 421.1195.

N-benzyl-N-(3,4,5-triphenyl-1H-pyrrol-2-yl)methanesulfonamide (50)

Compound **50** was prepared in 60% yield by the reaction of isoxazole **4I** with ynamide **1i** according to the general procedure (Table 4, entry 15). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.32 – 7.00 (m, 20H), 4.66 (s, 2H), 2.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 134.8, 134.2, 132.1, 130.8, 128.96, 128.7, 128.4, 128.2, 128.1, 127.9, 127.4, 127.3, 126.9, 126.8, 126.0, 122.6, 122.2, 120.9, 55.7, 40.0; IR (neat): 3330, 3060, 2927, 1603, 1587, 1493, 1332, 1149, 910, 792, 763, 698; MS (ESI, m/z) 501 (M + Na⁺); HRESIMS Calcd for [C₃₀H₂₆N₂NaO₂S]⁺ (M + Na⁺) 501.1607, found: 501.1601.

5-methyl-1-(methylsulfonyl)-6,7-diphenyl-2,3-dihydro-1H-pyrrolo[1,2-a]imidazole (6)

Isoxazole **4a** (103.9 mg, 0.60 mmol) and (**Ar**O)₃PAuNTf₂ (13.5 mg, 0.015 mmol) were added to a suspension of the ynamide **1p** (90.7 mg, 0.30 mmol) in DCE (6.0 mL) at room temperature. The reaction mixture was then stirred at 80 °C for 3 h. Upon completion, the mixture was treated with KOH (33.6 mg, 0.60 mmol) and Et₃N (83 uL, 0.60 mmol), and stirred at room temperature for another 2 h. The residue was then concentrated and purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired product **6** (63% overall yield, eq 6). ¹H NMR (400 MHz, CDCl₃) δ 7.30 –

7.03 (m, 10H), 4.48 (t, 2H, J = 6.8 Hz), 3.99 (t, 2H, J = 6.8 Hz), 2.54 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 134.0, 130.2, 129.9, 129.2, 128.0, 127.8, 126.0, 125.6, 123.2, 119.7, 110.1, 53.2, 42.6, 38.6, 10.8; IR (neat): 2917, 2849, 1601, 1566, 1408, 1349, 781, 765, 698; MS (ESI, m/z) 375 (M + Na⁺); HRESIMS Calcd for [C₂₀H₂₀N₂NaO₂S]⁺ (M + Na⁺) 375.1138, found: 375.1143.

N-benzyl-2-nitro-N-(4-pentanoyl-3,5-diphenyl-1H-pyrrol-2-yl)benzenesulfonamide (7)

Compound **7** was prepared in 81% yield by the reaction of isoxazole **2c** with ynamide **1d** according to the general procedure (Scheme 2). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.74 – 7.66 (m, 2H), 7.63 – 7.61 (m, 1H), 7.55 (t, 1H, *J* = 6.0 Hz), 7.37 – 7.30 (m, 10H), 7.19 – 7.16 (m, 1H), 7.11 (t, 2H, *J* = 6.0 Hz), 6.75 (d, 2H, *J* = 6.0 Hz), 4.81 (s, 2H), 2.10 (t, 3H, *J* = 6.0 Hz), 1.36 – 1.30 (m, 2H), 1.02 – 0.94 (m, 2H), 0.66 (t, 3H, *J* = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 147.6, 136.4, 134.1, 133.4, 132.9, 132.2, 131.9, 131.4, 129.4, 129.1, 128.9, 128.7, 128.6, 128.5, 128.4, 128.0, 127.9, 127.2, 124.7, 123.7, 121.7, 121.2, 56.9, 42.9, 26.6, 22.0, 13.6; IR (neat): 3356, 2920, 1658, 1632, 1383, 755, 699; MS (ESI, m/z) 616 (M + Na⁺); HRESIMS Calcd for [C₃₄H₃₁N₃NaO₅S]⁺ (M + Na⁺) 616.1877, found: 616.1873.

1-(5-(benzylamino)-1-methyl-2,4-diphenyl-1H-pyrrol-3-yl)pentan-1-one (7a)

MeI (93.4 uL, 1.50 mmol) and K₂CO₃ (124.2 mg, 0.90 mmol) were added to a suspension of the pyrrole **7** (178.1 mg, 0.30 mmol) in acetone (6.0 mL) at room temperature. The reaction mixture was then stirred at 70 °C for 14 h. Upon completion, the mixture was then concentrated and purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired product **7**', which was then converted into the compound **7a** according to the known procedure (53% two-step overall yield, Scheme 2).¹⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 3H), 7.38 – 7.33 (m, 4H), 7.29 – 7.23 (m,

7H), 7.17 – 7.14 (m, 2H), 3.92 (s, 2H), 3.31 (s, 3H), 2.09 (t, 2H, J = 7.6 Hz), 1.39 – 1.31 (m, 2H), 1.03 – 0.94 (m, 2H), 0.65 (t, 3H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 138.9, 135.9, 135.5, 132.8, 132.7, 130.6, 130.0, 128.4, 128.3, 128.2(4), 128.1(9), 128.1, 127.4, 126.4, 121.4, 114.7, 54.4, 42.3, 30.8, 26.8, 22.2, 13.7; IR (neat): 2957, 2929, 1660, 1543, 1366, 1167, 698; MS (ESI, m/z) 445 (M + Na⁺); HRESIMS Calcd for [C₂₉H₃₀N₂NaO]⁺ (M + Na⁺) 445.2250, found: 445.2254.

1-(5-amino-1-methyl-2,4-diphenyl-1H-pyrrol-3-yl)pentan-1-one (7b)

Compound **7b** was prepared in 56% yield according to the known procedure (Scheme 2).¹⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 7H), 7.30 – 7.21 (m, 3H), 3.28 – 3.26 (m, 5H), 2.11 (t, 2H, *J* = 7.6 Hz), 1.40 – 1.32 (m, 2H), 1.04 – 0.94 (m, 2H), 0.65 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 135.6, 133.9, 132.4, 131.4, 130.8, 129.7, 128.4, 128.3, 128.1, 125.9, 121.2, 107.5, 42.2, 30.2, 26.9, 22.1, 13.6; IR (neat): 3435, 2924, 1687, 1625, 1450 , 698; MS (ESI, m/z) 355 (M + Na⁺); HRESIMS Calcd for [C₂₂H₂₄N₂NaO]⁺ (M + Na⁺) 355.1781, found: 355.1782.

(E)-N-((E)-4-oxopent-2-en-2-yl)hex-2-enamide (8)

Compound **8** was prepared in 25% yield by the reaction of isoxazole **2a** with ynamide **1q** according to the general procedure (eq 7). ¹H NMR (400 MHz, CDCl₃) δ 12.49 (s, 1H), 6.96 (dt, 1H, J = 7.2 Hz, J = 15.2 Hz), 5.93 (dt, 1H, J = 1.2 Hz, J = 15.2 Hz), 5.36 (s, 1H), 2.42 (s, 3H), 2.24 – 2.17 (m, 2H), 2.15 (s, 3H), 1.57 – 1.46 (m, 2H), 0.94 (t, 3H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 165.0, 155.9, 147.9, 124.8, 105.5, 34.2, 30.4, 21.9, 21.3, 13.6; IR (neat): 3361, 2920, 2850, 1704, 1641, 1595, 1478, 1256, 764, 749; MS (ESI, m/z) 218 (M + Na⁺); HRESIMS Calcd for [C₁₁H₁₇NNaO₂]⁺ (M + Na⁺) 218.1151, found: 218.1150.
Reference:

- 1. Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem. 2009, 74, 4630.
- 2. Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L.; Org. Lett. 2004, 6, 1151.
- Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci. 2014, 5, DOI: 10.1039/C4SC00983E.
- Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.
- 5. Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 379.
- (a) Vo, C.-V. T.; Mitchell, T. A.; Bode, J. W. J. Am. Chem. Soc. 2011, 133, 14082. (b) Kienzler, M. A.; Reiner, A.; Trautman, E.; Yoo, S.; Trauner, D.; Isacoff, E. Y. J. Am. Chem. Soc. 2013, 135, 17683.
- 7. Hansen, T. V.; Wu, P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761.
- Debleds, O.; Gayon, E.; Ostaszuk, E.; Vrancken, E.; Campagne, J.-M. Chem. Eur. J. 2010, 16, 12207.
- 9. Griesbeck, A. G.; Franke, M.; Neudörfl, J.; Kotaka, H. Beilstein J. Org. Chem. 2011, 7,127.
- 10. Tang, S.; He, J.; Sun, Y.; He, L.; She, X. Org. Lett. 2009, 17, 3982.
- John, B. A.; Javier, G.; Hui, L.; Angelca, L. M.; Howard, T. J. PCT Int. Appl. WO 2004074270A2, 2004.
- 12. Zheng, Y.; Yang, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Tetrahedron Lett. 2013, 54, 6157.
- 13. Fall, Y.; Reynaud, C.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2009, 4041.
- 14. Cativiela, C.; Serrano, J. L.; Zurbano, M. M. J. Org. Chem. 1995, 60, 3074.
- Lasri, J.; Mukhopadhyay, S.; Charmier, M. A. J.; Charmier, M. A. J. J. Heterocycl. Chem. 2008, 45, 1385.
- 16. Reddy, A. R.; Goverdhan, G.; Sampath, A.; Mukkanti, K.; Reddy, P. P.; Bandichhor, R. Synth. Commun. 2012, 42, 639.
- 17. Häkkinen, M. R.; Keinänen, T. A.; Khomutov, A. R.; Auriola, S.; Weisell, J.; Alhonen, L.; Jänne, J.; Vepsäläinen, J. *Tetrahedron* **2009**, *65*, 547.
- 18. Fontaine, P.; Masson, G.; Zhu, J. Org. Lett. 2009, 11, 1555.

