Supplementary Information

Carbo-cyclohexadienes *vs carbo*-benzenes: structure and conjugative properties

Arnaud Rives,^[a,b] Iaroslav Baglai,^[a,b,c] Cécile Barthes,^[a,b] Valérie Maraval,^[a,b]*

Nathalie Saffon-Merceron,^[d] Alix Saquet,^[a,b] Zoia Voitenko,^[c] Yulian Volovenko^[c] and

Remi Chauvin^[a,b]*

[a] CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4 (France)
[b] Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4 (France)
[c] Kiev National Taras Shevchenko University, 60 Volodymlyrska St, 01033 Kiev (Ukraine)
[d] Université de Toulouse, UPS, Institut de Chimie de Toulouse, ICT-FR 2599, 118 route de Narbonne, 31062 Toulouse (France)
Fax: (+33)5 61 55 30 03. E-mail: <u>vmaraval@lcc-toulouse.fr</u>, <u>chauvin@lcc-toulouse.fr</u>.

Table of Contents

1. General remarks

- 2. Voltammetric measurements
- 3. Crystal structure determination of 12b, 12c and 12d
- 4. Synthesis procedures and characterization of all new compounds
- 5. Copies of ¹H, ¹³C and ¹⁹F NMR spectra, and voltammograms
- 6. Voltammograms
- 7. UV-vis absorption spectra and solvatochromism of 12d
- 8. References

1. General remarks.

THF and diethyl ether were dried and distilled over sodium/benzophenone, pentane and dichloromethane over P2O5. All other reagents were used as commercially available. In particular, commercial solutions of n-BuLi were 2.5 M in hexane, solutions of ethylmagnesium bromide were 3 M in THF, solutions of tetrabutylammonium fluoride were 1 M in THF, solutions of HCl were 2 M in diethylether. Previously described procedures were used for the preparation of **2**,^[1] **6**,^[2] **9**,^[2] **10d**,^[3] **10g**,^[4] **11d**,^[3] **11g**.^[4] All reactions were carried out under nitrogen or Argon using Schlenk and vacuum line techniques. Column chromatographies were carried out on silica gel (60 P, 70-200 mm). Silica gel thin-layer chromatography plates (60F254, 0.25 mm) were revealed by treatment with an ethanolic solution of phosphomolybdic acid (20 %). The following analytical instruments were used. ¹H, ¹³C and ¹⁹F NMR: Bruker DPX 300, Avance 300, Avance 400 or Avance 500 spectrometers (most of the NMR spectra were recorded in CDCl₃ solutions; NMR chemical shifts δ are in ppm, with positive values to high frequency relative to the tetramethylsilane reference for ¹H and ¹³C nuclei, and to CCl₃F for ¹⁹F nuclei; coupling constants *J* are in Hz). Mass spectrometry: Quadrupolar Nermag R10-10H spectrometer. UV: spectrometer Perkin-Elmer UV-Vis Win-Lab Lambda 35.

2. Voltammetric measurements.

Voltammetric measurements were carried out with a potentiostat Autolab PGSTAT100 controlled by GPES 4.09 software. Experiments were performed at room temperature in a home-made airtight three-electrode cell connected to a vacuum/argon line. The reference electrode consisted of a saturated calomel electrode (SCE) separated from the solution by a

bridge compartment. The counter electrode was a platinum wire of *ca* 1 cm² apparent surface. The working electrode was a Pt microdisk (0.5 mm diameter). The supporting electrolyte [*n*-Bu₄N][PF₆] was used as received (Fluka, 99% electrochemical grade) and simply degassed under argon. Dichloromethane was freshly distilled prior to use. The solutions used in the electrochemical studies were typically 10^{-3} M in *carbo*-cyclohexadiene and 0.1 M in supporting electrolyte. Before each measurement, the solutions were degassed by bubbling argon, and the working electrode was polished with a polishing machine (Presi P230). Typical instrumental parameters for recorded square-wave voltammograms were: SW frequency f = 20 Hz, SW amplitude Esw = 20 mV, and scan increment dE = 0.5 mV.

