Supporting Information

Stereoselective Radical C-H Alkylation with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis

Xin Cui, Xue Xu, Li-Mei Jin, Lukasz Wojtas, and X. Peter Zhang*
Department of Chemistry, University of South Florida, Tampa, Florida 33620-5250

General Considerations. All C-H alkylation reactions were carried out under a nitrogen atmosphere in oven-dried glassware following standard Schlenk techniques. Anhydrous benzene and other reagents were direct used as purchased from Aldrich. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with ICN silica gel ($60 \AA, 230-400$ mesh, $32-63 \mu \mathrm{~m}$). Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on a Bruker250 (250 MHz) or Varian Inova600 $(600 \mathrm{MHz})$ instruments with chemical shifts reported relative to residual solvent. HPLC measurements were carried out on a Shimadzu HPLC system with WhelkO1,Chiralcel OD-H, OJ-H, and AD-H columns. HRMS data was obtained on an Agilent 1100 LC/MS ESI/TOF mass spectrometer with electrospray ionization.

Catalyst Synthesis:

(1R,2R)-2-(4-(tert-butyl)phenyl)cyclopropanecarboxamide (L1) were synthesized according to our previous reported procedure with 97% ee. ${ }^{1,2}$ After recrystallization the ee was improved to no less than $99 \% .^{2}[1 R, 2 R]$ absolute configuration was determined by anomalous-dispersion effects in X-ray diffraction measurements on crystal.
$[\alpha]^{20}{ }_{\mathrm{D}}=-26.115\left(c=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ $(\mathrm{d}, J=8.33 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{br}, 2 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.609(\mathrm{C}), 149.414(\mathrm{C})$, $137.457(\mathrm{C}), 125.735(\mathrm{CH}), 125.394(\mathrm{CH}), 34.418(\mathrm{C}), 31.342(\mathrm{CH} 3), 25.871(\mathrm{CH}), 25.353(\mathrm{CH})$, 16.219(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}: 218.1539$, Found 218.1531. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3403.60,1645.76,1423.86,822.32,562.68$. HPLC analysis: ee $=99 \%$. OD-H $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\text {major }}=8.8 \mathrm{~min}, t_{\text {minor }}=13.7 \mathrm{~min}$.

[$\mathrm{H}_{2}(\mathbf{P 2})$] were synthesized according to our previous reported procedure ${ }^{3}$ with 86% yield. The 5,15-bis(2,6-dibromophenyl)-10,20-bis(3,5-di-tert-butylphenyl)-porphyrin BP1 ${ }^{3}$ (0.1 mmol), chiral amide $\mathbf{L 1}(1.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc}) 2(0.04 \mathrm{mmol})$, Xantphos (0.08 mmol), and $\mathrm{Cs} 2 \mathrm{CO}_{3}(1.6 \mathrm{mmol})$ were placed in an oven-dried, resealable Schlenk tube. The tube was capped with a Teflon screwcap, evacuated, and backfilled with nitrogen. The screwcap was replaced with a rubber septum, and THF was added via syringe. The tube was purged with nitrogen for 2 min , and then the septum was replaced with the Teflon screwcap. The tube was sealed, and its contents were heated with stirring. The resulting mixture was cooled to room temperature, taken up in ethyl acetate and concentrated in vacuo. The crude product was then purified by flash chromatography with hexanes/EtOAc (4:1) as an eluent ($\mathrm{Rf}=0.3$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.06(\mathrm{~d}, J=4.61 \mathrm{~Hz}, 4 \mathrm{H}), 8.90(\mathrm{~d}, J=4.37 \mathrm{~Hz}$, 4H), 8.63 (br, 4H), $8.05(\mathrm{~s}, 4 \mathrm{H}), 7.91(\mathrm{t}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{br}, 8 \mathrm{H}), 6.59(\mathrm{~s}$, $4 \mathrm{H}), 6.25(\mathrm{br}, 8 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 36 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 36 \mathrm{H}), 0.59(\mathrm{br}$, $4 \mathrm{H}), 0.18$ (br, 4H), -2.49 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.290$, 149.346, 149.049, $139.752,139.266,136.530,133.845,130.482,130.224,125.629,124.968,124.762,123.125$, $121.755,117.457$, 107.859, 35.130, 34.053, 31.757, 31.070, 29.793, 26.500, 25.591, 15.773. HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for C116H131N8O4: 1701.0320, Found 1701.0375. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\max } \mathrm{nm}(\log \varepsilon): 423(5.25), 518(4.17), 552(3.74), 591(3.66), 649(3.74)$.

[$\mathrm{Co}(\mathbf{P} 2)]$ were synthesized according to our previous reported procedure ${ }^{3}$ with 96% yield. Free base porphyrin $\left[\mathrm{H}_{2}(\mathbf{P} 2)\right]$ and anhydrous CoCl_{2} (8 equiv) were placed in an oven-dried, resealable Schlenk tube. The tube was capped with a Teflon screwcap, evacuated, and backfilled with nitrogen. The screwcap was replaced with a rubber septum, 2,6-lutidine (8 equiv) and anhydrous THF were added via syringe. The tube was purged with nitrogen for 2 minutes, and then the septum was replaced with the Teflon screwcap. The tube was sealed, and its contents were heated with stirring. The resulting mixture was cooled to room temperature, taken up in ethyl acetate, and transferred to a separatory funnel. The mixture was washed with water 3 times and product was then purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent $(\mathrm{Rf}=0.6)$. HRMS (ESI) $\left(\mathrm{M}^{*+}\right)$ Calcd. for C116H128CoN8O4: 1756.9418, Found 1756.9430. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\max } \mathrm{nm}(\log \varepsilon): 415(5.17), 531(4.06)$.

3,5-diisopropylbenzaldehyde was synthesized according to previous reported procedure. ${ }^{4}$

5,15-Bis(2,6-dibromophenyl)-10,20-bis(3,5-diisopropylphenyl)porphyrin were synthesized according to our previous reported procedure ${ }^{3}$ with 66% yield. A mixture of meso-(2,6dibromophenyl)dipyrromethane ${ }^{3}$ (5 mmol), 3,5-diisopropylbenzaldehyde (5 mmol) in chloroform (1 L) was purged with nitrogen for 10 min . Boron trifluoride diethyl etherate $(0.5 \mathrm{~mL})$ was added dropwise via a syringe and the flask was wrapped with aluminum foil to shield it from light. The solution was stirred under a nitrogen atmosphere at room temperature for 3 h , and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (6 mmol) was added as powder at one time. After $1 \mathrm{~h}, 10 \mathrm{~mL}$ of triethylamine was added. The reaction solution was then directly poured on the top of a silica gel column that was packed with dichloromethane. The column was eluted with dichloromethane. The fractions containing product were collected and concentrated on a rotary evaporator. The residue was washed several times with hexanes to afford the pure compound. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC1}_{3}$): $\delta 8.93(\mathrm{~d}, J=4.75 \mathrm{~Hz}, 4 \mathrm{H}), 8.67(\mathrm{~d}, J=4.82 \mathrm{~Hz}, 4 \mathrm{H})$, 8.06 (d, $J=8.06 \mathrm{~Hz}, 4 \mathrm{H}$), 7.96 (d, $J=1.44 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, J=8.06 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 2 \mathrm{H})$, 3.25-3.12 (m, 4H), $1.49(\mathrm{~d}, J=6.90 \mathrm{~Hz}, 24 \mathrm{H}),-2.52(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$): δ $147.051,143.591,141.398,131.492,131.075,130.995,130.776,128.518,123.995,121.210$, 118.190, 34.359, 24.383. HRMS (ESI) ([M+H $]^{+}$) Calcd. for C56H51Br4N4: 1099.0811, Found 1099.0836. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\max } \mathrm{nm}(\log \varepsilon): 422(5.31)$, 516(4.42), 550(3.92), 594(3.95), 648(3.65).

$\left[\mathrm{H}_{2}(\mathbf{P} 3)\right]$ were synthesized according to the above procedure for $\left[\mathrm{H}_{2}(\mathbf{P} 2)\right]$ with 83% yield. ${ }^{3}$ Product was purified by flash chromatography with hexanes/EtOAc (4:1) as an eluent $(\mathrm{Rf}=0.3) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC1}_{3}$): $\delta 9.17$ (d, $J=4.75 \mathrm{~Hz}, 4 \mathrm{H}$), 9.01 (d, $\left.J=4.68 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.72(\mathrm{br}, 4 \mathrm{H})$, 8.11-7.90 (m, 6H), $7.66(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=6.54 \mathrm{~Hz}, 8 \mathrm{H}), 6.71(\mathrm{~s}, 4 \mathrm{H}), 6.39(\mathrm{~d}, J=5.45 \mathrm{~Hz}$,
$8 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 24 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{~s}, 36 \mathrm{H})$, $0.70(\mathrm{br}, 4 \mathrm{H}), 0.34(\mathrm{br}, 4 \mathrm{H}),-2.39(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$): $\delta 170.358,149.167$, $147.576,140.566,139.381,136.692,133.898,131.327,130.598,130.462,125.709,124.885$, $124.691,122.803,117.548,107.983,34.397,34.179,31.192,31.035,26.569,25.659,24.538$, 24.376, 16.023. HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for C112H23N8O4: 1644.9694, Found 1644.9727. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\max } \mathrm{nm}(\log \varepsilon): 423(5.23), 515(4.06), 550(3.65), 593(3.62)$, 642(3.50).

$[\mathrm{Co}(\mathbf{P} 3)]$ were synthesized according to the above general procedure for $[\mathrm{Co}(\mathbf{P} 2)]$ with 98% yield. ${ }^{3}$ Product was purified by flash chromatography with hexanes/EtOAc $(2: 1)$ as an eluent $(\mathrm{Rf}=$ 0.6). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C} 112 \mathrm{H} 121 \mathrm{CoN} 8 \mathrm{O} 4: 1701.8870$, Found 1701.8860. UVvis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon): 415(5.26), 530(4.19)$.

Non-chiral cobalt porphyrin complex $[\mathrm{Co}(\mathbf{P} 4)]$ were synthesized according to our previous reported procedure. ${ }^{3}$

Non-chiral cobalt porphyrin complex $[\mathrm{Co}(\mathbf{P} 5)]$ were also synthesized according to our previous reported procedure. ${ }^{3}$ Product was purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent $(\mathrm{Rf}=0.3)$. HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C} 56 \mathrm{H} 65 \mathrm{CoN8O} 4: 972.4455$, Found 972.4479. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\max } \mathrm{nm}(\log \varepsilon): 415(5.14)$, 532(4.01).

Typical Procedure for the Preparation of the Methyl 2-diazo-2-sulfonylacetates (1).