1. Computational Details

All DFT (density functional theory) calculations were carried out using the Gaussian 09 program.¹ All structures were optimized with no constraints of freedom by using the hybrid density functional M06² in combination with double- ζ basis set plus polarization (DZP), i.e., the 6-31+G(d) basis set³ for C, H, N, O, F, S and P and the Stuttgart/Dresden small-core RECP (relativistic effective core potential) plus valence double- ζ basis set (SDD)⁴ for Au. DFT calculations at similar levels have been shown to give reasonable predictions on the mechanism and selectivity of some gold-catalyzed reactions.⁵ Vibrational analyses at the same level of theory were performed to confirm each stationary point to be either a local minimum or a transition state (TS). The connection of each TS to its corresponding reactant and product was confirmed by IRC (intrinsic reaction coordinate)⁶ calculations. Solvent effects were taken into account by the polarizable continuum model (PCM) with 1,2-dichloroethane ($\varepsilon = 10.12$) as solvent.⁷ Natural Bond Orbital (NBO)⁸ analyses were performed using the NBO 3.1 code⁹ as implemented in Gaussian 09 program.

The catalytic species $(ArO)_3PAu^+$ is simplified as H_3PAu^+ in the computations.¹⁰ Reported energies are relative Gibbs free energies in 1,2-dichloroethane (ΔG_{sol} , in kcal/mol) at 298 K.

2. Results and Discussion

Scheme S1

The formation of Au(I)-ligated ynamide **1** upon ligand exchange is predicted to be slightly exothermic, as shown in Scheme S1).

Figure S1. Energy profiles of the Au(I)-catalyzed [3+2] cycloaddition of phenyl ynamide with isoxazole (I) and H-migration on pyrrole (II).

Phenyl ynamide case. Then density functional theory (DFT) computations studies were performed to provide theoretical support to the proposed mechanism in the main test. The relative energies of all intermediates and transitions states along the reaction pathway are shown in figure S1. Substrate ynamide 1' interacting with [Au-PH₃]⁺ generates allene-like organogold complex [1'-Au-PH₃]⁺. Then nucleophilic attack of substrate 2' to the central carbon on the [1'-Au-PH₃]⁺ produce intermediate A' with a activation free energy 12.2 kcal/mol. Next, intermediate A' could transform to a more stable intermediate B' (Au-carbene) by overcoming an activation barrier 11.8 kcal/mol for breaking the N-O bond. From Au-carbene intermediate B', stable intermediate C' containing 3-H pyrrole could be easily

achieved by an intramolecular cyclosation with small activation barrier (5.7 kcal/mol). A subsequent substrate exchanging reaction between **C'** and **1'** could obtain the 3-*H* pyrrole **D'** and regenerate the starting organogold complex [**1'-Au-PH**₃]⁺. Eventually, 3-*H* pyrrole **D'** would transformed into 1-*H* pyrrole **3'** by two steps of H-migrations. The second step H-migration form 2-*H* pyrrole to 1-*H* pyrrole **3'** has a higher activation barrier 15.7 kcal/mol. Consequently, the gold-carbene involved [3+2] catalytic cycle is quite favored in thermodynamics and has no significantly high activation barrier to overcome.

Additionally, we found that the phenyl group in ynamide could help to stabilize the gold-carbene moiety. As resonance structures for **B'** depicted in scheme S2 left, there is conjugation between phenyl group and gold-carbene. This could be proved by the C¹(carbene)-C²(Ph) bond length, 1.405 Å which is nearly identical to C-C bond length in aryl compounds. NBO analyses shows that the C¹-C² bond index is 1.39 and the natural charges on phenyl group is 0.34. For a comparison, we use methyl to replace the phenyl group to study the alkyl gold-carbene (Scheme S2, right). The C1-C2 bond length in **B'** (Me) is 1.450 Å and its bond index is 1.20, which implies hyperconjugation between gold-carbene and C-H bond (Me). The natural charge on methyl group is 0.11. Obviously, the π conjugation of C¹ and Ph in **B'** (**Me**) is stronger than the hyperconjugation C¹ and C-H bond in **B'** (**Me**), which results in relatively weaker electrophilicity of phenyl gold-carbene given verse of methyl gold-carbene. This difference as such in electrophilicity of gold-carbene might lead to different chemoselectivity of outputs.

Figure S2. Energy profiles of the Au(I)-catalyzed reaction between methyl ynamide and isoxazole.

Methyl ynamide case. Hence, we also considered the energy diagram of the reaction between methyl ynamide and isoxazole (Figure S2). The formation of methyl gold-carbene needs to overcome an activation barrier 12.6 kcal/mol, slightly harder than the formation of phenyl gold-carbene (11.8 kcal/mol). The activation barrier for pyrrole formation from **B'** (**Me**) is smaller than it from **B'** (**Ph**), 2.6 kcal/mol vs. 5.7 kcal/mol. This is in agreement with the aforementioned difference in electrophilicity of gold-carbene, **B'** (**Me**) > **B'** (**Ph**). On the other hand, the intramolecular 1,2-proton migration of methyl gold carbene was also considered since those migrations were common in gold-carbene involved cycloisomerizations of enynes.¹¹ Due to the hyperconjugation between gold-carbene and C-H bond, 1,2-proton migration occurs only with a barrier of 10.6 kcal/mol. Though the 1,2-proton migration pathway is harder than the cyclization pathway, it is not the rate-limiting step in the whole pathway and it is quite irreversible. The C-H activation product might still as a minor side product in the final outputs. As such, other more nucleophilic functional groups (e.g. C=N) than C-H bond might be as stronger competitors against the desired cyclosation pathway. In this way, high electrophilicity of gold-carbene means low chemoselectivity of outputs in reaction system with many functional groups. On the other side, phenyl

group of ynamides in the present reaction system not only stabilizes the gold-carbene but also enhance the chemoselectivity of [3+2] cycloaddition products.

References:

- A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. *Gaussian09 Rev. B.01*, Gaussian, Inc., Wallingford CT, 2010.
- 2. Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- 3. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- 4. P. Fuentealba, H. Preuss, H. Stoll, L. von Szentpaly, Chem. Phys. Lett. 1989, 89, 418.
- (a) E.L. Noey, Y. Luo, L. Zhang, K. N. Houk, J. Am. Chem. Soc. 2012, 134, 1078. (b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868. (c) R. Sanz, D. Miguel, M. Gohain, P. García-García, M. A. Fernández-Rodríguez, A. González-Pérez, O. Nieto-Faza, Á. R. de Lera, F. Rodríguez, Chem. Eur. J. 2010, 16, 9818. (d) A. S. Dudnik, Y. Xia, Y. Li, V. Gevorgyan, J. Am. Chem. Soc. 2010, 132, 7645. (e) Y. Xia, A. S. Dudnik, Y. Li, V. Gevorgyan, Org. Lett., 2010, 12, 5538. (f) E. Seraya, E. Slack, A. Ariafard, B. F. Yates, C. J. T. Hyland, Org. Lett., 2010, 12, 4768. (g) Y. Xia, G. Huang, J. Org. Chem., 2010, 75, 7842. (h) G. Kovács, A. Lledós, G. Ujaque, Organometallics 2010, 29, 3252. (i) R. S. Paton, F. Maseras, Org. Lett., 2009, 11, 2237. (j) G. Kovács, G. Ujaque, A. Lledós, J. Am. Chem. Soc. 2008, 130, 853. (k) P.

H. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517.

- 6. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- (a) M. T. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys., 1997, 107, 3032. (b) M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys., 2002, 117, 43.
- 8. A. E. Reed, L. A. Curtis, F. Weinhold, Chem. Rev. 1988, 88, 899.
- 9. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
- (a) B. Lu, Y. Li, Y. Wang, D. H. Aue, Y. Luo, L. Zhang, J. Am. Chem. Soc. 2013, 135, 8512. (b) Y.
 Wang, A. Yepremyan, S. Ghorai, R. Todd, D. H. Aue, L. Zhang, Angew. Chem. Int. Ed. 2013, 52, 7795.
- 11. (a) E. Soriano J. Marco-Contelles, J. Org. Chem. 2012, 77, 6231. (b) N. Cabello, E. Jiménez-Núñez, E. Buñuel, D. J. Cárdenas, A. M. Echavarren, Eur. J. Org. Chem. 2007, 4217. (c) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326.