3. Crystal structure determination of 12b, 12c and 12d.

The X-ray data for compounds **12b**, **12c** and **12d** were collected at low temperature (105 K for **12b** and 193 K for **12c** and **12d**) on a GEMINI diffractometer (Oxford Diffraction) using the CuK α radiation (wavelength = 1.54180 Å) for **12b**, and on a Bruker-AXS APEX II Quazar diffractometer (**12c** and **12d**) using a 30 W air-cooled microfocus source with focusing multilayer optics MoK α radiation (wavelength = 0.71073 Å). Phi- and omega-scans were used. The structure of **12b** was solved by direct methods using SUPERFLIP,^[5] and refined by full-matrix least-squares procedures using the programs of CRYSTALS.^[6] Atomic scattering factors were taken from the International tables for X-ray Crystallography.^[7] Absorption corrections were introduced using the program MULTISCAN.^[8] The data of compounds **12c** and **12d** were integrated with SAINT,^[9] and an empirical absorption correction with SADABS^[10] was applied. The structures were solved by direct methods, using SHELXS-97 and refined using the least–squares method on F^2 .^[11] All non-hydrogen atoms of

12b, 12c and 12d were refined anisotropically and hydrogen atoms were refined using a riding model. CCDC- 1003439 (12b), CCDC-951896 (12c) and CCDC-951897 (12d) contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u> (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

Crystal data.

• 12b. $C_{48}H_{30}F_6O_4$, M = 784.75, Monoclinic, space group C2/c, a = 13.07527(8) Å, b = 16.18867(10) Å, c = 19.01027(12) Å, $\beta = 100.1002(6)^\circ$, V = 3961.57(4) Å³, Z = 4, crystal 0.15 x 0.15 x 0.25 mm³, 35692 reflections collected (3771 independent, R*int* = 0.0213), 262 parameters, R_1 [I>2 σ (I)] = 0.049, wR2 [all data] = 0.065, largest diff. peak and hole: 0.61 and -0.21 e.Å⁻³.

• 12c. $C_{48}H_{24}F_{12}O_2$, CHCl₃, M = 980.04, Monoclinic, space group $P2_1/c$, a = 12.8182(16)Å, b = 35.815(5) Å, c = 9.7626(14) Å, $\beta = 92.841(6)^\circ$, V = 4476.4(11) Å³, Z = 4, crystal 0.20 x 0.20 x 0.04 mm³, 59064 reflections collected (7551 independent, R*int* = 0.1994), 653 parameters, 102 restraints, R_1 [I>2 σ (I)] = 0.0829, wR_2 [all data] = 0.2414, largest diff. peak and hole: 0.573 and -0.326 e.Å⁻³.

• 12d. $C_{46}H_{26}F_6O_2$, CH_2Cl_2 , M = 809.59, Triclinic, $P \ \overline{I}$, a = 12.5119(17) Å, b = 12.6648(17) Å, c = 14.9565(19) Å, $\alpha = 70.805(5)^\circ$, $\beta = 66.621(5)^\circ$, $\gamma = 67.665(5)^\circ$, V = 1967.5(5) Å³, Z = 2, crystal 0.20 x 0.10 x 0.04 mm³, 28934 reflections collected (7350 independent, Rint = 0.0906), 669 parameters, 489 restraints, $R_1 \ [I > 2\sigma(I)] = 0.0672$, $wR2 \ [all data] = 0.1983$, largest diff. peak and hole: 0.212 and -0.314 e.Å⁻³.

4. Synthesis procedures and characterization of all new compounds

[3,6-dimethoxy-3,6-bis(trifluoromethyl)-8-[tris(propan-2-yl)silyl]octa-1,4,7-triyn-1-yl]

tris (propan-2-yl)silane (3). To a solution of the triyne **2** (2.53 g, 4.34 mmol) in dry THF (40 mL) under stirring at -78 °C were added 3.82 mL (9.55 mmol) of *n*-BuLi. The stirring was maintained 15 min. at -78 °C and then 15 min. at room temperature, before cooling again at -78 °C and adding methyl triflate (1.08 mL, 9.55 mmol). The temperature was allowed to warm slowly up to room temperature and the resulting mixture was stirred overnight, before treatment with saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by silicagel chromatography (pentane/DCM 9:1) to give **3** as a pale yellow oil in 89 % yield (2.35 g).

 δ_{H} (CD₃-C(O)-CD₃) 1.11-1.14 (42 H, m, Si-CH-CH₃), 3.64 (6 H, s, O-CH₃). δ_{F} (CD₃-C(O)-CD₃) - 80.24, - 80.27 (2 s, CF₃). $\delta_{\text{C}\{\text{H}\}}$ (CD₃-C(O)-CD₃) 10.74 (s, CH-CH₃), 17.87 (s, CH-CH₃), 53.34 (s, O-CH₃), 70.77 (q, ²*J*_{CF} 35 Hz, *C*-CF₃), 78.78 (s, C-*C*=*C*-C), 92.72 (s, *C*=C-Si), 95.38 (s, =*C*-Si), 121.50 (q, ¹*J*_{CF} 283 Hz, CF₃). MS (DCI/NH₃): *m/z* 628.3 (M - NH₄). HRMS (DCI/CH₄): *m/z* calcd for C₂₉H₄₅OF₆Si₂: 579.2913, found: 579.2928.