The starting materials S1, including halides or tosylated alcohols are either commercially available or synthesized according to known procedures: 3-(4-nitrophenyl)propyl bromide (S1a) ${ }^{6}$, 3-(4-trifluoromethyl)benzenepropanol (S1b) ${ }^{7}$ were synthesized according to the known procedures. 3-phenylpropyl bromide (S1c), 3-(4-fluorophenyl)propyl bromide (S1d), 3-(4chloro)benzenepropanol (S1e) were used as purchased. 3-(3-Bromo)benzenepropanol (S1f) ${ }^{8}$, 3-(3,5-dichloro)benzenepropanol (S1g) ${ }^{8}$, 3-(4-methyl)benzenepropanol (S1h) ${ }^{9}$, were synthesized according to the known procedures. 3-(4-methoxy)benzenepropanol (S1i) were used as purchased. 3-(4-Hydroxyphenyl)propanol (S1k) ${ }^{10}$ were synthesized according to the known procedure and 3-(4-methoxymethoxyphenyl)propanol (S1j) was synthesized through a typical MOM protection of S1k. 3-(4-Aminophenyl)propanol (S1m) ${ }^{11}$ were synthesized according to the known procedure and 3-(4-acetamidophenyl)propanol (S1I) was synthesized through a typical acyl protection from S1m. 3-(1-Phenyl-1H-1,2,3-triazol-4-yl)propan-1-ol (S1n) ${ }^{12}$ was synthesized according to the known procedure. 5-Bromo-1-pentene (S10) was used as purchased. 5-Bromo-2-methyl-1-pentene (S1p) ${ }^{13}$ was synthesized according to the known procedure. 4,5-Hexadien-1-ol (S1q) ${ }^{14}$ was synthesized according to the known procedure. Trans-4-hexenol (S1r) and cis-4-hexenol (S1s) were used as purchased. The Diazo precursor methyl 2-sulfonylacetates were synthesized according to the known procedure. ${ }^{5}$ Using these precursors, methyl 2-diazo-2sulfonylacetates (1) were synthesized by the following diazo transfer procedure:

To a stirred solution of methyl 2-sulfonylacetate (10 mmol) in acetonitrile (10 mL) was added pacetamidobenzenesulfonyl azide (ABSA, 12mmol). Triethylamine (TEA, 15 mmol) was then added dropwise under room temperature. The reaction mixture was stirred at room temperature until the complete consumption of methyl 2-sulfonylacetate (monitored by TLC). Purification of the crude residue by flash chromatography on silica gel afforded methyl 2-diazo-2sulfonylacetates (1) in typically 60-95\% yields:

methyl 2-diazo-2-((3-(4-nitrophenyl)propyl)sulfonyl)acetate (1a):
Product was purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent $(\mathrm{Rf}=0.3)$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.45-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.63 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 160.342(\mathrm{C}), 147.752(\mathrm{C}), 146.753(\mathrm{C}), 129.401(\mathrm{CH}), 123.887(\mathrm{CH}), 73.119(\mathrm{C}), 55.612(\mathrm{CH} 2)$, 53.155(CH3), 33.665(CH2), 23.768(CH2). HRMS (ESI) ([M+Na] ${ }^{+}$) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}$: 350.0418, Found 350.0424. IR (neat, cm^{-1}): 2144.03, 1714.82, 1508.77, 1345.42, 1214.38, 736.88

methyl 2-diazo-2-((3-(4-(trifluoromethyl)phenyl)propyl)sulfonyl)acetate (1b):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.4)$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, J=8.09 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.35-3.26 (m, 2H), 2.78 (t, $J=7.52 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 160.395(\mathrm{C}), 143.869(\mathrm{C}), 130.241$ (d, $J=56 \mathrm{~Hz} ; \mathrm{C}), 128.831(\mathrm{CH}), 125.700(\mathrm{CH}), 123.873$ (q, J $=250 \mathrm{~Hz} ; \mathrm{CF} 3)$, $73.127(\mathrm{C})$, $55.656(\mathrm{CH} 2)$, $53.124(\mathrm{CH} 3)$, $33.667(\mathrm{CH} 2)$, 23.398(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}: 373.0439$, Found 373.0444. IR (neat, cm^{-1}): 1241.78, 1708.69, 1329.28, 1148.75, 1093.22, 797.39.

methyl 2-diazo-2-((3-(4-fluorophenyl)propyl)sulfonyl)acetate (1c):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.92(\mathrm{tt}, J=4.80,2.29 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, 3.20-3.08 (m, 2H), $2.54(\mathrm{t}, J=7.45 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl3): δ $161.667(\mathrm{~d}, J=243 \mathrm{~Hz} ; \mathrm{CF}), 160.434(\mathrm{C}), 135.408(\mathrm{~d}, J=3.2 \mathrm{~Hz} ; \mathrm{C}), 129.969(\mathrm{~d}, J=7.9 \mathrm{~Hz} ;$ CH), $115.704(\mathrm{~d}, ~ J=21 \mathrm{~Hz} ; \mathrm{CH}), 55.720(\mathrm{CH} 2)$, $53.137(\mathrm{CH} 3)$, $33.081(\mathrm{CH} 2)$, $24.408(\mathrm{CH} 2)$. HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}: 301.0652$, Found 301.0660. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $2128.04,1715.01,1509.29,1217.86,742.27$.

methyl 2-((3-(4-chlorophenyl)propyl)sulfonyl)-2-diazoacetate (1d):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.17(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.30-3.24 (m, 2H), 2.66 (t, J = 7.44 Hz, 2H), 2.10-1.98 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 160.395(\mathrm{C}), 138.323(\mathrm{C}), 132.275(\mathrm{C}), 129.898(\mathrm{CH}), 128.800(\mathrm{CH}), 73.042(\mathrm{C}), 55.627(\mathrm{CH} 2)$, 53.163(CH3), 33.168(CH2), 24.178(CH2). HRMS (ESI) ($[\mathrm{M}+\mathrm{H}]^{+}$) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$: 317.0356, Found 317.0367. IR (neat, cm^{-1}): 2134.71, 1721.13, 1297.30, 1149.01, 630.67.

methyl 2-diazo-2-((3-(3,5-dichlorophenyl)propyl)sulfonyl)acetate (1e):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.14(\mathrm{t}, J=1.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=1.79 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 3.33-3.27 (m, 2H), $2.67(\mathrm{t}, J=7.56 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl3): δ $160.346(\mathrm{C}), 143.255(\mathrm{C}), 135.106(\mathrm{C}), 127.028(\mathrm{CH}), 126.851(\mathrm{CH}), 73.128(\mathrm{C}), 55.530(\mathrm{CH} 2)$, 53.173(CH3), 33.290(CH2), 23.871(CH2). HRMS (ESI) ([M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}: 372.9787$, Found 372.9798. IR (neat, cm^{-1}): 2130.51, 1718.44, 1336.61,

methyl 2-((3-(3-bromophenyl)propyl)sulfonyl)-2-diazoacetate (1f):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{~m}, 5 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.46$ $\mathrm{Hz}, 2 \mathrm{H}), 2.14-1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(62.5 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 160.385(\mathrm{C}), \quad 142.211(\mathrm{C})$, $131.484(\mathrm{C}), 130.352(\mathrm{CH}), 129.738(\mathrm{CH}), 127.213(\mathrm{CH}), 122.703(\mathrm{CH}), 73.107(\mathrm{C}), 55.675(\mathrm{CH} 2)$, 53.179(CH3), 33.475(CH2), 24.117(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$: 360.9851, Found 360.9852. IR (neat, cm^{-1}): 2129.64, 1718.89, 1337.57, 1217.17, 625.98.

methyl 2-diazo-2-((3-phenylpropyl)sulfonyl)acetate (1g):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-6.99(\mathrm{~m}, 5 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=$ $7.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 160.365(\mathrm{C}), 140.013(\mathrm{C})$, $128.674(\mathrm{CH}), 128.496(\mathrm{CH}), 126.504(\mathrm{CH}), 73.008(\mathrm{C}), 55.709(\mathrm{CH} 2), 52.992(\mathrm{CH} 3), 33.729(\mathrm{CH} 2)$, 24.262(CH2). HRMS (ESI) ([M+H] $\left.]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: 283.0747$, Found 283.0753. IR (neat, cm^{-1}): $2127.69,1713.09,1294.79,1145.68,740.11$.

methyl 2-diazo-2-((3-(p-tolyl)propyl)sulfonyl)acetate (1h):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.05-6.85(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=$ $7.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(62.5 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 160.445(\mathrm{C})$, $136.768(\mathrm{C}), 136.029(\mathrm{C}), 129.401(\mathrm{CH}), 128.381(\mathrm{CH}), 73.064(\mathrm{C}), 55.849(\mathrm{CH} 2), 53.069(\mathrm{CH} 3)$, 33.416(CH2), 24.419(CH2), 21.060(CH3). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: 297.0903, Found 297.0912. IR (neat, cm^{-1}): 2131.10, 1716.78, 1335.60, 1296.09, 738.47.

methyl 2-diazo-2-((3-(4-methoxyphenyl)propyl)sulfonyl)acetate (1i):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.4)$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta 7.10(\mathrm{~d}, J=8.65 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.66 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.40 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , CDCl3): $\delta 160.432(\mathrm{C}), \quad 158.331(\mathrm{C}), \quad 131.740(\mathrm{C}), \quad 129.422(\mathrm{CH}), \quad 114.118(\mathrm{CH}), \quad 73.041(\mathrm{C})$, 55.795(CH2), 55.292(CH3), 53.082(CH3), 32.951(CH2), 24.520(CH2). HRMS (ESI) ([M+H ${ }^{+}$) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: 313.0852$, Found 313.0862. IR (neat, cm^{-1}): 2134.89, 1711.77, 1335.39, 1148.52, 741.66.

methyl 2-diazo-2-((3-(4-(methoxymethoxy)phenyl)propyl)sulfonyl)acetate (1j):
Product was purified by flash chromatography with hexanes/EtOAc $(2: 1)$ as an eluent $(\mathrm{Rf}=0.4)$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.01(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.65 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=7.37 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl3): $\delta 160.455(\mathrm{C}), 155.978(\mathrm{C}), 133.054(\mathrm{C}), 129.458(\mathrm{CH}), 116.567(\mathrm{CH})$, 94.546(CH2), 73.087(C), 55.990(CH3), 55.809(CH2), 53.105(CH3), 33.040(CH2), 24.481(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}: 365.0778$, Found 365.0786. IR (neat, cm^{-1}): $2129.07,1715.22,1295.81,1147.29,740.72$.