Cartesian Coordinates, Total Electronic Energies (Etotal, in Hartree)

Scheme S1 yne-LAuX E_{total} = -3296.24003 С -1.83071300 -0.45954500 0.24742700 С -1.51347100 0.64826600 -0.30359400Ν -1.32625100 -0.80496400 1.81471400 S -1.66460900 3.22700500 0.23247700 С -0.18528100 3.31291700 1.20204800 0.51780100 Η 0.66071100 3.42742200 Η -0.287892004.18005100 1.86243800 Η -0.10309400 2.38644500 1.77994700 С -0.81810300 2.07524100 -2.16902800 Η 0.13795600 2.60287800 -2.10296200 Η -0.66568600 1.10480900 -2.64608900 Η -1.55148000 2.66643300 -2.72248700Ο -1.748292004.34382700 -0.69204600 Ο -2.79144700 2.84172700 1.06322300 -1.07646400 С -1.44665600 1.01189300 С 0.31388900 -1.304282001.15039900 С -1.71656000 -2.54379800 1.60338800 С 1.04682800 -2.24629300 1.85989000 Η 0.82311100 -0.46050100 0.68236500 С -0.98131700 -3.47720200 2.32662800 Η -2.79533100 -2.65894200 1.49443400 С 0.39930700 -3.33141600 2.45332700 Η 2.12806300 -2.13493800 1.93818500 Η -1.48712500 -4.32359600 2.78801900 Η 0.97461700 -4.06877600 3.01088800 -3.90380900 -0.65116900 Au -0.23142900Р -6.18624000 -0.95286400 -0.67317900 Η -7.03507300 0.12234700 -0.37730800Η -6.54944900 -1.23784200 -1.99632800 -6.81612800 -1.99821600 0.01547300 Η Ν 3.28511800 -0.30429200 0.18653200 S 3.15360200 1.16789100 -0.42384800 S 4.56208600 -1.26027000 0.00175600 0 1.72925500 1.48821200 -0.524282000 4.02624600 1.51475200 -1.53886100 -0.61404700 Ο 5.81270400 -0.37801600 4.56370900 -2.22824500 0 1.09252500 С 4.07980000 -2.26405000 -1.48323800 F 3.92668900 -1.47679800 -2.54183300 5.03694400 -3.14983500 F -1.73732200F 2.94283100 -2.91042200 -1.25816000 С 3.73677400 2.22793200 0.98602800

F	3.64145300	3.50888500	0.63966200
F	4.99806800	1.95043600	1.28157000
F	2.98361800	2.02042800	2.06138400
[LAu-	yne] ⁺ X ⁻ E _{total}	= -3296.24300	
Au	1.86916200	1.16939100	-0.35265300
Р	2.08418100	3.45324100	-0.49429600
S	2.94200000	-1.93528500	-0.18613600
Ο	3.97916200	-1.22413000	-0.91392900
0	2.64551300	-3.32718700	-0.46304100
С	3.50471600	-1.88979700	1.59139700
F	4.59510900	-2.63532000	1.69002000
F	2.56668000	-2.37130600	2.38831100
F	3.78939200	-0.64647400	1.94877700
Ν	1.60512900	-0.96625500	-0.17282600
S	0.06831300	-1.52884100	0.04357700
0	0.00073800	-2.82937600	0.68151600
Ο	-0.72473200	-0.41175700	0.52990800
С	-0.53521600	-1.80531300	-1.69812400
F	0.19273400	-2.73311100	-2.29436700
F	-1.79519000	-2.20509000	-1.62905800
F	-0.46786700	-0.67862300	-2.39202500
Н	3.04240300	4.04321800	0.33885800
Н	2.42106700	3.97254100	-1.75055000
Η	0.91660700	4.16641500	-0.17228500
Н	-3.06447500	-1.87286700	1.14157100
С	-4.09522100	-2.01587700	0.81520000
С	-4.74864300	-0.96770100	0.14530800
С	-4.75520100	-3.21656600	1.04950200
С	-4.05687400	0.25928800	-0.09231600
C	-6.07392200	-1.14623000	-0.28076800
С	-6.07068900	-3.38691100	0.61728200
Н	-4.24124100	-4.02434600	1.56810100
C	-3.39074900	1.26049700	-0.26278100
C	-6.72733000	-2.35161000	-0.047/527/00
H	-6.58029800	-0.33210400	-0.79768500
H	-6.58465400	-4.329/3/00	0.79847100
N	-2.64378800	2.36596400	-0.46/36/00
H	-7.75402200	-2.48401400	-0.38510/00
S	-2.30916900	3.30923000	0.910/5500
C	-1.65902500	2.34238400	-1.55996800
C	-1.39511000	2.24332700	2.00091700
U O	-1.43517/00	4.38522100	0.44912900
U U	-3.5881/100	3.62138300	1.53293400
H	-1.33982500	3.36328900	-1./8134800
Н	-0./9550300	1./1154500	-1.30511200

Н	-2.15977800	1.92527400	-2.43840000
Η	-0.49419700	1.89468800	1.48436700
Н	-1.14046500	2.83723200	2.88453100
Н	-2.02659500	1.39194900	2.27300900

Figure S1 (Ph) 1' E_{total} = -990.53094

C -0.41682600 0.48262100 -0.456 N -1.74276100 0.64390900 -0.645 S -2.75091400 -0.51812500 0.097	93000 12700 20600 62900 46000
N -1.74276100 0.64390900 -0.645 S -2.75091400 -0.51812500 0.097	512700 20600 62900 46000
S -2.75091400 -0.51812500 0.097	20600 62900 46000
	62900 46000
C -2.68282900 -0.12202500 1.829	46000
Н -3.10359500 0.87755800 1.975	-0000
Н -3.28100800 -0.86905800 2.360	30300
Н -1.63819700 -0.16593000 2.153	96400
С -2.25601900 2.01793300 -0.778	06300
Н -3.31716600 1.97605500 -1.034	39900
Н -2.10912000 2.59220500 0.146	76500
Н -1.71138000 2.49940400 -1.594	94200
O -4.09557100 -0.25956600 -0.401	33300
O -2.11787900 -1.81065300 -0.118	358900
C 2.18323900 0.14205900 -0.134	42100
C 2.78490300 -1.04345600 -0.588	27100
C 2.98005200 1.12200100 0.4798	87300
C 4.15035400 -1.24443200 -0.421	49400
Н 2.16852600 -1.80222200 -1.068	325600
C 4.34749000 0.91966700 0.630	06600
Н 2.51528900 2.04049900 0.835	92600
C 4.93582000 -0.26387900 0.184	62600
Н 4.60517700 -2.16941300 -0.772	55200
Н 4.95677600 1.68771600 1.103	85100
Н 6.00590500 -0.42172100 0.309	29600

$1'-AuL^+$ $E_{total} = -1469.29032$

С	-0.20104600	0.84480900	0.28263400
С	1.00590200	0.56778600	0.58600800
Ν	2.21143400	0.19338300	0.82832200
S	3.30059900	-0.08943200	-0.56024800
С	3.97625200	1.53427300	-0.78534900
Η	4.46766600	1.83662200	0.14401500
Η	4.70355900	1.46933500	-1.60090600
Η	3.15720100	2.21018800	-1.04837500
С	2.75033700	-0.07161200	2.17993000
Η	3.69196400	0.46939100	2.31240700
Η	2.01554000	0.28741500	2.90302300
Н	2.91720800	-1.14461400	2.30396400

Ο	4.30823200	-1.00310900	-0.05409000
Ο	2.43426500	-0.43875700	-1.66934300
С	-0.94845300	2.08423900	0.10956400
С	-0.30733300	3.32073100	0.29333000
С	-2.30562400	2.06321000	-0.23613300
С	-1.01196900	4.50577300	0.13602100
Н	0.74774600	3.34412600	0.56644000
С	-3.00881000	3.25271600	-0.39511900
Н	-2.80559300	1.10554400	-0.38127200
С	-2.36446800	4.47389000	-0.20867900
Η	-0.50798500	5.45931500	0.28281900
Н	-4.06283000	3.22575300	-0.66460500
Н	-2.91524400	5.40480900	-0.33117400
Au	-1.03460200	-1.11335300	0.05965400
Р	-2.03327800	-3.21512100	-0.21061500
Η	-1.31831200	-4.16362000	-0.95387200
Н	-2.32278800	-3.93517300	0.95583800
Н	-3.27376400	-3.23009600	-0.86179400
2' E _{to}	$_{\text{tal}} = -324.4673$	0	
С	-1.08204500	-0.16534200	-0.00132100
С	0.00940200	-0.97694800	-0.00153900
С	1.11342100	-0.08041000	-0.00015800
Η	0.02969900	-2.05986400	-0.00232300
Ο	-0.68197800	1.12036000	-0.00059400
Ν	0.71192000	1.17190700	0.00005800
С	2.56423500	-0.40416900	0.00100300
тт	2 1 (201 1 00	0 5100000	0 00105400

1	0.71172000	1.1/1/0/00	0.0000000000
С	2.56423500	-0.40416900	0.00100300
Н	3.16301100	0.51292800	0.00105400
Н	2.83129700	-0.99569900	0.88539300
Н	2.83267000	-0.99660400	-0.88234900
С	-2.54065400	-0.40876700	0.00120900
Н	-3.00725300	0.01243800	0.90063600
Н	-3.01874200	0.05791700	-0.86905300
Н	-2.74445200	-1.48353600	-0.02417700

3' $E_{total} = -1315.13297$

С	0.77932100	-0.12854600	0.17366200
С	-0.30788300	-0.91456300	0.47107000
Ν	-1.63266200	-0.58141600	0.78584000
S	-2.76007000	-0.47936600	-0.47024800
С	-3.96285100	-1.70993900	-0.02631000
Η	-4.35133200	-1.49039200	0.97262700
Η	-4.76905200	-1.65628700	-0.76459200
Η	-3.48005700	-2.69075300	-0.05135900
С	-1.89390300	0.25430700	1.96514900
Η	-2.93735700	0.14658600	2.28174500