3,6-dimethoxy-3,6-bis(trifluoromethyl)octa-1,4,7-triyne (**1**). To a solution of the triyne **3** (1.80 g, 2.95 mmol) in THF (40 mL) under stirring at -78 °C was added a TBAF solution (7.38 mL, 7.38 mmol). The stirring was maintained at the same temperature during 1.5 h before treatment with water. The organic layer was extracted with diethylether, the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silicagel chromatography (DCM/pentane 5:95) to give the bis-terminal triyne **1** as a quite volatile colorless oil which crystallized at low temperature

 $\delta_{\rm H}$ (CDCl₃) 2.78 (2 H, s, =C-*H*), 3.61 (6 H, s, O-C*H*₃). $\delta_{\rm F}$ (CDCl₃) -79.52, -79.53 (2s, C*F*₃). $\delta_{\rm C{H}}$ (CDCl₃) 53.97 (s, O-CH₃), 70.54 (q, ²*J*_{CF} 36 Hz, C-CF₃), 73.09, 78.43 (2s, C(CF₃)-*C*=), 77.16 (s, =*C*-H), 121.07 (q, ¹*J*_{CF} 285 Hz, *C*F₃). MS (DCI/CH₄): *m/z* 299.0 (M+H). HRMS (DCI/CH₄): *m/z* calcd for C₁₂H₉O₂F₆: 299.0507, found: 299.0493.

4,7-dimethoxy-4,7-bis(trifluoromethyl)deca-2,5,8-triyne-1,10-diol (4a). To a solution of the triyne **1** (0.720 g, 2.41 mmol) in THF (20 mL) was added at -78 °C *n*-BuLi (2.2 mL, 5.50 mmol). The resulting mixture was stirred 10 min at – 78 °C and 1 h at room temperature. This solution was added to a suspension of *p*-formaldehyde (0.220 g, 7.3 mmol) in THF (5 mL) under stirring at – 78 °C. The reaction mixture was allowed to warm slowly up to room temperature and the stirring was maintained overnight before treatment with saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether, the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under vacuum. The residue was purified by silicagel chromatography (acetone/pentane 2:8) to finally give the diol **4a** in 60 % yield (0.520 g) as a brown oil.

 δ_{H} (CDCl₃, 400 MHz) 3.04 (2 H, br s, O*H*), 3.58 (6 H, s, O-C*H*₃), 4.40 (4 H, s, C*H*₂-OH). (CDCl₃, 282 MHz) δ_{F} -79.34 (s, C*F*₃). $\delta_{\text{C}\{\text{H}\}}$ (CDCl₃, 100 MHz) 50.44 (s, CH₂-OH), 53.90 (s, O-CH₃), 70.71 (q, ²*J*_{CF} 36 Hz, C-CF₃), 74.78, 78.56 (2s, C(CF₃)-*C*=), 87.20 (s, =*C*-CH₂OH), 121.18 (q, ¹*J*_{CF} 284 Hz, CF₃). MS (DCI/NH₃) 376.0 (M+NH₄). HRMS (DCI/CH₄): *m/z* calcd for C₁₄H₁₁O₃F₆ [M-H₂O+H]⁺ 341.0612, found: 341.0610.

4,7-dimethoxy-1,10-bis(4-methoxyphenyl)-4,7-bis(trifluoromethyl)deca-2,5,8-triyne-1,10-

diol (4b). To a solution of the triyne **1** (0.63 g, 2.11 mmol) in dry THF (12 mL) under stirring at -78 °C was added *n*-BuLi (1.90 mL, 4.75 mmol). The resulting mixture was stirred during 20 min. at -78 °C and 50 min. at room temperature, before cooling again at -78 °C and adding a solution of the *p*-anisaldehyde (0.64 mL, 5.27 mmol) in THF (2 mL). The reaction mixture was allowed to warm slowly up to room temperature and the stirring was maintained overnight. After treatment with saturated aqueous NH₄Cl and extractions of the aqueous layer with diethylether, the combined organic layers were washed with brine, dried over MgSO₄ and evaporated to dryness. The residue was purified by flash chromatography (diethylether/pentane 4:6 then 1:1) to finally give **4b** in 71 % yield (0.856 g) as pale yellow oil.