methyl 2-diazo-2-((3-(4-hydroxyphenyl)propyl)sulfonyl)acetate (1k):
Product was purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent $(\mathrm{Rf}=0.3)$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 6.94(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.46 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=7.33 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 $\mathrm{MHz}, \quad \mathrm{CDCl} 3): \delta 160.594(\mathrm{C}), \quad 154.482(\mathrm{C}), \quad 131.548(\mathrm{C}), \quad 129.583(\mathrm{CH}), \quad 115.612(\mathrm{CH})$, 55.856(CH2), 53.248(CH3), 32.974(CH2), 24.490(CH2). HRMS (ESI) ([M+H $]^{+}$) Calcd. for
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: 299.0696$, Found 299.0702. IR (neat, cm^{-1}): 3450.00, 2137.39, 1727.07, 1293.04, 1217.25, 832.44.

methyl 2-((3-(4-aminophenyl)propyl)sulfonyl)-2-diazoacetate (11):
Product was purified by flash chromatography with hexanes/EtOAc $(1: 1)$ as an eluent $(\mathrm{Rf}=0.3)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.86(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.27 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 3.64-3.34 (br, 2H), 3.34-3.18 (m, 2H), $2.56(\mathrm{t}, J=7.33 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl3): $\delta 160.498(\mathrm{C}), 145.137(\mathrm{C}), 129.269(\mathrm{C}), 121.904(\mathrm{CH}), 115.384(\mathrm{CH})$, $73.068(\mathrm{C}), 55.868(\mathrm{CH} 2), 53.139(\mathrm{CH} 3), 33.007(\mathrm{CH} 2), 24.576(\mathrm{CH} 2)$. HRMS $(\mathrm{ESI})\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: 298.0856$, Found 298.0863. IR (neat, cm^{-1}): 2124.92, 1715.57, 1299.03, 1142.19, 622.93.

methyl 2-((3-(4-acetamidophenyl)propyl)sulfonyl)-2-diazoacetate (1m):
Product was purified by flash chromatography with hexanes/EtOAc (1:1.5) as an eluent $(\mathrm{Rf}=0.3)$.
${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.37 \mathrm{~Hz}, 2 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.33 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , CDCl3): $\delta 168.924(\mathrm{C}), 160.412(\mathrm{C}), 136.723(\mathrm{C}), 135.442(\mathrm{C}), 128.849(\mathrm{CH}), 120.426(\mathrm{CH})$, 73.062(C), 55.822(CH2), 53.162(CH3), 33.227(CH2), 24.404(CH2), 24.221(CH3). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}: 340.0961$, Found 340.0966. IR (neat, cm^{-1}): 2133.04, 1711.39, 1325.48, 1224.19, 736.59.

methyl 2-diazo-2-((3-(1-phenyl-1H-1,2,3-triazol-4-yl)propyl)sulfonyl)acetate (1n):
Product was purified by flash chromatography with hexanes/EtOAc (1:2) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.49-$ $3.39(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.22 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl3): δ
$160.380(\mathrm{C}), 146.383(\mathrm{C}), 137.029(\mathrm{C}), 129.772(\mathrm{CH}), 128.707(\mathrm{CH}), 120.409(\mathrm{CH}), 119.767(\mathrm{CH})$, $73.046(\mathrm{C}), 55.637(\mathrm{CH} 2), 53.126(\mathrm{CH} 3), 23.739(\mathrm{CH} 2), 22.482(\mathrm{CH} 2)$. HRMS (ESI) ([M+Na] $\left.{ }^{+}\right)$ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}: 372.0736$, Found 372.0749. IR (neat, cm^{-1}): 2147.09, 1728.70, 1335.78, 1140.71, 629.10.

methyl 2-diazo-2-(pent-4-en-1-ylsulfonyl)acetate (10):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.69(\mathrm{tdd}, J=17.02,10.32,6.65 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=7.79$, $1.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.72(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 160.458(\mathrm{C}), 136.112(\mathrm{CH}), 116.699(\mathrm{CH} 2), 72.941(\mathrm{C})$, 55.809(CH2), 53.117(CH3), 31.754(CH2), 21.750(CH2). HRMS (ESI) ($[\mathrm{M}+\mathrm{H}]^{+}$) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: 233.0590$, Found 233.0592. IR (neat, cm^{-1}): 2127.20, 1713.21, 1294.51, 1143.75, 740.59

methyl 2-diazo-2-((4-methylpent-4-en-1-yl)sulfonyl)acetate (1p):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.73$ (d, $J=19.79 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (s, 3H), 3.39-3.24 (m, 2H), 2.14 (t, $J=7.25 \mathrm{~Hz}, 2 \mathrm{H}$), $1.95(\mathrm{td}, J=18.75,7.51 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\mathrm{CDCl} 3): \delta 160.450(\mathrm{C}), 143.160(\mathrm{C}), 111.819(\mathrm{CH} 2), 72.973(\mathrm{C}), 55.921(\mathrm{CH} 2), 53.054(\mathrm{CH} 3)$, 35.662(CH2), 21.951(CH2), 20.362(CH3). HRMS (ESI) ([M+Na] ${ }^{+}$) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}$: 269.0566, Found 269.0578. IR (neat, cm^{-1}): 2127.24, 1713.81, 1294.58, 1147.20, 739.77.

methyl 2-diazo-2-(hexa-4,5-dien-1-ylsulfonyl)acetate (1q):
Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.09$ ($\mathrm{p}, J=6.58 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73 (td, $J=6.63,3.29 \mathrm{~Hz}, 2 \mathrm{H}$), 3.86
$(\mathrm{s}, 3 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): δ $208.587(\mathrm{C}), 160.441(\mathrm{C}), 88.050(\mathrm{CH}), 76.054(\mathrm{CH} 2), 55.886(\mathrm{CH} 2), 53.089(\mathrm{CH} 3), 26.231(\mathrm{CH} 2)$, 21.895(CH2). HRMS (ESI) ([M+H] $)$ Calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: 245.0590$, Found 245.0596. IR (neat, cm^{-1}): $2126.04,1712.55,1330.54,1293.43,1083.18,740.07$.

(E)-methyl 2-diazo-2-(hex-4-en-1-ylsulfonyl)acetate (1r) (Note: contains 5\% Z-isomer):

Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 2 \mathrm{H})$, $2.14(\mathrm{dt}, J=7.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=6.43 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl3): $\delta 160.495(\mathrm{C}), 128.504(\mathrm{CH}), 127.519(\mathrm{CH}), 55.964(\mathrm{CH} 2), 53.077(\mathrm{CH} 3), 30.676(\mathrm{CH} 2)$, 22.457(CH2), 17.881(CH3). HRMS (ESI) ([M+Na] ${ }^{+}$) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}$: 269.0566, Found 269.0571. IR (neat, cm^{-1}): $2125.19,1713.43,1292.97,1142.38,1082.38,739.37$.

(Z)-methyl 2-diazo-2-(hex-4-en-1-ylsulfonyl)acetate (1s) (Note: contains 6\% \mathbf{E}-isomer):

Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.62-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.31(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.37(\mathrm{~m}$, $2 \mathrm{H}), 2.22(\mathrm{dt}, \mathrm{J}=7.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=6.84 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 160.467(\mathrm{C}), 127.621(\mathrm{CH}), 126.370(\mathrm{CH}), 55.994(\mathrm{CH} 2), 53.050(\mathrm{CH} 3)$, 24.983(CH2), $22.490(\mathrm{CH} 2), 12.822(\mathrm{CH} 3) . \mathrm{HRMS}(\mathrm{ESI})\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}$: 269.0566, Found 269.0571. IR (neat, cm^{-1}): 2125.42, 1713.52, 1293.95, 1141.76, 740.29.

General Procedure for [Co(Por)]-catalyzed Intramolecular C-H Alkylation Reaction.

An oven dried Schlenk tube was charged with catalyst ($2 \mathrm{~mol} \%$). The Schlenk tube was then evacuated and back filled with nitrogen. The Teflon screw cap was replaced with a rubber septum and methyl 2-diazo-2-sulfonylacetate ($\mathbf{1}, 0.1 \mathrm{mmol}$) was added followed by 0.5 ml solvent. The Schlenk tube was then purged with nitrogen for 1 minute and the rubber septum was replaced with a Teflon screw cap. The reaction mixture was then stirred at room temperature. After 72 h , the reaction mixture was purified by flash chromatography. The fractions containing the product were collected and concentrated by rotary evaporation to afford the compound.

methyl 3-(4-nitrophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2a): Product was purified by flash chromatography with hexanes/EtOAc (1:1) as an eluent $(\mathrm{Rf}=0.5) .[\alpha]^{20}{ }_{\mathrm{D}}=-42.451$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 2 \mathrm{H}), 3.93-$ $4.09(\mathrm{~m}, 2 \mathrm{H}), 3.762(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (ddd, $\mathrm{J}=12.91,7.09,1.52 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (ddd, $J=12.93,6.96$, $6.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.45(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 164.915(\mathrm{C}), 147.742(\mathrm{C}), 145.966(\mathrm{C}), 128.392(\mathrm{CH}), 124.478(\mathrm{CH}), 71.000(\mathrm{CH}), 53.811(\mathrm{CH} 3)$, $52.839(\mathrm{CH} 2)$, $44.498(\mathrm{CH})$, $28.076(\mathrm{CH} 2)$. HRMS (ESI) $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{6} \mathrm{SNa}$: 322.0356, Found 322.0363. IR (neat, cm^{-1}): 1742.38, 1519.50, 1349.40, 1323.39, 1279.11. HPLC analysis: ee (trans) $=92 \%$. Whelk(90% hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=61.4 \mathrm{~min}, t_{\text {minor }}=74.7 \mathrm{~min}$.

methyl 3-(4-(trifluoromethyl)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2b): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.4)$. $[\alpha]^{20}{ }_{\mathrm{D}}=-25.626\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.17 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.14 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{ddd}, J=12.96,6.97,1.60 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19 (ddd, $J=12.92,6.93,6.93 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5
$\left.\mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 165.051(\mathrm{C}), 142.747(\mathrm{C}), 130.519(\mathrm{q}, \mathrm{J}=32.5 \mathrm{~Hz}, \mathrm{C}), 127.737(\mathrm{CH}), 126.251(\mathrm{q}$, $J=3.7 \mathrm{~Hz}, \mathrm{CH}), 124.053(\mathrm{q}, J=245 \mathrm{~Hz} ; \mathrm{CF} 3), 71.210(\mathrm{CH}), 53.696(\mathrm{CH} 3), 52.977(\mathrm{CH} 2)$, 44.658(CH), 28.224(CH2). HRMS (ESI) ($[\mathrm{M}+\mathrm{Na}]^{+}$) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}: 345.0379$, Found 345.0379. IR (neat, cm^{-1}): 1734.95, 1319.50, 1283.61, 1151.53, 1116.38. HPLC analysis: ee $($ trans $)=84 \%$. Whelk(90% hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=$ $24.6 \mathrm{~min}, t_{\text {minor }}=32.8 \mathrm{~min}$.