Η	-1.24932900	-0.10544600	2.77283700
Н	-1.68776100	1.31587100	1.77412800
0	-3.41844200	0.82612800	-0.42199600
0	-2.08930600	-0.90750500	-1.69513300
С	0.71553500	1.34285800	0.09520700
С	0.01056000	1.96397900	-0.94049600
С	1.30951400	2.13658000	1.08386400
С	-0.09657500	3.35265700	-0.98916600
Η	-0.45033900	1.34732300	-1.71274900
С	1.20618700	3.52339500	1.03438200
Η	1.84782800	1.65340600	1.90129200
С	0.50172600	4.13485000	-0.00356000
Η	-0.64829900	3.82432100	-1.80114300
Η	1.67146200	4.12971900	1.81035100
Η	0.41871200	5.21996200	-0.04206700
Ν	0.10753300	-2.23375800	0.50886800
С	1.43095100	-2.32409400	0.24241500
С	1.90070500	-1.02076000	0.02897300
С	3.27693300	-0.73725000	-0.37080300
0	4.13557800	-1.62178500	-0.34467500
С	3.64373300	0.64395500	-0.84483600
Η	2.89555000	1.05936500	-1.53165700
Η	3.71255000	1.33596300	0.00544000
Η	4.62019500	0.60112700	-1.33760500
С	2.11938300	-3.63795000	0.18900300
Η	2.89504600	-3.71276600	0.96036100
Н	1.40343600	-4.45664200	0.33172100
Н	2.62638900	-3.77797500	-0.77328000
Н	-0.50327100	-3.01885200	0.70808300

A' E_{total} = -1793.792758

С	0.00214800	0.64767700	-0.19486300
С	-0.81043500	-0.42707100	-0.26087500
Ν	-0.43699600	-1.75257700	-0.56424200
S	-0.14373800	-2.81481000	0.70720400
С	-1.36883700	-4.08150700	0.47268800
Н	-1.23628000	-4.53495200	-0.51411600
Н	-1.21771400	-4.83257300	1.25455600
Н	-2.35838700	-3.62183400	0.56280100
С	0.17317400	-2.07372600	-1.85716500
Н	-0.06461300	-3.10597800	-2.13988600
Н	-0.26232000	-1.40197300	-2.60287800
Н	1.26390300	-1.95000600	-1.84142200
0	1.17725500	-3.41532300	0.52840000
0	-0.45650300	-2.09306100	1.93901300
С	-0.54098700	2.01096000	-0.07869400

С	0.00193500	2.90061900	0.86091700
С	-1.59505800	2.46137600	-0.89138800
С	-0.52816900	4.17611100	1.02565500
Н	0.83863700	2.57222100	1.47954000
С	-2.11093800	3.74472500	-0.74030900
Н	-2.00031000	1.80409500	-1.66215600
С	-1.58888500	4.60277500	0.22712200
Н	-0.10427100	4.84466500	1.77334700
Н	-2.92282000	4.07801900	-1.38510500
Н	-1.99709700	5.60485200	0.34740600
Au	2.06684500	0.36576400	-0.19468400
Р	4.41318500	0.04352800	-0.16654800
Н	4.87814900	-1.21513000	0.24336800
Н	5.10064100	0.18981300	-1.38111500
Н	5.17561600	0.88164700	0.66093400
Ν	-2.22441800	-0.31371200	-0.02364500
С	-2.95738600	0.12544500	0.99772200
С	-4.30822300	0.03418000	0.61980300
С	-4.31461200	-0.48468000	-0.64485800
Н	-5.16659000	0.30349400	1.22129800
0	-3.05219900	-0.70079800	-1.05771200
С	-5.38339300	-0.84513500	-1.59118200
Н	-6.35932600	-0.62696000	-1.15021500
Н	-5.27968500	-0.28030500	-2.52517700
Н	-5.33524100	-1.91235100	-1.83851800
С	-2.36681100	0.62792800	2.25285000
Н	-3.01857200	0.37720100	3.09557800
Н	-1.36803200	0.21071300	2.41633700
Н	-2.28404500	1.72342300	2.20152700

B' E_{total} = -1793.798358

С	-0.22169400	-0.51077500	-0.38973300
С	0.65790400	0.63927100	-0.10483600
Ν	0.52180800	1.74756200	-0.92425100
S	1.31963400	3.21804300	-0.52483000
С	3.03779200	2.84566100	-0.74948400
Н	3.30250100	1.98851000	-0.12019200
Н	3.19361100	2.62221600	-1.81015700
Н	3.59719800	3.74204300	-0.46175000
С	0.05601200	1.56802400	-2.30538800
Н	-0.29210100	2.52661300	-2.69212200
Н	0.85130100	1.17239100	-2.95109300
Н	-0.79398200	0.87538400	-2.30762400
0	0.89675400	4.15521300	-1.55901900
0	1.03682800	3.51916700	0.86919600
С	0.34463300	-1.69888500	-0.87687500

С	-0.45485600	-2.87405700	-0.99314700
С	1.71203100	-1.75608800	-1.28349700
С	0.08728700	-4.04256400	-1.48272500
Н	-1.49881600	-2.82870000	-0.68339600
С	2.24365000	-2.92958300	-1.77576200
Н	2.34266500	-0.87089200	-1.19077200
С	1.43382300	-4.06764900	-1.87187300
Н	-0.52011000	-4.94014400	-1.56546100
Н	3.28577100	-2.97245800	-2.08376400
Η	1.85808300	-4.99346200	-2.25695100
Au	-2.19526800	-0.20729900	0.15076200
Р	-4.45092700	0.20516500	0.76059500
Н	-4.73937200	0.22337500	2.13176000
Η	-4.99267400	1.42957700	0.34678200
Н	-5.41186500	-0.69811500	0.28676200
Ν	1.44442500	0.62480300	0.90128300
С	1.62067100	-0.31171000	1.88865400
С	2.78941500	-0.99210300	2.05184400
С	3.97678700	-0.87968900	1.21221800
Н	2.85918600	-1.65558200	2.91383300
0	4.04862900	-0.15654300	0.21490500
С	5.14730400	-1.72356700	1.63838300
Н	5.41864700	-1.51493300	2.68192600
Η	4.87574700	-2.78800100	1.59160700
Η	6.00880600	-1.53983200	0.99013900
С	0.49293400	-0.46706100	2.86112000
Н	0.13662700	0.51594200	3.19475100
Η	-0.35976500	-0.96992300	2.37790700
Η	0.79097500	-1.05812400	3.73266500

C' $E_{total} = -1793.858122$

С	-0.74272200	-0.30870400	0.21366800
С	0.49356500	-1.04455100	0.12227900
Ν	1.20211300	-1.35513600	-0.98272500
S	2.89830900	-1.84583300	-0.80863600
С	2.79174600	-3.44814400	-0.05765300
Н	2.16638800	-4.07513900	-0.69917000
Н	3.81847400	-3.82855600	-0.03135700
Н	2.37703200	-3.34519800	0.94634600
С	0.80540700	-0.84705300	-2.29843700
Н	1.61166000	-1.03404600	-3.00856500
Н	-0.09779200	-1.35563100	-2.64390700
Н	0.61813500	0.23577500	-2.23571900
0	3.35630200	-2.01021100	-2.18006400
0	3.55911700	-0.88251600	0.05569200
С	-1.85744800	-0.39971300	-0.78785600

С	-2.62366500	0.72277100	-1.12199200
С	-2.23477700	-1.64398900	-1.31178300
С	-3.73043000	0.61050900	-1.95926000
Н	-2.35294700	1.69787400	-0.71203000
С	-3.33829700	-1.75843500	-2.15236100
Н	-1.66499500	-2.53660700	-1.04846500
С	-4.09155700	-0.63167100	-2.47669900
Η	-4.31166800	1.49707600	-2.20705600
Н	-3.61260800	-2.73391800	-2.55038800
Н	-4.95690500	-0.72116800	-3.13088900
Au	0.26886200	1.67537300	0.13595000
Р	1.27681500	3.79311500	0.09387100
Н	1.47083300	4.42159400	1.33107800
Н	2.56111500	3.86298100	-0.46202000
Н	0.60543000	4.79138800	-0.62440300
Ν	0.99867600	-1.44137100	1.35603600
С	0.11932000	-1.13138400	2.25638600
С	-1.12811400	-0.52675900	1.69921200
С	-2.29058300	-1.54129200	1.81111800
Н	-1.41455700	0.39520700	2.22729200
0	-2.06738200	-2.73189500	1.72402700
С	-3.65258100	-0.96402100	2.00488600
Η	-3.71058700	-0.48994000	2.99524300
Н	-3.84194200	-0.17311700	1.26522100
Н	-4.41439600	-1.74470700	1.92603900
С	0.32877700	-1.37430600	3.69567000
Н	-0.47023900	-2.01593700	4.09277700
Н	1.29835700	-1.84588300	3.87706800
Η	0.27431500	-0.42689500	4.24946100

D' $E_{total} = -1315.10628$

С	0.74511300	-0.09735600	-0.20010500
С	-0.52536000	-0.49985200	0.05626000
Ν	-1.57729100	0.27343700	0.56530300
S	-3.06387300	0.23584000	-0.19669700
С	-3.89519400	-1.18916700	0.46412700
Н	-3.98745900	-1.06236000	1.54747500
Н	-4.88541800	-1.24103000	0.00038700
Н	-3.29106100	-2.06877500	0.22107500
С	-1.45508400	0.99231200	1.83763300
Н	-2.29397700	0.74827900	2.50073500
Н	-0.52701100	0.66269500	2.31412900
Н	-1.42173300	2.07781100	1.68879000
0	-3.78005000	1.43246000	0.24255400
0	-2.81797800	0.01888500	-1.61962600
С	1.31520700	1.24554000	-0.21208300