 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 2.48 (2 H, br s, O*H*), 3.57 (6 H, s, O-C*H*₃), 3.80 (6 H, s, C₆H₄-OC*H*₃), 5.48 (2 H, s, C*H*-OH), 6.90 (4 H, d, ³*J*_{HH} 8.6 Hz, *m*-C₆*H*₄-OCH₃), 7.42 (4 H, d, ³*J*_{HH} 8.6 Hz, *o*-C₆H₅-OCH₃). $\delta_{\rm F}$ (CDCl₃, 282 MHz) 79.21 (C*F*₃). $\delta_{\rm C{H}}$ (CDCl₃, 63 MHz) 53.97 (C₆H₄-OCH₃), 55.24 (O-CH₃), 63.79 (CH-OH), 70.81 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 75.66, 78.77, 89.07 (*C*=C), 114.09 (*m*-C₆H₄-OCH₃), 121.21 (q, ¹*J*_{CF} 285 Hz, *C*F₃), 128.05 (*o*-C₆H₄-OCH₃), 131.35 (*i*-C₆H₄-OCH₃), 159.87 (*p*-C₆H₄-OCH₃). MS (DCI/CH₄) *m/z* 553.1 (M-OH). HRMS (DCI/CH₄): *m/z* calcd for C₂₈H₂₄O₃F₆ (M-OH): 553.1450, found: 553.1423. FT-IR: *v* 3382 (OH), 2853-2959 (Csp2-H), 2237 (C=C), 1611 (C=C), 1444-1463 (C=C), 1251 (C-OMe).

4,7-dimethoxy-1,10-diphenyl-4,7-bis(trifluoromethyl)deca-2,5,8-triyne-1,10-diol (4c). To a solution of the triyne **1** (0.200 g, 0.67 mmol) in THF (5 mL) under stirring at -78 °C was added *n*-BuLi (0.55 mL, 1.37 mmol). The resulting mixture was stirred 30 min at -78 °C, and 30 min at room temperature, before adding benzaldehyde (0.14 mL, 1.38 mmol) at -78 °C.

The temperature was allowed to warm slowly up to room temperature and the stirring was maintained overnight. After treatment with saturated aqueous NH₄Cl, the aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silicagel chromatography (pentane/acetone 9:1 to 6:4) to give the diol **4c** as a yellow oil in 93 % yield (0.32 g).

 $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.37 (2 H, br d, ${}^{3}J_{\rm HH}$ 6.5 Hz, O*H*), 3.59 (6 H, s, O-C*H*₃), 5.57 (2 H, d, ${}^{3}J_{\rm HH}$ 6.5 Hz, C*H*-OH), 7.36-7.44 (6 H, m, *m*-, *p*-C₆*H*₅), 7.54 (4 H, d, ${}^{3}J_{\rm HH}$ 7.2 Hz, *o*-C₆*H*₅). $\delta_{\rm F}$ (CDCl₃, 376 MHz) -79.2 (C*F*₃). $\delta_{\rm C{H}}$ (CDCl₃, 100 MHz) 54.07 (O-CH₃), 64.38 (CH-OH), 70.88 (q, ${}^{2}J_{\rm CF}$ 36 Hz, C-CF₃), 76.08, 78.79, 88.72 (*C*=*C*), 121.22 (q, ${}^{1}J_{\rm CF}$ 285 Hz, *C*F₃), 126.60, 126.63, 128.86 (*o*-, *m*-C₆H₅), 128.92 (*p*-C₆H₅), 139.03 (*i*-C₆H₅).

4,7-dimethoxy-4,7-bis(trifluoromethyl)deca-2,5,8-triynedial (5a). To a solution of the diol **4a** (0.300 g, 0.84 mmol) in 1,2-DCE (25 mL) was added IBX (1.17 g, 4.2 mmol). The resulting mixture was refluxed during 6 h and then cooled at 0 °C before filtration over celite. Evaporation of the filtrate gave the dialdehyde **5a** in 93 % yield (0.275 g) as a pale orange-brown oil.