methyl 3-(4-fluorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2c): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.4) .[\alpha]^{20}{ }_{\mathrm{D}}=-32.653$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.94-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=12.92,6.91,1.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (ddd, $J=12.91,6.92$, $6.92 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.213(\mathrm{C}), 162.491(\mathrm{~d}, J=246 \mathrm{~Hz}, \mathrm{CF}), 134.488(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{C}), 128.873(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{CH})$, $116.197(\mathrm{~d}, ~ J=21.4 \mathrm{~Hz}, \mathrm{CH}), 71.622(\mathrm{CH}), 53.627(\mathrm{CH} 3)$, $53.153(\mathrm{CH} 2), 44.359(\mathrm{CH})$, 28.510(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FO}_{4} \mathrm{~S}: 273.0591$, Found 273.0593. IR (neat, cm^{-1}): 1737.03, 1512.97, 1320.24, 1280.39, 1226.37. HPLC analysis: ee $($ trans $)=91 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=25.6 \mathrm{~min}, t_{\text {minor }}=33.2$ min.

methyl 3-(4-chlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2d): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent ($\mathrm{Rf}=0.4$). $[\alpha]^{20}{ }_{\mathrm{D}}=-19.185$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.95-$ $3.79(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=12.88,6.95,1.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=12.92,6.92$, $6.92 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.14(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 165.037(\mathrm{C}), 137.135(\mathrm{C}), 133.937(\mathrm{C}), 129.325(\mathrm{CH}), 128.553(\mathrm{CH}), 71.339(\mathrm{CH}), 53.547(\mathrm{CH} 3)$, 53.039(CH2), 44.326(CH), 28.238(CH2). HRMS (ESI) ([M+H $]^{+}$) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClO}_{4} \mathrm{~S}$:
289.0296, Found 289.0298. IR (neat, cm^{-1}): 1737.61, 1494.26, 1310.39, 1297.91, 1278.27. HPLC analysis: ee (trans) $=91 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=28.3 \mathrm{~min}, t_{\text {minor }}=45.0 \mathrm{~min}$.

methyl 3-(3,5-dichlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2e): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4) \cdot[\alpha]^{20}{ }_{D}=-$ $26.960\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.24(\mathrm{t}, J=1.81 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $1.81 \mathrm{~Hz}, 2 \mathrm{H}$), $3.94-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=13.01,6.93,1.41 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (ddd, $J=12.97,6.90,6.90 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDC1}_{3}\right) \delta 165.030(\mathrm{C}), 142.104(\mathrm{C}), 135.832(\mathrm{C}), 128.497(\mathrm{CH}), 128.378(\mathrm{CH}), 125.940(\mathrm{CH})$, $70.990(\mathrm{CH}), 53.806(\mathrm{CH} 3), 52.861(\mathrm{CH} 2), 44.240(\mathrm{CH}), 28.116(\mathrm{CH} 2)$. HRMS (ESI) ([M+H] $)$ Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}: 322.9906$, Found 322.9909. IR (neat, cm^{-1}): 1722.66, 1566.31, 1435.11, 1308.25, 1292.81, 1261.14. HPLC analysis: ee (trans) $=84 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=40.1 \mathrm{~min}, t_{\text {minor }}=54.8 \mathrm{~min}$.

methyl 3-(3-bromophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2f): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent ($\mathrm{Rf}=0.4$). $[\alpha]^{20}{ }_{\mathrm{D}}=-25.369$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.94-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=12.80,6.81,1.29 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=12.95,6.88$, $6.88 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 165.118(\mathrm{C})$, $141.001(\mathrm{C}), 131.390(\mathrm{C}), 130.850(\mathrm{CH}), 130.365(\mathrm{CH}), 125.984(\mathrm{CH}), 123.242(\mathrm{CH}), 71.279(\mathrm{CH})$, $53.750(\mathrm{CH} 3)$, $53.043(\mathrm{CH} 2)$, $44.576(\mathrm{CH})$, $28.339(\mathrm{CH} 2)$. HRMS (ESI) $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNO}_{4} \mathrm{~S}: 350.0056$, Found 350.0055. IR (neat, cm^{-1}): 1741.54, 1321.61, 1277.79, 1174.73, 1119.48. HPLC analysis: ee (trans) $=88 \%$. Whelk(90% hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=27.8 \mathrm{~min}, t_{\text {minor }}=38.5 \mathrm{~min}$.

(2S,3R)-methyl 3-phenyltetrahydrothiophene-2-carboxylate 1,1-dioxide (2g): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4)$. $[\alpha]^{20}{ }_{D}=-22.201$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~m}, 5 \mathrm{H}), 4.00-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.40(\mathrm{ddd}, J=12.91,6.90,1.46 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=12.90,6.90,6.90 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.39-2.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 165.293(\mathrm{C}), 138.717(\mathrm{C}), 129.246(\mathrm{CH})$, $128.148(\mathrm{CH}), \quad 127.197(\mathrm{CH}), \quad 71.545(\mathrm{CH}), \quad 53.586(\mathrm{CH} 3), \quad 53.200(\mathrm{CH} 2), \quad 45.067(\mathrm{CH})$, 28.472(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{4} \mathrm{~S}: 277.0505$, Found 277.0503. IR (neat, cm^{-1}): 1731.58, 1321.27, 1304.82, 1281.99, 1267.05. HPLC analysis: ee (trans) $=90 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=27.7$ $\min , t_{\text {minor }}=35.8 \mathrm{~min}$.

methyl 3-(p-tolyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2h): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4) .[\alpha]^{20}{ }_{D}=-37.175(c=0.2$, CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.17-7.04(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.38$ (ddd, $J=12.86,6.89,1.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=12.88,6.93,6.93 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.36-2.13 (m, 1H), $2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 165.316(\mathrm{C}), 137.960(\mathrm{C})$, $135.726(\mathrm{C}), 129.885(\mathrm{CH}), 127.052(\mathrm{CH}), 71.654(\mathrm{CH}), 53.511(\mathrm{CH} 3), 53.285(\mathrm{CH} 2), 44.807(\mathrm{CH})$, 28.548(CH2), 21.100(CH3). HRMS (ESI) ([M+H] $]^{+}$) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}: 269.0842$, Found 269.0841. IR (neat, cm^{-1}): $1742.43,1516.45,1308.91,1284.14,1253.43$. HPLC analysis: ee $($ trans $)=92 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=28.6$ $\min , t_{\text {minor }}=40.9 \mathrm{~min}$.

methyl 3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2i): Product was purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent $(\operatorname{Rf}=0.4)$. $[\alpha]^{20}{ }_{D}=-83.267$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.92-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{ddd}, J=12.80,6.81,1.29 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=$ 12.89, 6.93, $6.93 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48-2.38 (m, 1H), 2.33-2.21 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 165.323(\mathrm{C}), 159.365(\mathrm{C}), 130.652(\mathrm{C}), 128.273(\mathrm{CH}), 114.577(\mathrm{CH}), 71.759(\mathrm{CH}), 55.372(\mathrm{CH} 3)$, 53.503(CH2), 53.318(CH3), 44.472(CH), 28.576(CH2). HRMS (ESI) ([M+Na] ${ }^{+}$) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{5} \mathrm{~S}: 307.0611$, Found 306.0604. IR (neat, cm^{-1}): 1728.44, 1515.67, 1336.49, 1318.35, 1282.93, 1269.83. HPLC analysis: ee (trans) $=94 \%$. Whelk (80% hexanes: 20% isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=25.2 \mathrm{~min}, t_{\text {minor }}=41.4 \mathrm{~min}$.

methyl 3-(4-(methoxymethoxy)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2j): Product was purified by flash chromatography with hexanes/EtOAc (1:1) as an eluent $(\mathrm{Rf}=0.6)$. $[\alpha]^{20}{ }_{\mathrm{D}}=-27.858\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.18-7.08 $(\mathrm{m}, 2 \mathrm{H}), 7.01-6.89$ $(\mathrm{m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{ddd}$, $J=12.90,6.95,6.95 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDC1}_{3}\right) \delta 165.300(\mathrm{C}), 156.992(\mathrm{C}), 131.945(\mathrm{C}), 128.320(\mathrm{CH}), 116.921(\mathrm{CH}), 94.429(\mathrm{CH} 2)$, $71.710(\mathrm{CH}), 56.112(\mathrm{CH} 3)$, $53.528(\mathrm{CH} 3)$, $53.294(\mathrm{CH} 2), 44.481(\mathrm{CH}), 28.559(\mathrm{CH} 2)$. HRMS (ESI) ([M+Na]+) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{6} \mathrm{~S}: 337.0716$, Found 337.0721. IR (neat, cm^{-1}): 1734.84, $1513.88,1313.63,1279.90,1190.92$. HPLC analysis: ee $($ trans $)=93 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=40.9 \mathrm{~min}, t_{\text {minor }}=62.2 \mathrm{~min}$.

methyl 3-(4-hydroxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2k): Product
was purified by flash chromatography with hexanes/EtOAc (1:1) as an eluent $(\operatorname{Rf}=0.3) .[\alpha]^{20}{ }_{D}=-$ $50.214\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.66(\mathrm{~m}, 2 \mathrm{H})$, $5.16(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{ddd}, J=12.87,6.91,1.48 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}$, $J=12.92,6.92,6.92 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDC1}_{3}\right) \delta 165.386(\mathrm{C}), 155.521(\mathrm{C}), 130.686(\mathrm{C}), 128.482(\mathrm{CH}), 116.059(\mathrm{CH}), 71.782(\mathrm{CH})$, 53.599(CH3), $53.322(\mathrm{CH} 2), 44.479(\mathrm{CH}), 28.579(\mathrm{CH} 2)$. HRMS (ESI) ($[\mathrm{M}+\mathrm{Na}]^{+}$) Calcd. for C12H14NaO5S: 293.0454, Found 293.0458. IR (neat, cm^{-1}): 3450.00, 1735.32, 1516.57, 1308.31, 1278.99, 1259.24. HPLC analysis: ee (trans) $=91 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=53.5 \mathrm{~min}, t_{\text {minor }}=99.2 \mathrm{~min}$.