С	0.50410200	2.37368900	-0.43188100
С	2.69624600	1.44780900	-0.06110900
С	1.05273700	3.64905600	-0.47765200
Η	-0.56553000	2.24179900	-0.59484200
С	3.24464600	2.72619000	-0.10430200
Η	3.35950300	0.59811500	0.10221600
С	2.42531800	3.83415800	-0.30833000
Н	0.40453600	4.50540000	-0.65765900
Н	4.31860400	2.85463600	0.02233800
Н	2.85356000	4.83449700	-0.34418000
Ν	-0.74271000	-1.87987200	-0.15742400
С	0.38747500	-2.38567100	-0.51417700
С	1.49833300	-1.35075500	-0.53035300
С	2.53135000	-1.78221300	0.52588100
Η	1.98444000	-1.30674300	-1.51766000
Ο	2.30933900	-1.62369100	1.70982200
С	3.78031600	-2.42012300	0.00378800
Н	3.54677700	-3.19224100	-0.74195600
Η	4.37911500	-1.66089700	-0.52085300
Η	4.36929200	-2.84720000	0.82002800
С	0.59133200	-3.82429300	-0.80842600
Н	1.25813200	-4.28901300	-0.06677700
Н	-0.36679500	-4.35272700	-0.78603200
Н	1.05729800	-3.96783300	-1.79284000

E' $E_{total} = -1315.10933$

С	0.83234100	-0.28393000	0.06930800
С	-0.58773100	-0.65746200	0.25409900
Ν	-1.58402400	0.32064000	0.41074400
S	-3.04128900	0.14692500	-0.40403800
С	-3.95858100	-1.09670700	0.47308100
Η	-4.09849200	-0.76101100	1.50561100
Η	-4.92732700	-1.20004800	-0.02634000
Η	-3.38615800	-2.02693600	0.43310200
С	-1.54076100	1.23253400	1.56173400
Η	-2.33125300	0.99291700	2.28502700
Η	-0.57706400	1.10142700	2.06225200
Η	-1.63883900	2.27330900	1.23947500
0	-3.72839700	1.42553100	-0.24029700
0	-2.73573700	-0.34267600	-1.74333100
С	1.28676400	1.11505100	0.04691900
С	0.79301400	1.98053700	-0.93704900
С	2.14426600	1.61526100	1.03276000
С	1.17034800	3.32020200	-0.94521900
Η	0.11035300	1.59709200	-1.69652200
С	2.51287700	2.95732500	1.02803500

Н	2.50917300	0.94813500	1.81491300
С	2.02838300	3.81139400	0.03785900
Н	0.78740700	3.98448800	-1.71813500
Н	3.17767800	3.33815500	1.80169100
Н	2.31653800	4.86131500	0.03507400
Ν	-0.81937800	-1.92048100	0.21494400
С	0.46350000	-2.56960700	-0.00424300
С	1.47759500	-1.46521900	-0.11165000
С	2.87312000	-1.75350200	-0.50489400
Ο	3.19119200	-2.91706600	-0.72961100
С	3.86946100	-0.64305400	-0.65476200
Н	3.47418600	0.17945000	-1.26452600
Н	4.12459100	-0.21962800	0.32520600
Н	4.77900900	-1.04105200	-1.11450900
С	0.72844800	-3.55962500	1.12718800
Н	0.77063500	-3.02871300	2.08793600
Н	-0.07908000	-4.29886400	1.17506800
Н	1.67950700	-4.07699000	0.96481100
Н	0.41886400	-3.12045400	-0.95843100
TS _{A'}	Etotal $= -179$	93.761279	
С	0.13479600	0.61454000	-0.15713500
С	-0.43936500	-0.54878800	-0.24170200
Ν	-0.35681100	-1.82491000	-0.55449600
S	-0.28743900	-2.99339000	0.72103300
С	-1.93619600	-3.64513200	0.75092100
Н	-2.18031900	-4.04005900	-0.23980200
Н	-1.94729500	-4.44925600	1.49374900
Н	-2.61686600	-2.83897300	1.03743300
С	-0.14867600	-2.27846700	-1.94132700
Н	-0.65035900	-3.23671100	-2.10727200
Η	-0.58455400	-1.52813100	-2.60587600
Η	0.92361500	-2.38520500	-2.14164100
Ο	0.63509600	-4.02056600	0.25888500
Ο	-0.03110300	-2.24437600	1.94047800
С	-0.44771900	1.95126900	-0.03522300
С	0.06966000	2 86110500	0 00600000
С		2.80119300	0.89080900
С	-1.51113000	2.35145700	-0.85780200
C	-1.51113000 -0.49436500	2.35145700 4.12498900	-0.85780200 1.03686100
H	-1.51113000 -0.49436500 0.91073100	2.35145700 4.12498900 2.56220900	-0.85780200 1.03686100 1.52320100
H C	-1.51113000 -0.49436500 0.91073100 -2.05995300	2.30119300 2.35145700 4.12498900 2.56220900 3.62307400	-0.85780200 1.03686100 1.52320100 -0.72880200
H C H	-1.51113000 -0.49436500 0.91073100 -2.05995300 -1.89706700	2.30119300 2.35145700 4.12498900 2.56220900 3.62307400 1.66309300	-0.85780200 1.03686100 1.52320100 -0.72880200 -1.60929600
H C H C	-1.51113000 -0.49436500 0.91073100 -2.05995300 -1.89706700 -1.56073200	$\begin{array}{c} 2.30119300\\ 2.35145700\\ 4.12498900\\ 2.56220900\\ 3.62307400\\ 1.66309300\\ 4.50989600 \end{array}$	$\begin{array}{c} -0.89880900\\ -0.85780200\\ 1.03686100\\ 1.52320100\\ -0.72880200\\ -1.60929600\\ 0.22464400 \end{array}$
H C H C H	-1.51113000 -0.49436500 0.91073100 -2.05995300 -1.89706700 -1.56073200 -0.09317200	$\begin{array}{c} 2.30119300\\ 2.35145700\\ 4.12498900\\ 2.56220900\\ 3.62307400\\ 1.66309300\\ 4.50989600\\ 4.81616900\end{array}$	$\begin{array}{c} 0.89680900\\ -0.85780200\\ 1.03686100\\ 1.52320100\\ -0.72880200\\ -1.60929600\\ 0.22464400\\ 1.77626600 \end{array}$
H C H C H H	-1.51113000 -0.49436500 0.91073100 -2.05995300 -1.89706700 -1.56073200 -0.09317200 -2.88325300	$\begin{array}{c} 2.30119300\\ 2.35145700\\ 4.12498900\\ 2.56220900\\ 3.62307400\\ 1.66309300\\ 4.50989600\\ 4.81616900\\ 3.92212100\end{array}$	$\begin{array}{c} 0.89680900\\ -0.85780200\\ 1.03686100\\ 1.52320100\\ -0.72880200\\ -1.60929600\\ 0.22464400\\ 1.77626600\\ -1.37590300 \end{array}$

Au	2.23706300	0.35205900	-0.19092800
Р	4.57327400	0.10345100	-0.18730900
Н	5.07100400	-1.19482000	-0.00605200
Н	5.26619400	0.49739000	-1.34077700
Н	5.27903700	0.80241300	0.80212300
Ν	-2.45550500	-0.34898200	0.14608900
С	-3.21737500	0.29178000	1.00869200
С	-4.52757500	0.42094100	0.48496300
С	-4.47725300	-0.17625300	-0.73942900
Н	-5.38378900	0.88673900	0.95660200
Ο	-3.23121400	-0.64457900	-0.95859800
С	-5.46932100	-0.40797800	-1.80793600
Η	-6.41901200	0.06757700	-1.54752500
Η	-5.11789000	0.00480200	-2.76125300
Η	-5.64378800	-1.48129200	-1.95311400
С	-2.66372300	0.76716100	2.30022400
Η	-3.34414500	0.52664700	3.12452100
Η	-1.68708900	0.30914500	2.49518100
Η	-2.53755700	1.85834800	2.27822100
TS _{B'}	Etotal $= -179$	93.770065	
С	-0.05239300	0.68521500	-0.31006400
С	-0.77663500	-0.50893200	-0.33241000
Ν	-0.22946900	-1.71284900	-0.82252000
S	0.10685900	-2.95999400	0.25513500
С	-1.18184200	-4.14216200	-0.04769400
Н	-1.13601900	-4.44977700	-1.09691600
Н	-1.00581500	-4.99954900	0.60954800
Н	-2.14065800	-3.66533200	0.17750400
С	0.39380200	-1.76239600	-2.14752100
Н	0.24654600	-2.75332400	-2.59182700
Н	-0.11327200	-1.02589700	-2.77815500
Н	1.46869300	-1.54170600	-2.11536300
Ο	1.38237400	-3.55276200	-0.13989800
Ο	-0.05948000	-2.42279000	1.60371800
С	-0.71612600	1.96947000	-0.29322100
С	-0.09995500	3.06827800	0.34251100
С	-1.96540200	2.17349600	-0.92123300
С	-0.73132400	4.30120200	0.40407300
Н	0.87669500	2.92739100	0.80735000
С	-2.57806700	3.41725600	-0.88633900
H	-2.43454100	1.35426700	-1.46458300
С	-1.97138700	4.47872600	-0.21218600
Н	-0.25207000	5.13164300	0.91861600
TT			
-	-3.53249100	3.56469800	-1.38832500