 $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.64 (6 H, s, O-CH₃), 9.33 (2 H, s, CHO). $\delta_{\rm F}$ (CDCl₃, 376 MHz) -78.46 (CF₃). $\delta_{\rm C{H}}$ (CDCl₃, 100 MHz) 54.72 (s, OCH₃), 70.95 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 78.31, 81.33, 84.40 (*C*=*C*), 120.65 (q, ¹*J*_{CF} 286 Hz, *C*F₃), 174.66 (*C*HO). MS (DCI/CH₄) *m/z* 355.0 (M+H). HRMS (DCI/CH₄): *m/z* calcd for C₁₄H₉O₄F₆ (M+H): 355.0405, found: 355.0406.

4,7-dimethoxy-1,10-bis(4-methoxyphenyl)-4,7-bis(trifluoromethyl)deca-2,5,8-triyne-1,10-

dione (5b). To a solution of the diol 4b (0.66 g, 1.16 mmol) in dry DCM (90 mL), was added MnO_2 (1.01 g, 11.6 mmol) at room temperature. The resulting mixture was stirred 3h and then filtered through celite. The filtrate was evaporated to dryness. The residue was purified by flash chromatography (diethylether/pentane 3:7 then 4:6) to finally give 5b in 84 % yield (0.550 g) as a pale yellow oil.

 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 3.72 (6 H, s, O-C*H*₃), 3.91 (6 H, s, C₆H₄-OC*H*₃), 6.99 (4 H, d, ³*J*_{HH} 8.7 Hz, *m*-C₆*H*₄-OCH₃), 8.07 (4 H, d, ³*J*_{HH} 8.7 Hz, *o*-C₆*H*₄-OCH₃). $\delta_{\rm F}$ (CDCl₃, 282 MHz) 78.56 (C*F*₃). $\delta_{\rm C{H}}$ (CDCl₃, 75 MHz) 54.72 (C₆H₄-OCH₃), 55.66 (O-CH₃), 71.04 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 78.63, 79.14 (=*C*-C-*C*=), 84.25 (=*C*-C=O), 114.26 (*m*-C₆H₄-OCH₃), 120.95 (q, ¹*J*_{CF} 286 Hz, *C*F₃), 129.28 (*o*-C₆H₄-OCH₃), 132.11 (*i*-C₆H₄-OCH₃), 165.23 (*p*-C₆H₄-OCH₃), 174.32 (*C*=O). MS (DCI/CH₄) *m/z* 567.1 (M+H). HRMS (DCI/CH₄) *m/z* calcd for C₂₈H₂₁O₆F₆ (M+H): 567.1242, found: 567.1218. IR: *v* 2852-2923 (Csp2-H), 1649 (C=O), 1597 (C=C), 1259 (C-OMe).

4,7-dimethoxy-1,10-diphenyl-4,7-bis(trifluoromethyl)deca-2,5,8-triyne-1,10-dione (5c).

To a solution of the diol 4c (0.320 g, 0.63 mmol) in dichloroethane (40 mL) was added IBX (0.882 g, 3.15 mmol). The resulting mixture was stirred under reflux during 24 h and then cooled into an ice bath before filtration through celite. After evaporation of the solvent under reduced pressure, the residue was purified by silicagel chromatography (pentane/diethylether 8:2) to give the expected diketone **5c** as a pale solid in 94 % yield (0.30 g).

 $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.73 (6 H, s, O-C*H*₃), 7.52-7.56 (4 H, m, *m*-C₆*H*₅), 7.67-7.71 (2 H, m, *p*-C₆*H*₅), 8.11 (4 H, d, ³*J*_{HH} 7.5 Hz, *o*-C₆*H*₅). $\delta_{\rm F}$ (CDCl₃, 376 MHz) -78.48, -78.49 (C*F*₃). $\delta_{\rm C{H}}$ (CDCl₃, 100 MHz) 54.81 (O-CH₃), 71.11 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 78.63, 79.87, 84.03 (*C*=*C*),

120.96 (q, ¹*J*_{CF} 286 Hz, *C*F₃), 128.99, 129.66 (*o*-, *m*-*C*₆H₅), 135.11 (*p*-*C*₆H₅), 135.87 (*i*-*C*₆H₅), 175.95 (*C*=O). MS (DCI/CH₄) *m/z* 507.1 (M+H). HRMS (DCI/CH₄) *m/z* calcd for C₂₆H₁₇O₄F₆ (M+H): 507.1031, found: 507.1017.