methyl 3-(4-aminophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (21): Product was purified by flash chromatography with hexanes/EtOAc (1:1.3) as an eluent $(\operatorname{Rf}=0.3) .[\alpha]^{20}{ }_{\mathrm{D}}=-$ $6.312\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99(\mathrm{~d}, J=8.11 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $8.12 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{br}, 2 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{ddd}, \mathrm{J}=$ $12.88,6.93,6.93 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.513(\mathrm{C}), 146.186(\mathrm{C}), 128.298(\mathrm{C}), 128.079(\mathrm{CH}), 115.586(\mathrm{CH}), 71.896(\mathrm{CH}), 53.480(\mathrm{CH} 3)$, 53.417(CH2), 44.597(CH), 28.625(CH2). HRMS (ESI) ($[\mathrm{M}+\mathrm{H}]^{+}$) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}$: 270.0795, Found 270.0794. IR (neat, cm^{-1}): 1753.38, 1316.66, 1268.81, 1174.44, 1117.46. HPLC analysis: ee (trans) $=83 \%$ Whelk (80% hexanes: 20% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=56.8 \mathrm{~min}, t_{\text {minor }}=97.0 \mathrm{~min}$.

methyl 3-(4-acetamidophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2m): Product was purified by flash chromatography with hexanes/EtOAc (1:2) as an eluent $(\operatorname{Rf}=0.5) \cdot[\alpha]^{20}{ }_{D}=-$ $10.514\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (250 MHz , acetone-d6) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.60 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=11.39 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{ddd}, J$ $=12.85,7.26,1.45 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{ddd}, J=12.75,7.13,7.13 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.42-$
$2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , acetone-d6) $\delta 168.890(\mathrm{C}), 165.993(\mathrm{C})$, $140.065(\mathrm{C}), 134.894(\mathrm{C}), 128.568(\mathrm{CH}), 120.337(\mathrm{CH}), 72.248(\mathrm{CH}), 54.236(\mathrm{CH} 2), 53.386(\mathrm{CH} 3)$, $45.519(\mathrm{CH})$, 24.279(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}: 312.0900$, Found 312.0903. IR (neat, cm^{-1}): 1735.40, 1666.60, 1532.49, 1515.06, 1414.01, 1311.41. HPLC analysis: ee $($ trans $)=92 \%$. Whelk(60% hexanes: 40% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=34.7 \mathrm{~min}, t_{\text {minor }}=49.2 \mathrm{~min}$.

methyl 3-(1-phenyl-1H-1,2,3-triazol-4-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2n): Product was purified by flash chromatography with hexanes/EtOAc ($1: 2$) as an eluent $(\mathrm{Rf}=$ $0.6) .[\alpha]^{20}{ }_{\mathrm{D}}=-23.511\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $7.51 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{~d}, J=10.45 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 163.972(\mathrm{C}), 144.934(\mathrm{C}), 135.796(\mathrm{C}), 128.858(\mathrm{CH}), 128.060(\mathrm{CH}), 119.549(\mathrm{CH}), 119.055(\mathrm{CH})$, $68.945(\mathrm{CH}), 52.636(\mathrm{CH} 3), 51.735(\mathrm{CH} 2), 35.174(\mathrm{CH}), 25.553(\mathrm{CH} 2)$. HRMS (ESI) ([M+H] $)$ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: 322.0856$, Found 322.0861. IR (neat, cm^{-1}): 1747.40, 1314.99, 1265.19, $1231.85,1172.84$. HPLC analysis: ee (trans) $=87 \%$. Whelk $(80 \%$ hexanes: 20% isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=65.4 \mathrm{~min}, t_{\text {minor }}=102.2 \mathrm{~min}$.

methyl 3-vinyltetrahydrothiophene-2-carboxylate 1,1-dioxide (20): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4) .[\alpha]^{20}{ }_{D}=-48.060(c=0.2$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 5.70(\mathrm{ddd}, J=17.22,10.24,7.06 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.09(\mathrm{~m}$, $2 \mathrm{H}), 3.79$ (s, 3H), 3.67 (d, $J=10.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.22$ (m, 2H), 3.07 (dt, $J=12.61,7.01 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 165.038(\mathrm{C})$, $135.561(\mathrm{CH}), \quad 118.085(\mathrm{CH} 2), \quad 69.816(\mathrm{CH}), \quad 53.498(\mathrm{CH} 3), \quad 52.621(\mathrm{CH} 2), \quad 43.232(\mathrm{CH})$, 26.547(CH2). HRMS ($\mathrm{ESI}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{4} \mathrm{~S}: 277.0349$, Found 277.0352. IR (neat, cm^{-1}): 1732.54, 1357.71, 1314.60, 1285.74, 1264.76. HPLC analysis: ee $($ trans $)=78 \%$.

AD-H(97\% hexanes: 3% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=48.3 \mathrm{~min}, t_{\text {minor }}=25.2$ min.

methyl 3-(prop-1-en-2-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2p): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4)$. $[\alpha]^{20}{ }_{D}=-45.548$ $\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=10.25$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dt}, J=12.74,6.81 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 1 \mathrm{H})$, 2.12-1.93 (m, 1H), $1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 165.502(\mathrm{C}), 141.774(\mathrm{C})$, $113.597(\mathrm{CH} 2), \quad 68.901(\mathrm{CH}), \quad 53.525(\mathrm{CH} 3), \quad 52.836(\mathrm{CH} 2), \quad 46.306(\mathrm{CH}), \quad 25.769(\mathrm{CH} 2)$, 20.083(CH3). HRMS (ESI) $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}: 219.0686$, Found 219.0679. IR (neat, cm^{-1}): 1743.86, 1436.32, 1316.73, 1274.53, 1170.36, 1149.15. HPLC analysis: ee $($ trans $)=80 \%$. AD-H (90% hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=12.6 \mathrm{~min}, t_{\text {minor }}=10.0$ min.

methyl 3-(propa-1,2-dien-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2q): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4) .[\alpha]^{20}{ }_{D}=-$ $29.450\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 5.24(\mathrm{dd}, J=12.40,6.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (ddd, $J=6.49,3.16,1.02 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=9.75 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 1 \mathrm{H})$, $3.32(\mathrm{ddd}, J=12.75,7.42,3.14 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{ddd}, J=12.91,11.50,7.05 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}$, $1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.490(\mathrm{C}), 164.958(\mathrm{C}), 89.899(\mathrm{CH})$, 78.923(CH2), 69.881(CH), 53.467(CH3), 52.634(CH2), 37.853(CH), 26.625(CH2). HRMS (ESI) $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{SNa}: 239.0349$, Found 239.0353. IR (neat, cm^{-1}): 1732.62, 1305.28, 1278.21, 1116.17, 868.22. HPLC analysis: ee (trans) $=83 \%$. AD-H (95% hexanes: 5% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=22.0 \mathrm{~min}, t_{\text {minor }}=30.3 \mathrm{~min}$.

Catalyst Controlled Olefin Isomerization to probe the Radical Mechanism of

Co(II)-Catalyzed C-H Alkylation

methyl (E)-3-(prop-1-en-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2r): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.4) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.67(\mathrm{dqd}, \boldsymbol{J}=15.0,6.48,0.96 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{5 . 3 4}(\mathbf{d d q}, \boldsymbol{J}=\mathbf{1 5 . 2 3}, \mathbf{7 . 5 3}, \mathbf{1 . 5 6}$ $\mathbf{H z}, \mathbf{1 H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.37 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (ddd, $J=12.99,7.14$, $1.55 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=25.59,12.57,7.21 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=6.50$, $0.96 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 165.129(\mathrm{C}), 129.300(\mathrm{CH}), 128.394(\mathrm{CH})$, $70.219(\mathrm{CH}), 53.405(\mathrm{CH} 3), 52.735(\mathrm{CH} 2), 42.707(\mathrm{CH}), 27.103(\mathrm{CH} 2), 17.887(\mathrm{CH} 3)$. HRMS (ESI) $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}: 241.0505$, Found 241.0510. IR (neat, cm^{-1}): 1733.29, $1438.38,1318.28$, $1267.95,1175.48,1118.27$.

methyl (Z)-3-(prop-1-en-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2s): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent ($\mathrm{Rf}=0.4$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 5.72-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathbf{d d q}, \boldsymbol{J}=\mathbf{1 0 . 8 9}, \mathbf{9 . 3 8}, \mathbf{1 . 7 8} \mathbf{H z}, \mathbf{1 H}), 3.84(\mathrm{~s}, 1 \mathrm{H})$, $3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.11 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=12.94,7.28,1.86 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dt}$, $J=12.80,7.13 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=6.95,1.80 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDC1}_{3}$) $\delta 165.189(\mathrm{C}), \quad 129.068(\mathrm{CH}), \quad 127.963(\mathrm{CH}), \quad 70.355(\mathrm{CH})$, 53.416(CH3), 52.684(CH2), 37.879(CH), 27.189(CH2), 13.214(CH3). HRMS (ESI) ([M+Na] ${ }^{+}$) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}: 241.0505$, Found 241.0511. IR (neat, cm^{-1}): 1733.59, 1438.48, 1312.26, $1268.89,1172.53,1117.23$.

entry	diazo	[Co(P)]	yield (\%) ${ }^{\text {b }}$		
1		[Co(P3)]	94	95	5
2	$\mathrm{O}_{2} \mathrm{~S}^{-\mathrm{N}_{2}}(E)$	[Co(P4)]	96	89	11
3	1 r	[Co(P5)]	96	82	: 18
4		[Co(P3)]	92	18	82
5	$\left.\mathrm{N}_{2} \quad\right\rangle_{(Z)}$	[Co (P4) ${ }^{\text {(}}$	94	49	51
6	1 s	[Co(P5)]	95	77	23

The ratio of compound $2 \mathbf{r}$ and $\mathbf{2 s}$ in entries 1-6 were determined by ${ }^{1} \mathrm{HNMR}$ of their mixtures. The proton of 2 r at 5.34 ppm and proton of 2 s at 5.22 ppm were selected for the determination.

Entry 1:

Entry 2:

Entry 3:

Entry 4:

Entry 5:

Entry 6:

ppm (t1)

Diastereocontrolled Electrophilic Substitution Reaction of Sulfolanes 2.