Au	2.01118700	0.50656700	-0.08304800
Р	4.34379400	0.27284400	0.26849400
Η	4.79685900	-0.98222300	0.69951900
Н	5.19152500	0.50113800	-0.82522700
Н	4.92547800	1.11068900	1.23126600
Ν	-1.99815600	-0.60725500	0.20898800
С	-2.63991900	-0.11081000	1.26830200
С	-4.01670600	-0.05566800	1.12330000
С	-4.37256500	-0.54921700	-0.13550500
Н	-4.70688600	0.24649700	1.90198200
Ο	-3.39042800	-0.87502800	-0.89312900
С	-5.75689100	-0.76851400	-0.63253000
Н	-6.49315600	-0.36644000	0.06935900
Н	-5.88679100	-0.29517700	-1.61234800
Η	-5.93358400	-1.84366000	-0.76117200
С	-1.86935600	0.26970800	2.48431400
Η	-2.52700200	0.27431700	3.35822500
Η	-1.03278500	-0.42047300	2.64312000
Η	-1.45960100	1.28156900	2.35541900
TS _{C'}	Etotal $= -179$	93.793854	
С	0.26852300	-0.55948700	-0.20196500
С	0.87826600	0.77924200	-0.01579100
Ν	1.10011800	1.53817100	-1.13710500
S	1.94839500	3.05399100	-1.02328300
С	3.48187200	2.61567700	-0.24825500
Η	3.29582100	2.22450000	0.75367200
Η	3.98542200	1.87941700	-0.88094500
Η	4.05673700	3.54707900	-0.20890200
С	0.37313200	1.30212000	-2.39459700
Η	0.14811700	2.26039800	-2.86786600
Η	0.96155100	0.69452800	-3.09089700
Η	-0.57363000	0.79932200	-2.16987400
0	2.20892400	3.39926200	-2.41564200
0	1.19603400	3.98555600	-0.19767300
С	0.82194000	-1.52250100	-1.09214400
С	0.11399300	-2.73407100	-1.32043000
С	2.08492100	-1.35941300	-1.72640400
С	0.63788400	-3.72660000	-2.12475400
Η	-0.85610700	-2.86969600	-0.84149100
С	2.60351800	-2.35504100	-2.53253500
Η	2.65318400	-0.44617500	-1.56939400
С	1.88490800	-3.53789200	-2.72965400
Η	0.08483400	-4.64823900	-2.28936600
Η	3.57041100	-2.21782900	-3.01106200
Ц	2 29775900	-4 31764600	-3 36705600

Au	-1.61201300	-0.77154300	0.68217900
Р	-3.75033600	-0.95837900	1.67118300
Н	-3.97464500	-0.21148600	2.83622800
Н	-4.84545000	-0.57353400	0.88549600
Н	-4.14992600	-2.23606900	2.08646000
Ν	1.10460700	1.28201700	1.16863000
С	0.98298200	0.41003300	2.20011700
С	1.44207500	-0.89393900	2.13624900
С	2.61300800	-1.36177800	1.37592700
Н	1.09802300	-1.57723700	2.91661700
Ο	3.39659800	-0.60416600	0.81118300
С	2.82076400	-2.84909100	1.39042800
Н	3.09359500	-3.17626900	2.40379800
Н	1.89110700	-3.37615300	1.12974900
Н	3.61894500	-3.13036300	0.69692300
С	0.29063400	0.94157000	3.40796500
Н	0.90214800	1.74599100	3.84040000
Н	-0.67388400	1.39163000	3.13695600
Н	0.13980400	0.16955400	4.16836400
TS _{E'}	Etotal = -131	5.08826	
С	-0.27670900	-2.48854400	-0.52034500
С	-1.27720800	-1.80027700	0.17541700
Ν	-2.60261400	-2.28449200	0.34017300
S	-3.08079300	-2.65901100	1.89871300
С	-3.42895900	-1.12259500	2.72493700
Н	-4.24889700	-0.62244700	2.19994200
Н	-3.72732000	-1.36498600	3.74979800
Н	-2.52111500	-0.51303600	2.70632300
С	-3.59911400	-1.68973400	-0.55628900
Н	-3.67683900	-0.60115700	-0.41782600
Н	-3.29140900	-1.89916400	-1.58688700
Н	-4.57032400	-2.16157500	-0.38304300
0	-4.33389900	-3.40259800	1.78761900
0	-1.92450800	-3.28294300	2.53819100
C	-0.37808700	-3.78942300	-1.19515800
C	-0.92906300	-4.89909500	-0.54006200
C	0.06846600	-3.93706200	-2.51517800
С	-1.02057900	-6.12652900	-1.18929800
H	-1.27483500	-4.79411600	0.48785500
C	-0.01755800	-5.16731700	-3.16047400
H	0.46932400	-3.07394200	-3.04906000
C	-0.56264700	-6.26559900	-2.49848200
Н		1 NUT177NA	
	-1.44/6/400	-0.9811//00	-0.66697000
Н	0.33491000	-5.26502100	-0.66697000 -4.18602400

Ν	-0.89511700	-0.62335100	0.69010900
С	0.40774200	-0.46320700	0.34512800
С	0.85151100	-1.63210000	-0.42765500
С	2.17771800	-1.75701000	-1.12863800
Õ	2 55438000	-0.85606000	-1 85594400
Č	2 98412400	-2 98532400	-0.85852700
н	3 45698500	-2 87395100	0.12904500
и П	2 3 5 5 9 6 6 0 0	2.87373100	0.12904300
11 U	2.33390000	-3.88297200	-0.80822300
	5.70749500	-3.103/4200	-1.01233000
	1.145///00	0.82004900	0.33330100
П	0.96042600	1.4/303900	-0.52956400
H	0.77656800	1.3301/300	1.43230300
Н	2.2236/500	0.6680/900	0.634/9/00
Н	1.064/9800	-1.451/8400	0.88800300
ma			
TS _{3'}	$\mathbf{E}_{\text{total}} = -1315.$	07942	
С	1.22965100	-0.51281700	0.30009900
С	-0.05631600	-0.88929200	0.70822500
Ν	-1.17569400	-0.04755100	0.86999500
S	-2.25312800	0.04319300	-0.41119900
С	-3.64202000	-0.91162700	0.14743400
Н	-4.02468900	-0.46407400	1.06982400
Н	-4.40426900	-0.88478400	-0.63730800
Н	-3.29703500	-1.93441700	0.32486300
С	-1.14194500	1.05831000	1.82999900
Н	-2.15903700	1.30360800	2.15435300
Н	-0.57504300	0.71756300	2.70200000
Н	-0.66893200	1.95876700	1.41478100
Ο	-2.68212300	1.43321900	-0.55867900
Ο	-1.64560600	-0.65441800	-1.54507000
С	1.62258700	0.89509100	0.09595600
С	1.13565600	1.60472400	-1.00524800
С	2.42519400	1.54968700	1.03533800
С	1.45659200	2.95018000	-1.16890800
Н	0.50140300	1.09604200	-1.73220900
C	2 74326200	2 89452900	0 87200500
Ĥ	2 79274500	0 99729800	1 90151300
C	2 25963100	3 59659400	-0 23115700
н	1 07442800	3 49570800	-2 03003100
Н	3 36628300	3 39717500	1 60993100
Н	2 50625300	4 64935600	-0.35833000
N		-2 22661500	0.83431000
	1 06112000	-2.22001300	0.05451000
	1 0/072000	1 70601100	0.41010000
C	1.747/8000	1 01102500	0.11101100
	2 20220000	-1.71182300	-0.33294900
U	3.80329900	-3.04303800	-0.39823200

С	4.15933100	-0.73016400	-0.77476500
Η	3.61636200	-0.08132900	-1.47360900
Η	4.41717200	-0.11126600	0.09502200
Н	5.08253700	-1.08900000	-1.23921300
С	1.34557600	-4.21346500	0.71446300
Н	1.97860800	-4.29508900	1.60728800
Н	0.40495300	-4.74116000	0.90908800
Н	1.87664000	-4.69907100	-0.10836200
Н	0.01232100	-2.75207500	-0.32375200

Figure S2 (Me)				
1'-Aul	L^+ $E_{total} = -12$	77.69597		
С	0.08345600	1.62226700	0.01476500	
С	1.09466400	0.98042200	0.42394100	
Ν	2.07227200	0.23087400	0.81209200	
S	2.97405400	-0.68050400	-0.41787400	
С	4.25721500	0.46316800	-0.84713700	
Η	4.83621000	0.69873800	0.05062000	
Η	4.88825300	-0.03737200	-1.58872200	
Η	3.79405700	1.35644100	-1.27585600	
С	2.42555800	0.00387800	2.22938200	
Η	3.48618800	0.22101500	2.38558200	
Η	1.81862900	0.68317100	2.83095400	
Η	2.21444400	-1.03447100	2.49741100	
Ο	3.52225600	-1.81520500	0.30220600	
Ο	2.05896600	-0.84893000	-1.53063200	
Au	-1.43558000	0.11507900	0.00170200	
Р	-3.19785600	-1.42958700	-0.06056800	
Η	-2.88716200	-2.72756000	-0.48741100	
Η	-3.85464700	-1.68479400	1.15064000	
Н	-4.27532100	-1.10935900	-0.89684100	
С	-0.24814900	3.01021600	-0.40627300	
Н	0.62915300	3.66497400	-0.39006300	
Н	-0.67121400	3.00183400	-1.41704500	
Н	-1.01695900	3.42526300	0.25545100	