4,7,13,16-tetramethoxy-1,10-bis(4-methoxyphenyl)-4,7-diphenyl-13,16-bis

(trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol (7b). To a solution of triyne 6 (0.139 g, 0.442 mmol) in THF (30 mL) was added *n*-BuLi (0.35 mL, 0.875 mmol) at -78 °C. The mixture was stirred 20 min at -78 °C and 30 min at room temperature (solution A). During that time, the triynedione **5b** (0.250 g, 0.442 mmol) was dissolved in THF (30 mL, solution B). The solutions A and B were simultaneously transferred into a 250 mL flask containing 90 mL THF under stirring at -78 °C. The resulting mixture was allowed to warm slowly up to room temperature and stirring was continued for 15 h. After treatment with saturated aqueous NH₄Cl and extraction with Et₂O, the combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/DCM/pentane 1:1:8 then 2:2:6) to finally give **7b** in 40 % yield (0.158 g) as pale brown oil.

 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 3.39-3.69 (12 H, m, O-C*H*₃), 3.80-3.86 (6 H, m, C₆H₄-OC*H*₃), 6.82-7.00 (4 H, m, *m*-C₆*H*₄-OCH₃), 7.33-7.50 (6 H, m, *m*-, *p*-C₆*H*₅), 7.58-7.83 (8 H, m, *o*-C₆H₅, *o*-C₆H₄-OCH₃). $\delta_{\rm F}$ (CDCl₃, 282 MHz) 79.13-(-78.91) (m, C*F*₃). $\delta_{\rm C}$ {H} (CDCl₃, 75 MHz) 53.26-53.44, 53.82-54.21, 55.34-55.38 (m, O-CH₃), 64.49-64.71 (m, C-OCH₃), 70.77 (q, ²*J*_{CF} 36.0 Hz, *C*-CF₃), 71.81-71.94 (m, *C*-OH), 74.61-74.82, 78.65-78.86, 82.95-83.30, 84.42-84.56, 85.90-86.32, 88.16-88.95 (m, *C*=*C*), 114.01-114.05 (m, *m*-C₆H₄-OCH₃), 121.09 (q, ¹*J*_{CF} 285 Hz, *C*F₃), 126.27-126.50 (m, *m*-C₆H₅), 127.05-127.18 (m, *o*-C₆H₄-OCH₃), 128.44-128.55 (m,

o-*C*₆H₅), 129.28 (m, *o*-*C*₆H₄-OCH₃), 128.98-129.22 (m, *p*-*C*₆H₅), 132.01-132.24 (m, *i*-*C*₆H₄-OCH₃), 139.04-139.30 (m, *i*-*C*₆H₅), 160.16-160.28 (m, *p*-*C*₆H₄-OCH₃). MS (DCI/CH₄) *m/z* 881.2 (M+H). HRMS (DCI/CH₄) *m/z* calcd for C₅₀H₃₉O₈F₆ (M+H): 881.2549, found: 881.2552.

4,7,13,16-tetramethoxy-1,4,7,10-tetraphenyl-13,16-bis(trifluoromethyl)cyclooctadeca-

2,5,8,11,14,17-hexayne-1,10-diol (7c). To a solution of the triyne **6** (0.182 g, 0.581 mmol) in THF (40 mL) at -78 °C was added *n*-BuLi (0.49 mL, 1.22 mmol) and the resulting solution was stirred during 50 min. Then, this mixture and a solution of the diketone **5c** (0.300 g, 0.593 mmol) in THF (40 mL) were simultaneously transferred into a flask containing 120 mL of THF under stirring at -78 °C. The mixture was allowed to warm slowly up to room temperature and the stirring was maintained overnight before treatment with saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silicagel chromatography (diethylether/pentane 2:8) to give the expected pericyclyne **7c** as a white solid in 18 % yield (0.086 g).

 $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.38-3.64 (12 H, m, O-CH₃), 7.35-7.47 (12 H, m, *m*-, *p*-C₆H₅), 7.66-7.82 (8 H, m, *o*-C₆H₅). $\delta_{\rm F}$ (CDCl₃, 376 MHz) 79.15-(78.90) (m, CF₃). $\delta_{\rm C{H}}$ (CDCl₃, 100 MHz) 53.26-54.43, 53.82-54.22 (m, O-CH₃), 64.81-65.04 (m, *C*-OCH₃), 70.77 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 71.87-71.97 (m, *C*-OH), 74.80-75.04, 78.67-78.89, 83.25-83.55, 84.34-84.57, 85.76-86.21, 88.10-88.62 (m, *C*=*C*), 114.01-114.05 (m, *m*-C₆H₄-OCH₃), 121.07 (q, ¹*J*_{CF} 285 Hz, CF₃), 125.55-125.68, 126.25-126.43, 128.45-128.59, 128.75-128.82 (4 m, *o*-C₆H₅), *m*-C₆H₅), 129.12-129.22, 129.31-129.35 (2 m, *p*-C₆H₅), 139.74-140.05 (2 m, *i*-C₆H₅). MS (DCI/CH₄)

m/*z* 789.2 (M-OMe), 803.2 (M-OH), 820.2 (M). HRMS (DCI/CH₄) *m*/*z* calcd for C₄₈H₃₃O₅F₆ (M-OH): 803.2232, found: 803.2209.