Sulfolane $2(0.1 \mathrm{mmol})$ in 1 mL of THF was treated with 1.2 equiv of NaH in THF at room temperature for 20 min , then 1.1 equiv of electrophile was added. The reaction mixture was stirred overnight and concentrated to remove THF, followed by purification of the residue by column chromatography to afford the desired product.

methyl 2-fluoro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ia):
Product was purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent ($\mathrm{Rf}=0.3$). $[\alpha]^{20}=-45.766\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=8.46 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{dd}, J=13.10,8.84$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.219$ (d, $J=26.6 \mathrm{~Hz}, \mathrm{C}), 159.760(\mathrm{C}), 128.916(\mathrm{C}), 125.600(\mathrm{CH}), 114.308(\mathrm{CH}), 105.313$ (d, $J=243 \mathrm{~Hz}, \mathrm{CF}), 55.346(\mathrm{CH} 3), 53.449(\mathrm{CH} 3), 50.526(\mathrm{CH} 2), 48.371(\mathrm{~d}, J=18.2 \mathrm{~Hz}, \mathrm{CH})$,
$21.145(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH} 2) . \operatorname{HRMS}(\mathrm{ESI})\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FNO}_{5} \mathrm{~S}: 320.0962$, Found 320.0975. IR (neat, cm^{-1}): $1749.36,1516.61,1320.83,1250.19,1227.75$. HPLC analysis: ee $($ trans $)=95 \%$. Whelk $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min})$ trans-isomer: $t_{\text {major }}=$ $35.8 \mathrm{~min}, t_{\text {minor }}=40.9 \mathrm{~min}$.

(2R,3R)-methyl 3-(3,5-dichlorophenyl)-2-fluorotetrahydrothiophene-2-carboxylate 1,1dioxide (3ea): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\operatorname{Rf}=0.4) \cdot[\alpha]^{20}{ }_{\mathrm{D}}=-22.375\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}$, $2 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H})$, 2.54-2.49 (m, 1H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 163.780(\mathrm{~d}, J=26.4 \mathrm{~Hz}, \mathrm{C}), 137.356(\mathrm{C})$, 135.610(C), $128.992(\mathrm{CH}), 126.363(\mathrm{CH}), 104.562(\mathrm{~d}, \mathrm{~J}=245 \mathrm{~Hz}, \mathrm{CF}), 53.784(\mathrm{CH} 3)$, $50.246(\mathrm{CH} 2), 48.137(\mathrm{~d}, J=18.3 \mathrm{~Hz}, \mathrm{CH}), 20.951$ (d, $J=6.7 \mathrm{~Hz}, \mathrm{CH} 2$). HRMS (ESI) $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{FNO}_{4} \mathrm{~S}: 358.0077$, Found 358.0085. IR (neat, cm^{-1}): 1750.32, 1567.36, 1434.67, 1333.53, 1285.06, 1252.27. . HPLC analysis: ee (trans) $=84 \%$ AD-H(98\% hexanes: 2% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=57.0 \mathrm{~min}, t_{\text {minor }}=69.4 \mathrm{~min}$.

methyl 2-chloro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ib): Product was purified by flash chromatography with hexanes/EtOAc $(2: 1)$ as an eluent $(\operatorname{Rf}=0.4)$. $[\alpha]^{20}{ }_{\mathrm{D}}=-62.588\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.18(\mathrm{~d}, \mathrm{~J}=8.78 \mathrm{~Hz}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.57 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=13.29$, $9.81,7.33 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}\right)$ $\delta 164.186(\mathrm{C}), 160.046(\mathrm{C}), 129.834(\mathrm{C}), 125.669(\mathrm{CH}), 114.264(\mathrm{CH}), 85.796(\mathrm{C}), 55.358(\mathrm{CH} 3)$,
54.238(CH3), $52.501(\mathrm{CH} 2), 49.555(\mathrm{CH}), 24.216(\mathrm{CH} 2)$. HRMS (ESI) ($[\mathrm{M}+\mathrm{Na}]^{+}$) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNaO}_{5} \mathrm{~S}: 341.0221$, Found 341.0225 . IR (neat, cm^{-1}):): 1755.60, 1727.23, 1514.36, 1329.24, 1248.40. HPLC analysis: ee (trans) $=93 \%$. OD-H(90% hexanes: 10% isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=38.7 \mathrm{~min}, t_{\text {minor }}=30.9 \mathrm{~min}$.

methyl 3-(4-methoxyphenyl)-2-methyltetrahydrothiophene-2-carboxylate 1,1-dioxide (3ic): Product was purified by flash chromatography with hexanes/EtOAc (3:1) as an eluent $(\mathrm{Rf}=0.5)$. $[\alpha]^{20}{ }_{\mathrm{D}}=-33.609\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.57 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dt}, J=13.27,3.27 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}$, $J=12.40,7.51 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \quad$ NMR $\left(62.5 \mathrm{MHz}, \quad \mathrm{CDC1}_{3}\right) \delta 167.822(\mathrm{C}), \quad 159.646(\mathrm{C}), \quad 129.589(\mathrm{C}), \quad 127.790(\mathrm{CH})$, $114.259(\mathrm{CH}), 70.789(\mathrm{C}), 55.347(\mathrm{CH} 3), 52.940(\mathrm{CH} 3), 50.806(\mathrm{CH} 3), 50.185(\mathrm{CH} 2), 25.043(\mathrm{CH})$, 14.005(CH2). HRMS (ESI) ([M+H] ${ }^{+}$) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}: 299.0948$, Found 299.0962. IR (neat, cm^{-1}):): 1727.50, 1514.10, 1454.10, 1306.83, 1278.19, 1248.58. HPLC analysis: ee (trans) $=93 \%$. AD-H(95% hexanes: 5% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=27.0 \mathrm{~min}, t_{\text {minor }}$ $=22.8 \mathrm{~min}$.

methyl 2-(3-ethoxy-3-oxopropyl)-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3id): Product was purified by flash chromatography with hexanes/EtOAc (2:1) as an eluent $(\mathrm{Rf}=0.2) .[\alpha]^{20}{ }_{\mathrm{D}}=-4.019\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 7.06(\mathrm{~d}, \mathrm{~J}=$ $8.43 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.49 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (ddd, $J=12.80$, $2.93,1.06 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=12.30,7.47 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.69$ $(\mathrm{m}, 2 \mathrm{H}), 2.54-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}$ $=7.13 \mathrm{~Hz}, 3 \mathrm{H}), .{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta 172.612(\mathrm{C}), 167.016(\mathrm{C}), 159.814(\mathrm{C})$,
$129.288(\mathrm{C}), 127.412(\mathrm{CH}), 114.367(\mathrm{CH}), 73.254(\mathrm{CH}), 60.614(\mathrm{CH} 2), 55.360(\mathrm{CH} 3), 52.814(\mathrm{CH} 3)$, $51.555(\mathrm{CH} 2)$, $50.943(\mathrm{CH}), 28.658(\mathrm{CH} 2)$, $25.685(\mathrm{CH} 2), 24.976(\mathrm{CH} 2)$, $14.227(\mathrm{CH} 3)$. HRMS (ESI) $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{~S}: 385.1316$, Found 385.1326. IR (neat, cm^{-1}):): 1738.97, 1675.99, 1264.64, 1190.13, 1029.01. HPLC analysis: ee (trans) $=93 \%$. AD-H $(90 \%$ hexanes: 10% isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) trans-isomer: $t_{\text {major }}=36.0 \mathrm{~min}, t_{\text {minor }}=20.4 \mathrm{~min}$.

References

(1) Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72, 5931.
(2) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.
(3) Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126, 14718.
(4) Casarini, D.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2008, 73, 2811.
(5) Flynn, C. J.; Elcoate, C. J.; Lawrence, S. E.; Maguire, A. R. J. Am. Chem. Soc. 2010, 132, 1184.
(6) Blankespoor, R. L.; DeVries, T.; Hansen, E.; Kallemeyn, J. M.; Klooster, A. M.; Mulder, J. A.; Smart, R. P.; Griend, D. A. V. J. Org. Chem. 2002, 67, 2677.
(7) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., Int. Ed. 2008, 47, 6825.
(8) Ranta, J.; Kumpulainen, T.; Lemmetyinen, H.; Efimov, A. J. Org. Chem. 2010, 75, 5178.
(9) Houjeiry, T. I.; Poe, S. L.; McQuade, D. T. Org. Lett. 2012, 14, 4394.
(10) Liang, H.; Ciufolini, M. A. Chemistry-a European Journal 2010, 16, 13262.
(11) Chen, S. PCT Int. Appl., 2008106204, 04 Sep 2008
(12) Crandall, J. K.; Conover, W. W.; Komin, J. B. J. Org. Chem. 1975, 40, 2042.
(13) Jung, J. C.; Kache, R.; Vines, K. K.; Zheng, Y. S.; Bijoy, P.; Valluri, M.; Avery, M. A. J. Org. Chem. 2004, 69, 9269.
(14) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466.

X-ray Crystallography

The X-ray diffraction data were collected using Bruker-AXS SMART-APEXII CCD diffractometer ($\mathrm{CuK} \alpha, \lambda=1.54178 \AA$). Indexing was performed using APEX2 [1] (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01 [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. Space groups were determined using XPREP implemented in APEX2 [1]. The structure was solved using SHELXS-97 (direct methods) and refined using SHELXL-97 (full-matrix least-squares on F^{2}) contained in APEX2 [1] and WinGX v1.70.01 [4,5,6,7] programs packages. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were placed in geometrically calculated positions or found in the Fourier difference map and included in the refinement process using riding model with isotropic thermal parameters: $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(-\mathrm{CH} 3)$, Uiso (H) $=1.2 \mathrm{Ueq}(-\mathrm{CH} 2,-\mathrm{CH})$ or without constraints (H1A and H1B in L1). For $\mathbf{L 1}$ the absolute configuration has been established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration (Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72, 5931.). Crystal data and refinement conditions are shown in Table 1, 2 and 3.
[1] Bruker (2008). APEX2 (Version 2008.1-0). Bruker AXS Inc., Madison, Wisconsin, USA.
[2] Bruker (2001b). SAINT-V6.28A. Data Reduction Software.
[3] Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption
Correction. University of Gottingen, Germany.
[4] Farrugia L.J. Appl. Cryst. (1999). 32, 837 ± 838
[5] Sheldrick, G.M. (1997) SHELXL-97. Program for the Refinement of Crystal
[6] Sheldrick, G.M. (1990) Acta Cryst. A46, 467-473
[7] Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Table 1. Crystal data and structure refinement for compound $\mathbf{L} 1$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection Limiting indices
Reflections collected / unique
Completeness to theta $=65.96$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices [$1>2$ sigma $(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

L1

C14 H19 N O
217.30

228(2) K
1.54178 A

Monoclinic, C2
$\mathrm{a}=7.0592(2) \mathrm{A} \quad$ alpha $=90$ deg.
$\mathrm{b}=9.6718(3) \mathrm{A} \quad \mathrm{beta}=91.179(2)$ deg.
$\mathrm{c}=18.5618(6) \mathrm{A}$ gamma $=90$ deg.
1267.04(7) A^3
$4,1.139 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$0.552 \mathrm{~mm}^{\wedge}-1$
472
$0.20 \times 0.02 \times 0.02 \mathrm{~mm}$
4.77 to 65.96 deg.
$-8<=\mathrm{h}<=8,-10<=\mathrm{k}<=8,-21<=1<=21$
$6867 / 1913[R($ int $)=0.0270]$
98.3 \%