2' _{Etotal} = -324.46730

С	-1.08204500	-0.16534200	-0.00132100
С	0.00940200	-0.97694800	-0.00153900
С	1.11342100	-0.08041000	-0.00015800
Η	0.02969900	-2.05986400	-0.00232300
Ο	-0.68197800	1.12036000	-0.00059400
Ν	0.71192000	1.17190700	0.00005800
С	2.56423500	-0.40416900	0.00100300
Н	3.16301100	0.51292800	0.00105400
Н	2.83129700	-0.99569900	0.88539300

Η	2.83267000	-0.99660400	-0.88234900
С	-2.54065400	-0.40876700	0.00120900
Η	-3.00725300	0.01243800	0.90063600
Η	-3.01874200	0.05791700	-0.86905300
Н	-2.74445200	-1.48353600	-0.02417700

A' _{Etotal} = -1602.19578 small imaginary freq. corresponding to PH3 rotation (-14.6 cm⁻¹)

-0.07371200	-1.21521900	-0.05705700
0.92880400	-0.33345900	-0.22235000
0.81289400	1.01310900	-0.63128700
0.75406400	2.22093300	0.53023300
2.23570300	3.15517800	0.22101400
2.20513500	3.55418300	-0.79716500
2.26755100	3.97510200	0.94524500
3.09448000	2.48857000	0.35266900
0.32292100	1.33705600	-1.97270900
0.68093700	2.32628000	-2.27950000
0.73017400	0.59444700	-2.66601900
-0.77422400	1.32626400	-2.02335100
-0.39459200	3.08504700	0.26135000
0.88680600	1.56649600	1.83052700
-2.04073600	-0.54598500	-0.09717400
-4.29417800	0.19756400	-0.10056100
-4.51666200	1.58256200	-0.06473300
-5.09450100	-0.15945900	-1.19689600
-5.11525700	-0.21910400	0.95847500
2.30433700	-0.70979300	-0.01754600
3.01298900	-1.07016300	1.05203400
4.35895900	-1.16833700	0.65842100
4.39106400	-0.82843900	-0.66544400
5.19794400	-1.44107700	1.28498800
3.14823300	-0.54717800	-1.09598900
5.46851200	-0.72208000	-1.66367600
6.43700200	-0.89384000	-1.18689500
5.32941500	-1.46427200	-2.45923900
5.46843300	0.27100800	-2.12763900
2.39883400	-1.31143200	2.37288200
3.07617500	-0.96902300	3.16151500
1.43825300	-0.79577000	2.46412700
2.23875300	-2.38834500	2.51664300
0.17631600	-2.66490700	0.20316000
1.22575400	-2.97663700	0.09290400
-0.15797700	-2.92640000	1.21814800
-0.43213600	-3.27739800	-0.47474100
	$\begin{array}{r} -0.07371200\\ 0.92880400\\ 0.81289400\\ 0.81289400\\ 0.75406400\\ 2.23570300\\ 2.20513500\\ 2.26755100\\ 3.09448000\\ 0.32292100\\ 0.68093700\\ 0.73017400\\ -0.77422400\\ -0.39459200\\ 0.88680600\\ -2.04073600\\ -4.29417800\\ -4.51666200\\ -5.09450100\\ -5.11525700\\ 2.30433700\\ 3.01298900\\ 4.35895900\\ 4.35895900\\ 4.39106400\\ 5.19794400\\ 3.14823300\\ 5.46851200\\ 6.43700200\\ 5.32941500\\ 5.32941500\\ 5.46843300\\ 2.39883400\\ 3.07617500\\ 1.43825300\\ 2.23875300\\ 0.17631600\\ 1.22575400\\ -0.15797700\\ -0.43213600\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

B' E_{total} = -1602.18653

С	-0.16248600	-0.63667500	-0.76337900
С	0.87296100	0.19700800	-0.15349200
Ν	1.05272100	1.48254900	-0.56637800
S	2.01105200	2.57868000	0.37316300
С	3.64547800	1.90601400	0.24597200
Н	3.93202700	1.90380200	-0.80910400
Η	4.29243700	2.57060900	0.82799400
Η	3.64947500	0.89384000	0.65895200
С	0.29683400	2.00332700	-1.71166100
Η	0.87177200	2.80354800	-2.18143000
Η	0.16843000	1.20112800	-2.44739500
Η	-0.68199300	2.38829200	-1.40351100
0	1.94393000	3.83050900	-0.36703500
0	1.55162800	2.52915300	1.75146400
Au	-2.09589000	-0.28726300	-0.17773600
Р	-4.33937800	0.11080700	0.50392900
Н	-4.57724200	1.27135300	1.25164500
Н	-5.29230200	0.23660800	-0.51553000
Н	-4.92736900	-0.86877500	1.31516700
Ν	1.43883700	-0.31863300	0.87249000
С	1.69353400	-1.57463500	1.32473000
С	2.59960700	-2.41414500	0.73237400
С	3.42399200	-2.11226600	-0.44078400
Н	2.80912500	-3.35132100	1.24854700
0	3.25934100	-1.11676900	-1.14888300
С	4.50468500	-3.11222000	-0.74060700
Η	4.07178900	-4.11356800	-0.87163100
Н	5.04990700	-2.82692300	-1.64472600
Н	5.20508200	-3.18118500	0.10301500
С	0.98625600	-1.94347400	2.58844700
Н	1.31660400	-2.91353700	2.97175100
Н	1.15329300	-1.17594100	3.35420000
Н	-0.09847600	-1.98249000	2.40792100
С	0.26898600	-1.78186500	-1.53951800
Н	1.13073900	-1.56318100	-2.19095500
Η	0.70115100	-2.49744300	-0.78991200
Η	-0.54450600	-2.29904900	-2.05299600

C' $E_{total} = -1602.18224$

С	-0.10089800	1.04133300	-0.74078600
С	-1.09694400	0.13998500	-0.23995200
Ν	-1.65153100	-0.94527800	-0.82611000
S	-2.33651900	-2.21173900	0.19088700
С	-3.86474400	-1.52701700	0.77202300
Η	-4.44535400	-1.21314400	-0.09970000
Η	-4.37024300	-2.34461600	1.29707700

Н	-3.65082400	-0.69356300	1.44211100
С	-1.26651800	-1.34505700	-2.18135100
Н	-1.40559900	-0.49645300	-2.85373700
Η	-0.22206900	-1.68759700	-2.20330900
Η	-1.91448700	-2.15952100	-2.50616000
0	-2.63931800	-3.28587700	-0.74404900
0	-1.41510900	-2.45727700	1.28903900
Au	1.58868800	-0.22770900	-0.05167400
Р	3.46283000	-1.46891100	0.61437700
Н	3.52771000	-1.82810800	1.96713500
Η	3.65314100	-2.70652200	-0.01445100
Η	4.71303000	-0.86444100	0.42579900
Ν	-1.54476500	0.47250000	1.04032500
С	-1.03207900	1.62222500	1.34489000
С	-0.20623200	2.20591600	0.24203400
С	-1.04237000	3.37106400	-0.35798700
Η	0.75586900	2.60289400	0.59554600
0	-2.08646100	3.12805500	-0.92412400
С	-0.47627500	4.74082200	-0.19159100
Η	0.47311900	4.80354000	-0.74368800
Η	-1.17156700	5.49694500	-0.56553300
Η	-0.23344400	4.93505400	0.86257600
С	-1.28291500	2.30500600	2.62979800
Η	-0.33372800	2.53723700	3.13179500
Η	-1.78992800	3.26624300	2.46045800
Η	-1.90310100	1.68862700	3.28618700
С	0.18878800	1.40305400	-2.18675700
Н	-0.69567900	1.82789400	-2.68305800
Н	0.97843600	2.16615500	-2.20636900
Н	0.55255300	0.56614300	-2.78863700

F' $E_{total} = -1602.22203$

С	0.01856600	-0.75022600	-0.52030600
С	0.98037100	0.15796400	0.16200800
Ν	1.13928300	1.46205800	-0.28330200
S	2.57022700	2.33440700	0.14823400
С	3.91740800	1.24077500	-0.23015300
Η	3.72390500	0.76019200	-1.19340800
Η	4.78852100	1.90216800	-0.29144300
Η	4.03810700	0.50500200	0.56597700
С	0.04064900	2.36076000	-0.66867000
Η	0.06498800	3.26839000	-0.05565500
Η	0.10748400	2.64136200	-1.72403000
Η	-0.91719200	1.87128100	-0.46994400
0	2.58947300	3.43329700	-0.81264600
Ο	2.55195900	2.66651600	1.56803400

Au	-2.23744200	-0.22435200	-0.20599100
Р	-4.35475000	0.25337400	0.69827600
Н	-4.38974100	1.24491600	1.68494000
Η	-5.30266200	0.71411000	-0.22255300
Η	-5.02400700	-0.80970100	1.31480000
Ν	1.74214000	-0.28110400	1.09169100
С	1.94104300	-1.58680300	1.47466100
С	2.51807900	-2.55019200	0.70112200
С	2.95072100	-2.42823900	-0.68962800
Η	2.75286200	-3.49354200	1.19532400
0	2.66288700	-1.47697700	-1.42077700
С	3.79551000	-3.56369900	-1.19971000
Н	3.27740700	-4.52243100	-1.06145600
Н	4.02764400	-3.42117000	-2.25907800
Η	4.73084200	-3.62722200	-0.62667500
С	1.60182700	-1.83693600	2.90881200
Η	1.83570500	-2.86301600	3.20900300
Н	2.14823300	-1.13745300	3.55467400
Η	0.53112500	-1.65118300	3.07613400
С	-0.53810600	-0.57925200	-1.75820700
Η	-0.39943200	0.33011800	-2.34130800
Η	-0.01571100	-1.74459000	-0.06788100
Η	-0.98344300	-1.42880600	-2.27518600