4,7,13,16-tetramethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)-1,10-bis[4-

(trifluoromethyl)phenyl]cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol (7d). To a solution of the triyne 1 (0.199 g, 0.668 mmol) in THF (45 mL) was added *n*-BuLi (0.53 mL, 1.33 mmol) at -78 °C. The mixture was stirred for 15 min at -78 °C and 75 min at room temperature (solution A). During that time, the triynedione 10d (0.440 g, 0.668 mmol) was dissolved in THF (45 mL, solution B). The solutions A and B were simultaneously transferred into a 500 mL flask containing 140 mL THF under stirring at -78 °C. The resulting mixture was allowed to warm slowly up to room temperature and stirring was continued for 17 h. After treatment with saturated aqueous NH₄Cl and extraction of the aqueous layer with Et₂O, the combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/pentane 5:95, 1:9 then 2:8) to finally give 7d in 21 % yield (0.133 g) as a white solid.

 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 3.39-3.61 (12 H, m, O-CH₃), 7.61 (6 H, br s, *m*-, *p*-C₆H₅), 7.61-7.93 (12 H, m, *o*-, *m*-C₆H₄-CF₃, *o*-C₆H₅). $\delta_{\rm F}$ (CDCl₃, 282 MHz) 79.07-(78.90) (m, CF₃), 62.75 (s, C₆H₄-CF₃). $\delta_{\rm C}$ {H} (CDCl₃, 75 MHz) 53.27, 53.35, 53.42, 54.08, 54.17 (O-CH₃), 64.23, 64.21, 64.40, 64.43 (C-OCH₃), 70.74 (q, ²J_{CF} 36 Hz, C-CF₃), 71.74, 71.82, 71.88 (C-OH), 75.34-75.52, 78.63-78.72, 84.02-84.56, 85.01-85.36, 87.24-87.95 (m, C=C), 121.02 (q, ¹J_{CF} 285 Hz, CF₃), 123.74 (q, ¹J_{CF} 272 Hz, C₆H₄-CF₃), 125.77-126.27 (m, *o*-, *m*-C₆H₄-CF₃, *o*-C₆H₅), 128.66 (*m*-C₆H₅), 129.32, 129.38 (*p*-C₆H₅), 130.26-132.21 (m, *p*-C₆H₄-CF₃) 138.67-

138.99 (m, *i*-C₆H₅) 143.50-143.76 (*i*-C₆H₄-CF₃). MS (MALDI-TOF/DCTB) *m/z* 979.3 (M+Na). HRMS (MALDI-TOF/DCTB) *m/z* calcd for C₅₀H₃₉O₈F₆ (M+Na): 979,1905 found: 979.1969.

1,10-bis[4-(9H-carbazol-9-yl)phenyl]-4,7,13,16-tetramethoxy-13,16-diphenyl-4,7-

bis(trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol (7e). To a solution of HMDS (0.21 mL, 1 mmol) in THF (15 mL) under stirring at -78 °C was added *n*-BuLi (0.39 mL, 0.98 mmol). The reaction mixture was stirred 30 min at -78 °C before adding a solution of the triyne **1** (0.049 g, 0.164 mmol) in THF (3 mL). The reaction mixture was stirred 30 min at -78 °C and was diluted with THF to 50 mL (volume of r.m.). Then, the reaction mixture and a solution of **10e** (0.140 g, 0.164 mmol) in THF (50 mL) were transferred simultaneously into a 500 mL flask containing THF (300 mL) under stirring at -78°C. The temperature was allowed to increase slowly up to room temperature and the reaction mixture was stirred during 16 h before treatment with saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. It was not possible to purify this crude mixture.

HRMS-control: HRMS (MALDI-DCTB) *m/z* calcd for C₇₂H₄₈N₂O₆F₆: 1150.3417, found: 1150.3440.