Semi-empirical from equivalents
0.9918 and 0.8976

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
1913 / 1 / 156
1.082
$\mathrm{R} 1=0.0383, \mathrm{wR} 2=0.1005$
$R 1=0.0408, w R 2=0.1025$
-0.4(3)
0.123 and -0.160 e. $\mathrm{A}^{\wedge}-3$

Table 2. Crystal data and structure refinement for compound $\mathbf{2 g}$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection Limiting indices
Reflections collected / unique
Completeness to theta $=68.16$
Absorption correction
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

2 g

C12 H14 O4 S
254.29

203(2) K
1.54178 A

Monoclinic, P21
$\mathrm{a}=6.70370(10) \mathrm{A}$ alpha $=90$ deg.
$\mathrm{b}=10.0938(2) \mathrm{A}, \mathrm{beta}=108.1320(10) \mathrm{deg}$.
$\mathrm{c}=9.5452(2) \mathrm{A}$ gamma $=90 \mathrm{deg}$.
613.81(2) A^3
$2,1.376 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$2.370 \mathrm{~mm}^{\wedge}-1$
268
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
4.87 to 68.16 deg.
$-7<=\mathrm{h}<=8,-12<=\mathrm{k}<=12,-11<=1<=10$
$6686 / 2144[\mathrm{R}(\mathrm{int})=0.0335]$
98.4 \%

Semi-empirical from equivalents
0.6486 and 0.6486

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
2144 / 1 / 156
1.062
$\mathrm{R} 1=0.0324, \mathrm{wR} 2=0.0785$
$\mathrm{R} 1=0.0341, \mathrm{wR} 2=0.0796$
0.021(19)
$0.0073(11)$
0.218 and -0.205 e. $\mathrm{A}^{\wedge}-3$

Table 3. Crystal data and structure refinement for compound 3ea

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection Limiting indices
Reflections collected / unique
Completeness to theta $=68.23$
Absorption correction
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^{\wedge} 2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

3ea
C12 H11 Cl2 F O4 S
341.17

228(2) K
1.54178 A

Orthorhombic, P212121
$\mathrm{a}=7.7539(3) \mathrm{A} \quad$ alpha $=90 \mathrm{deg}$.
$\mathrm{b}=8.4364(3) \mathrm{A} \quad$ beta $=90$ deg.
$\mathrm{c}=22.2865(6) \mathrm{A}$ gamma $=90$ deg.
1457.87(9) A^3
$4,1.554 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$5.556 \mathrm{~mm}^{\wedge}-1$
696
$0.15 \times 0.08 \times 0.02 \mathrm{~mm}$
3.97 to 68.23 deg .
$-9<=\mathrm{h}<=9,-9<=\mathrm{k}<=10,-26<=1<=26$
$17397 / 2634$ [$\mathrm{R}(\mathrm{int})=0.0770$]
99.0 \%

Semi-empirical from equivalents
0.8970 and 0.4895

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
2634 / 0 / 183
1.052
$\mathrm{R} 1=0.0417, \mathrm{wR} 2=0.0979$
$\mathrm{R} 1=0.0507, \mathrm{wR} 2=0.1036$
0.00(2)
0.0018(3)
0.322 and -0.300 e. $\mathrm{A}^{\wedge}-3$

Supporting Information

Stereoselective Radical C-H Alkylation with

Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis

Xin Cui, Xue Xu, Li-Mei Jin, Lukasz Wojtas, and X. Peter Zhang*
Department of Chemistry, University of South Florida, Tampa, Florida 33620-5250

2-(4-(tert-butyl)phenyl)cyclopropanecarboxamide (L1)

2-(4-(tert-butyl)phenyl)cyclopropanecarboxamide (L1)

2-(4-(tert-butyl)phenyl)cyclopropanecarboxamide (L1)

$13: 214 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
	Pk \#	Retention Time	Area Percent
	1	8.908	49.921
	2	13.320	50.079

2-(4-(tert-butyl)phenyl)cyclopropanecarboxamide (L1)


```
4:223 nm, 4 nm
    Results
Name
Name
```

Retention Time
Area Percent
Pk \#

$$
\begin{array}{r}
8.768 \\
13.660
\end{array}
$$

$$
99.484
$$

1
2

$\left[\mathrm{H}_{2}(\mathbf{P 2} 2)\right]$ 3,5-DitBu-(4'-tBu)XuPhyrin

$\left[\mathrm{H}_{2}(\mathbf{P 2} 2)\right]$ 3,5-DitBu-(4'-tBu)XuPhyrin

5,15-Bis(2,6-dibromophenyl)-10,20-bis(3,5diisopropylphenyl)porphyrin

5,15-Bis(2,6-dibromophenyl)-10,20-bis(3,5diisopropylphenyl)porphyrin

$\left[\mathrm{H}_{2}(\mathrm{P} 3)\right]$ 3,5-DiiPr-(4'-tBu)XuPhyrin

$\left[H_{2}(\mathbf{P 3})\right]$ 3,5-DiiPr-(4'-tBu)XuPhyrin

methyl 2-diazo-2-((3-(4-nitrophenyl)propyl)sulfonyl)acetate (1a)

ppm (f1)
methyl 2-diazo-2-((3-(4-nitrophenyl)propyl)sulfonyl)acetate (1a)

methyl 2-diazo-2-((3-(4-(trifluoromethyl)phenyl)propyl)sulfonyl)acetate (1b)

methyl 2-diazo-2-((3-(4-(trifluoromethyl)phenyl)propyl)sulfonyl)acetate (1b)

methyl 2-diazo-2-((3-(4-fluorophenyl)propyl)sulfonyl)acetate (1c)

methyl 2-diazo-2-((3-(4-fluorophenyl)propyl)sulfonyl)acetate (1c)
(
methyl 2-((3-(4-chlorophenyl)propyl)sulfonyl)-2-diazoacetate (1d)

ppm (f1)
methyl 2-((3-(4-chlorophenyl)propyl)sulfonyl)-2-diazoacetate (1d)

methyl 2-diazo-2-((3-(3,5-dichlorophenyl)propyl)sulfonyl)acetate (1e)

methyl 2-diazo-2-((3-(3,5-dichlorophenyl)propyl)sulfonyl)acetate (1e)

methyl 2-((3-(3-bromophenyl)propyl)sulfonyl)-2-diazoacetate (1f)

methyl 2-((3-(3-bromophenyl)propyl)sulfonyl)-2-diazoacetate (1f)

methyl 2-diazo-2-((3-phenylpropyl)sulfonyl)acetate (1g)

methyl 2-diazo-2-((3-phenylpropyl)sulfonyl)acetate (1g)

methyl 2-diazo-2-((3-(p-tolyl)propyl)sulfonyl)acetate (1h)

methyl 2-diazo-2-((3-(p-tolyl)propyl)sulfonyl)acetate (1h)

methyl 2-diazo-2-((3-(4-methoxyphenyl)propyl)sulfonyl)acetate (1i)

methyl 2-diazo-2-((3-(4-methoxyphenyl)propyl)sulfonyl)acetate (1i)

methyl 2-diazo-2-((3-(4-(methoxymethoxy)phenyl)propyl)sulfonyl)acetate (1j)

methyl 2-diazo-2-((3-(4-(methoxymethoxy)phenyl)propyl)sulfonyl)acetate (1j)
(
methyl 2-diazo-2-((3-(4-hydroxyphenyl)propyl)sulfonyl)acetate (1k)

methyl 2-diazo-2-((3-(4-hydroxyphenyl)propyl)sulfonyl)acetate (1k)
(
methyl 2-((3-(4-aminophenyl)propyl)sulfonyl)-2-diazoacetate (1I)

methyl 2-((3-(4-aminophenyl)propyl)sulfonyl)-2-diazoacetate (1I)

methyl 2-((3-(4-acetamidophenyl)propyl)sulfonyl)-2-diazoacetate (1m)

methyl 2-((3-(4-acetamidophenyl)propyl)sulfonyl)-2-diazoacetate (1m)
(
methyl 2-diazo-2-((3-(1-phenyl-1H-1,2,3-triazol-4-yl)propyl)sulfonyl)acetate (1n)

methyl 2-diazo-2-((3-(1-phenyl-1H-1,2,3-triazol-4-yl)propyl)sulfonyl)acetate (1n)

methyl 2-diazo-2-(pent-4-en-1-ylsulfonyl)acetate (10)

methyl 2-diazo-2-(pent-4-en-1-ylsulfonyl)acetate (10)

methyl 2-diazo-2-((4-methylpent-4-en-1-yl)sulfonyl)acetate (1p)
(
methyl 2-diazo-2-((4-methylpent-4-en-1-yl)sulfonyl)acetate (1p)

methyl 2-diazo-2-(hexa-4,5-dien-1-ylsulfonyl)acetate (1q)

methyl 2-diazo-2-(hexa-4,5-dien-1-ylsulfonyl)acetate (1q)

(E)-methyl 2-diazo-2-(hex-4-en-1-ylsulfonyl)acetate (1r)

(E)-methyl 2-diazo-2-(hex-4-en-1-ylsulfonyl)acetate (1r)

(Z)-methyl 2-diazo-2-(hex-4-en-1-ylsulfonyl)acetate (1s)

(Z)-methyl 2-diazo-2-(hex-4-en-1-ylsulfonyl)acetate (1s)

methyl 3-(4-nitrophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2a)

methyl 3-(4-nitrophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2a)

methyl 3-(4-nitrophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2a)

6: $268 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
$\mathrm{pk} \ddagger$	Retention Time	Area Percent	
	1	0.168	0.000
	2	60.836	51.017
	3	72.672	48.983

methyl 3-(4-nitrophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2a)


```
8: 280 nm, 4 nm
    Results
```

Pk \# Name
Retention Time
61.440

Area Percent

| Pk \# Name | Retention Time | Area Percent |
| ---: | ---: | ---: | ---: |
| 1 | 61.440 | 95.926 |
| 2 | 74.776 | 4.074 |

Totals
methyl 3-(4-(trifluoromethyl)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2b)

methyl 3-(4-(trifluoromethyl)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2b)

methyl 3-(4-(trifluoromethyl)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2b)

7: $221 \mathrm{~nm}, 4 \mathrm{~nm}$ Results
$\mathrm{Pk} \# \quad$ Retention Time

24.584	49.080
33.176	50.920

methyl 3-(4-(trifluoromethyl)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2b)