$TS_{A'}$ $E_{total} = -1602.16688$

С	-0.29890700	-1.21246200	-0.08577900
С	0.55537200	-0.25190900	-0.26912200
Ν	0.79351100	1.00599600	-0.58876100
S	1.01771900	2.17002500	0.66695900
С	2.78172100	2.36514900	0.72356300
Н	3.15259400	2.58621000	-0.28215500
Н	2.98839300	3.20248200	1.39773700
Н	3.21890000	1.44188900	1.11517900
С	0.77362100	1.47345600	-1.98592300
Н	1.48619800	2.29278900	-2.12330600
Η	1.06952500	0.63470000	-2.62106800
Н	-0.23395800	1.81496000	-2.24928900
0	0.41318900	3.39912600	0.17280300
0	0.55782400	1.54305000	1.89542600
Au	-2.26536000	-0.45063900	-0.11234800
Р	-4.48768700	0.32434600	-0.10974000
Н	-4.68424900	1.71199200	-0.15792900
Н	-5.31481100	-0.09765600	-1.16057800
Н	-5.27380900	-0.01679400	1.00017500
Ν	2.45843900	-0.98375600	-0.07858000
С	3.23331500	-1.34420600	0.92623600

С	4.59390200	-1.23115400	0.54482800
С	4.56223600	-0.76981000	-0.73697500
Н	5.46702500	-1.45805600	1.14360900
0	3.27930800	-0.60839500	-1.12204800
С	5.59866300	-0.43553400	-1.73321000
Н	6.59277100	-0.55265200	-1.29271600
Н	5.52432800	-1.09313900	-2.60804700
Н	5.48673500	0.59811900	-2.08283500
С	2.65470500	-1.77626900	2.22274300
Н	3.29038100	-1.44835400	3.05196200
Н	1.65028800	-1.36016400	2.36037800
Н	2.58658100	-2.87098100	2.26968700
С	-0.06969800	-2.66145100	0.14946800
Н	0.97654500	-2.94928400	-0.01460600
Н	-0.35350300	-2.92071600	1.17873100
Н	-0.71048300	-3.26123600	-0.50775100
TS _{B'}	$E_{total} = -1602.$	16867	
Č	0.12574900	-1.10516100	-0.22643100
С	1.02411300	-0.02550600	-0.27776400
Ν	0.63638800	1.24085600	-0.77169900
S	0.33786900	2.47083300	0.33610100
С	1.65014600	3.62952900	0.04658000
Η	1.60421800	3.96457200	-0.99405000
Н	1.49843000	4.47463600	0.72536500
Η	2.59931800	3.12631700	0.25394200
С	0.03523000	1.35434200	-2.10266400
Η	0.22032700	2.35435200	-2.50956500
Н	0.53092300	0.62744100	-2.75352600
Н	-1.04713200	1.16821900	-2.09359700
0	-0.92903800	3.10235200	-0.02522100
0	0.50762100	1.89339200	1.66802700
Au	-1.89778100	-0.72709800	-0.09530900
Р	-4.21577500	-0.26163300	0.15826900
Н	-4.58612600	1.09073900	0.15308200
Н	-5.09276400	-0.78509700	-0.80241500
Н	-4.82237600	-0.70258300	1.34293900
Ν	2.26416700	-0.12196700	0.17524300
С	2.91789500	-0.75659400	1.15688400
С	4.18903400	-1.19994000	0.86012700
С	4.51556100	-0.92639300	-0.48380500
Н	4.86175400	-1.63809600	1.58869900
O	3.60977800	-0.38384100	-1.18452200
C	5.84603200	-1.20424600	-1.09755900
Н	6.54254400	-1.62364300	-0.36593000
Н	5.72681300	-1.90979100	-1.92854500

Н	6.26229400	-0.27817200	-1.51109100
С	2.26337200	-0.85270200	2.49731300
Н	3.02301700	-0.80694100	3.28380700
Н	1.52933800	-0.05242000	2.63705300
Н	1.74996000	-1.81982200	2.58427900
С	0.63125800	-2.48796900	-0.17126100
Н	1.72431700	-2.59381800	-0.19907600
Н	0.21993300	-3.01600500	0.70183900
Н	0.20950200	-3.02762300	-1.03503300
TS _{C'}	$\mathbf{E}_{\text{total}} = -1602$.26620	
С	0.07976400	0.01336300	-0.90351300
С	-1.07790900	-0.23055000	-0.01221500
Ν	-1.94284500	-1.22193700	-0.40300000
S	-3.44995900	-1.44464100	0.41470000
С	-4.27636000	0.10181100	0.15859700
Η	-4.35999000	0.26867200	-0.91884600
Η	-5.26474300	-0.00787900	0.61693600
Н	-3.70422500	0.89764900	0.64080400
С	-1.55194700	-2.19242900	-1.43354800
Н	-1.84060900	-1.85778300	-2.43613300
Н	-0.46569600	-2.34686400	-1.38392500
Н	-2.02876000	-3.15295900	-1.22860200
Ο	-4.11205300	-2.48510000	-0.36150300
Ο	-3.20804000	-1.65850800	1.83253200
Au	1.96116300	-0.37624600	-0.21886100
Р	4.15445500	-0.85618800	0.58258300
Η	4.51594700	-0.24036400	1.78824700
Η	4.43109200	-2.20118600	0.85943100
Η	5.22885500	-0.50905400	-0.24644400
Ν	-1.25173200	0.48800500	1.03130100
С	-0.42030000	1.53864800	1.38418900
С	-0.38773100	2.74280700	0.74899200
С	-1.25409700	3.17162900	-0.35204900
Η	0.24999900	3.51075400	1.18835800
Ο	-2.05280200	2.42817900	-0.92359100
С	-1.12609300	4.61905600	-0.73862300
Η	-0.08298300	4.85868500	-0.98717000
Η	-1.77052800	4.84628500	-1.59253400
Η	-1.40191000	5.26314800	0.10771500
С	0.33317900	1.29509500	2.65182400
Н	0.96035300	2.15042700	2.92125300
Н	-0.37709200	1.10045800	3.46672700
Н	0.96242500	0.39780000	2.56103700
С	-0.18719300	0.52724900	-2.23931200
Н	-1.24038000	0.67172700	-2.50071100

H0.357456001.48448500-2.33438000H0.33876900-0.11259700-2.96937100

$TS_{F'}$	$E_{total} = -1602.$	16854 small im	aginary freq. c	orresponding to PH3 bending (-8 cm ⁻¹)
С	0.12133000	0.38303200	-0.93946800	
С	-0.98549600	-0.20642900	-0.12121400	
Ν	-1.43489400	-1.44028100	-0.54111200	
S	-2.62650200	-2.27356400	0.39777300	
С	-4.03839700	-1.20190400	0.32766700	
Н	-4.31705700	-1.08196600	-0.72299800	
Н	-4.83112100	-1.71256500	0.88427500	
Н	-3.78365300	-0.24422000	0.78794400	
С	-0.85204300	-2.11555700	-1.70686800	
Н	-1.22027700	-3.14210900	-1.73158400	
Н	-1.14755500	-1.62010000	-2.63854200	
Н	0.24057100	-2.14207100	-1.62237400	
0	-2.91546700	-3.47991600	-0.36834100	
0	-2.15350000	-2.40327000	1.76735400	
Au	2.06047900	0.03083000	-0.20399900	
Р	4.21748100	-0.45920300	0.60593400	
Н	4.77238400	0.45297200	1.51333600	
Н	4.36300200	-1.66809300	1.29885400	
Н	5.23719500	-0.56109800	-0.34918400	
Ν	-1.43967700	0.35836100	0.92921400	
С	-1.11742100	1.62411300	1.35736700	
С	-1.59960500	2.76654500	0.78484300	
С	-2.53239600	2.84132500	-0.33769900	
Н	-1.37456000	3.70586000	1.29103800	
0	-2.79460000	1.88747800	-1.07771400	
С	-3.17986700	4.18164900	-0.54855900	
Η	-2.41566900	4.96206000	-0.66612900	
Η	-3.82338400	4.16115300	-1.43276200	
Н	-3.77681900	4.45802200	0.33133800	
С	-0.29786900	1.66011900	2.60645700	
Н	-0.08905500	2.68503100	2.92854700	
Н	-0.82495800	1.13078100	3.41114000	
Η	0.65364400	1.12981200	2.45217400	
С	-0.19239100	1.00726900	-2.13127600	
Н	-1.22159300	1.07436000	-2.49911700	
Н	0.02810900	1.63899100	-0.89873700	
Н	0.59022100	1.50082000	-2.70924900	

	, C N					
	4f					
			enerale Headaustalangen Naw Brannan and antikan ber			<u>nu un qual qual</u>
10 200 190 180	170 160 150 140	130 120	110 100 90 80 f1 (ppm)	70 60 50	40 30 20 1	0 0

	14 de 14 generation de la constante de la const 14 de 14 generation de la constante de la const					4.8.90 ⁴ 2.8.4.8.9 ⁴ 4.4.1.4.1. 1.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	III gaala Alla ah Ia da			L + p + - 4 14 4 + 1 + - 4 + 14 + 14 + 14 + 14 + 14 +		 			at for first for the		
10 200 19	0 180	170 16	0 150	140	130 1	20 11(f) 100 1 (ppm)	90	80	70	60	50	40	30	20	10	_