4: $260 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

| 4: $260 \mathrm{~nm}, 4 \mathrm{~nm}$ Results | | |
| ---: | ---: | ---: | ---: |
| Pk \# | Retention Time | Area Percent |
| 1 | 24.616 | 92.189 |
| 2 | 32.840 | 7.811 |

methyl 3-(4-fluorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2c)

methyl 3-(4-fluorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2c)

methyl 3-(4-fluorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2c)

$11: 210 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Pk \#	Retention Time	Area Percent
	1	25.976	50.707
	2	32.984	49.293

methyl 3-(4-fluorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2c)

$4: 212 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Rk $\#$	Retention Time	Area Percent
	1	25.640	95.135
	2	33.224	4.865

methyl 3-(4-chlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2d)

methyl 3-(4-chlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2d)

methyl 3-(4-chlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2d)

11: $223 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Pk \#	Retention Time	Area Percent
	1	28.332	49.794
	2	42.912	50.206

methyl 3-(4-chlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2d)

11: $223 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
$\mathrm{Pk} \mathrm{\#}$	1	Retention Time	Area Percent
	2	28.316	95.582
	45.064	4.418	

methyl 3-(3,5-dichlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2e)

methyl 3-(3,5-dichlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2e)

methyl 3-(3,5-dichlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2e)

$9: 210 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Pk \#	Retention Time	Area Percent
	1	39.540	50.069
	2	52.460	49.931

methyl 3-(3,5-dichlorophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2e)

$9: 210 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
$\mathrm{Pk} \mathrm{\#}$	1	Retention Time	Area Percent
	2	50.188	91.317
	8.683		

methyl 3-(3-bromophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2f)

methyl 3-(3-bromophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2f)

methyl 3-(3-bromophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2f)

11: $226 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
Pk \#	Retention Time	Area Percent	
	1	27.976	51.358
	2	37.724	48.642

methyl 3-(3-bromophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2f)

11: $223 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Rk \#	Retention Time	Area Percent
	1	27.872	93.830
	2	38.592	6.170

(2S,3R)-methyl 3-phenyltetrahydrothiophene-2-carboxylate 1,1-dioxide (2g)

(2S,3R)-methyl 3-phenyltetrahydrothiophene-2-carboxylate 1,1-dioxide (2g)

(2S,3R)-methyl 3-phenyltetrahydrothiophene-2-carboxylate 1,1-dioxide (2g)

$4: 215 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Rk \#	Retention Time	Area Percent
	1	27.772	51.036
	2	34.640	48.964

(2S,3R)-methyl 3-phenyltetrahydrothiophene-2-carboxylate 1,1-dioxide (2g)

$4: 215 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Rk \#	Retention Time	Area Percent
	1	27.752	94.894
	2	35.808	5.106

methyl 3-(p-toly))tetrahydrothiophene-2-carboxylate 1,1-dioxide (2h)

methyl 3-(p-tolyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2h)

methyl 3-(p-toly))tetrahydrothiophene-2-carboxylate 1,1-dioxide (2h)

$9: 218 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Pk \#	Retention Time	Area Percent
	1	29.820	49.870
	2	42.376	50.130

methyl 3-(p-tolyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2h)

$9: 218 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Pk \#	Retention Time	Area Percent
	1	28.628	95.988
	2	40.968	4.012

methyl 3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2i)

methyl 3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2i)

methyl 3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2i)

methyl 3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2i)
1: $272 \mathrm{~nm}, 4 \mathrm{~nm}$ Results
Pk \#
Retention Time
Area Percent
1
2
25.220
41.440
97.015
2.985
methyl 3-(4-(methoxymethoxy)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2j)

methyl 3-(4-(methoxymethoxy)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2j)
(
methyl 3-(4-(methoxymethoxy)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2j)

14: $225 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
	$\mathrm{Pk} \#$	Retention Time	Area Percent
	1	43.652	50.570
	2	63.844	49.430

methyl 3-(4-(methoxymethoxy)phenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2j)

14: $225 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
	Pk \#	Retention Time	Area Percent
	1	40.916	96.597
	2	62.228	3.403

methyl 3-(4-hydroxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2k)
(
methyl 3-(4-hydroxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2k)

methyl 3-(4-hydroxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2k)

14: $225 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
Pk \#	Retention Time	Area Percent	
	1	53.228	50.221
	2	93.320	49.779

methyl 3-(4-hydroxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2k)

14: $225 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	Pk \#	Retention Time	Area Percent
	1	53.524	95.425
	2	99.256	4.575

methyl 3-(4-aminophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2I)

methyl 3-(4-aminophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2I)
(
methyl 3-(4-aminophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2I)

1: $246 \mathrm{~nm}, 4 \mathrm{~nm}$ Results
Pk \#
Retention Time
Area Percent

Pk \#	Retention Time	Area Percent
1	69.704	50.526
49.474		

methyl 3-(4-aminophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2I)

$1: 247 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
$\mathrm{Pk} \#$	Retention Time	Area Percent	
	1	56.852	91.512
	2	97.080	8.488

methyl 3-(4-acetamidophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2m)
(
methyl 3-(4-acetamidophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2m)

methyl 3-(4-acetamidophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2m)

methyl 3-(4-acetamidophenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2m)

$2: 250 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
$\mathrm{Pk} \#$	Retention Time	Area Percent	
	1	34.760	95.753
	2	49.212	4.247

methyl 3-(1-phenyl-1H-1,2,3-triazol-4-yl)tetrahydrothiophene-2-carboxylate 1,1dioxide (2n)
(
methyl 3-(1-phenyl-1H-1,2,3-triazol-4-yl)tetrahydrothiophene-2-carboxylate 1,1dioxide (2n)

methyl 3-(1-phenyl-1H-1,2,3-triazol-4-yl)tetrahydrothiophene-2-carboxylate 1,1dioxide (2n)

1: $245 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

Pk \#	Retention Time	Area Percent
1	66.384	50.916
49.084		

Pk \#	Retention Time	Area Percent
1	66.384	50.916
49.084		

Pk \#	Retention Time	Area Percent
1	66.384	50.916
49.084		

methyl 3-(1-phenyl-1H-1,2,3-triazol-4-yl)tetrahydrothiophene-2-carboxylate 1,1dioxide (2n)

$1: 244 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
	Pk \#	Retention Time	Area Percent
	1	65.448	93.223
	2	102.232	6.777

methyl 3-vinyltetrahydrothiophene-2-carboxylate 1,1-dioxide (20)

methyl 3-vinyltetrahydrothiophene-2-carboxylate 1,1-dioxide (20)

methyl 3-vinyltetrahydrothiophene-2-carboxylate 1,1-dioxide (20)

methyl 3-vinyltetrahydrothiophene-2-carboxylate 1,1-dioxide (20)

2: $213 \mathrm{~nm}, 4 \mathrm{~nm}$ Results Name	Retention Time	Area Percent	
	25.208	11.139	1

methyl 3-(prop-1-en-2-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2p)

methyl 3-(prop-1-en-2-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2p)

methyl 3-(prop-1-en-2-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2p)

methyl 3-(prop-1-en-2-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2p)

methyl 3-(propa-1,2-dien-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2q)

methyl 3-(propa-1,2-dien-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2q)

methyl 3-(propa-1,2-dien-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2q)


```
5: 220 nm, 4 nm
```

 Results
 | Name | Retention Time | Area Percent | Pk $\#$ |
| ---: | ---: | ---: | ---: |
| 22.416 | 49.644 | 1 | |
| | 29.716 | 50.356 | 2 |

methyl 3-(propa-1,2-dien-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2q)

5: $220 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Name
Retention Time
Area Percent
Pk \# $\begin{array}{lr}22.012 & 8.653 \\ 30.252 & 91.347\end{array}$

2
\square
methyl (E)-3-(prop-1-en-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2r)

methyl (E)-3-(prop-1-en-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2r)

methyl (Z)-3-(prop-1-en-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2s)

methyl (Z)-3-(prop-1-en-1-yl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (2s)

methyl 2-fluoro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide
(3ia)
(
methyl 2-fluoro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide
(3ia)
(
methyl 2-fluoro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ia)

methyl 2-fluoro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ia)

$8: 232 \mathrm{~nm}, 4 \mathrm{~nm}$ Results			
Pk \#	Retention Time	Area Percent	
1	35.840	97.385	
	2	40.960	2.615

(2R,3R)-methyl 3-(3,5-dichlorophenyl)-2-fluorotetrahydrothiophene-2-carboxylate 1,1dioxide (3ea)

(2R,3R)-methyl 3-(3,5-dichlorophenyl)-2-fluorotetrahydrothiophene-2-carboxylate 1,1dioxide (3ea)
(
(2R,3R)-methyl 3-(3,5-dichlorophenyl)-2-fluorotetrahydrothiophene-2-carboxylate 1,1dioxide (3ea)

(2R,3R)-methyl 3-(3,5-dichlorophenyl)-2-fluorotetrahydrothiophene-2-carboxylate 1,1dioxide (3ea)

methyl 2-chloro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide
(3ib)

methyl 2-chloro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ib)

methyl 2-chloro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ib)

methyl 2-chloro-3-(4-methoxyphenyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide (3ib)

methyl 3-(4-methoxyphenyl)-2-methyltetrahydrothiophene-2-carboxylate 1,1-dioxide (3ic)

methyl 3-(4-methoxyphenyl)-2-methyltetrahydrothiophene-2-carboxylate 1,1-dioxide (3ic)

methyl 3-(4-methoxyphenyl)-2-methyltetrahydrothiophene-2-carboxylate 1,1-dioxide
(3ic)

Totals
methyl 3-(4-methoxyphenyl)-2-methyltetrahydrothiophene-2-carboxylate 1,1-dioxide (3ic)

4: $229 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Name
Retention Time
Area Percent
Pk \#
22.816
27.092
3.465
96.535

1
2
methyl 2-(3-ethoxy-3-oxopropyl)-3-(4-methoxyphenyl)tetrahydrothiophene-2carboxylate 1,1-dioxide (3id)

methyl 2-(3-ethoxy-3-oxopropyl)-3-(4-methoxyphenyl)tetrahydrothiophene-2carboxylate 1,1-dioxide (3id)

methyl 2-(3-ethoxy-3-oxopropyl)-3-(4-methoxyphenyl)tetrahydrothiophene-2carboxylate 1,1-dioxide (3id)

3: $237 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
20.084	49.222	1	
	35.348	50.778	2

methyl 2-(3-ethoxy-3-oxopropyl)-3-(4-methoxyphenyl)tetrahydrothiophene-2carboxylate 1,1-dioxide (3id)


```
3:229 nm, 4 nm
```

Results

Name
Retention Time
Area Percent $\mathrm{Pk} \#$
20.468
36.084 3.618 1
2