1,10-bis[4-(1H-indol-1-yl)phenyl]-4,7,13,16-tetramethoxy-4,7-diphenyl-13,16-bis

(trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol (7f). To a solution of HMDS (0.3 mL, 1.4 mmol) in THF (15 mL) under stirring at -78 °C was added *n*-BuLi (0.54 mL, 1.35 mmol). The reaction mixture was stirred 30 minutes at -78 °C before adding a

solution of the triyne **1** (0.067 g, 0.226 mmol) in THF (3 mL). The reaction mixture was stirred 30 minutes at -78 °C and was diluted with THF to 50 mL (volume of r.m.). Then, this solution and a solution of the diketone **10f** (0.170 g, 0.226 mmol) in THF (50 mL) were transferred simultaneously into a 500 mL flask containing THF (300 mL) under stirring at -78°C. The temperature was allowed to increase slowly up to room temperature and the reaction mixture was stirred at room temperature for 16 h before treatment with saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (Acetone/Pentane 2:8) to give the [6]pericyclynediol **7f** as a light yellow solid in 38 % yield (90 mg).

mp 84 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.43-3.73 (14 H, m, O-CH₃, OH), 6.72 (2 H, m, H3-indole), 7.24-7.97 (28 H, m, all the rest). $\delta_{\rm F}$ (CDCl₃, 376 MHz) 79.37-(-78.86) (m, CF₃). $\delta_{\rm C{H}}$ (CDCl₃, 100 MHz) 53.25-54.30 (m, O-CH₃), 64.51-64.63 (m, C-OCH₃), 70.70 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 71.95 (*C*-OH), 75.20, 78.87, 83.65, 83.71, 84.53, 85.81 88.15, 88.39 (m, -*C*=*C*-), 104.36 (m, *C*3-indole), 110.42 (m, *C*6-indole), 120.70 (*o*-C₆H₄-N), 121.11 (q, ¹*J*_{CF} 282 Hz, *C*F₃) 121.29 (*C*2-indole), 122.66 (*C*9-indole), 124.11-124.23 (m, *C*7-, *C*8-indole), 126.35-126.47 (m, *o*-C₆H₅), 127.09, 127.23, 127.64, 128.67, 129.37, 130.62 (m, *m*-, *p*-C₆H₅, *m*-C₆H₄-N), 129.53 (*C*4-indole), 135.72 (*C*5-indole), 137.79 (m, *i*-C₆H₄-N), 139.12 (m, *i*-C₆H₅), 140.68 (*p*-C₆H₄-N). MS (MALDI-TOF/DCTB) *m/z* 1050.3 (M). HRMS (MALDI-DCTB) *m/z* calcd for C₆₄H₄₄N₂O₆F₆: 1050.3104, found: 1050.3180.

4,7,13,16-tetramethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)-1,10-bis({2-[tris(propan-2-yl)silyl]ethynyl})cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol (7g). To a solution of

the triyne **1** (0.235 g, 0.789 mmol) in THF (52 mL) was added *n*-BuLi (0.63 mL, 1.58 mmol) at -78 °C. The mixture was stirred for 15 min at -78 °C and 75 min at room temperature (solution A). During that time, diketone **10g** (0.577 g, 0.789 mmol) was dissolved in THF (52 mL, solution B). The solutions A and B were simultaneously transferred into a 500 mL flask containing 160 mL THF under stirring at -78 °C. The resulting solution was allowed to warm slowly up to room temperature and stirring was continued for 17 h. After treatment with saturated aqueous NH₄Cl and extraction with diethylether, the combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (acetone/pentane 5:95, 1:9 then 2:8) to finally give **7g** in 21 % yield (0.175 g) as a white solid.

 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 1.10-1.14 (42 H, s, Si-CH-CH₃), 3.49-3.68 (12 H, m, O-CH₃), 7.39 (6 H, br s, *m*-, *p*-C₆H₅), 7.73-7.80 (4 H, m, *o*-C₆H₅). $\delta_{\rm F}$ (CDCl₃, 282 MHz) -79.24-(-78.89) (m, CF₃). $\delta_{\rm C\{H\}}$ (CDCl₃, 75 MHz) 11.01 (s, Si-CH-CH₃), 18.42 (s, Si-CH-CH₃), 53.21-53.56, 53.94-54.18 (m, O-CH₃), 70.71 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 71.74-71.87, 72.25-72.55 (m, *C*-OH, *C*(OCH₃)(C₆H₅)), 78.36-78.67, 80.43-80.83, 83.18-83.59, 84.14-84.29, 85.51-86.22, 87.17-87.48, 101.53-101.91 (*C*=*C*), 121.00 (q, ¹*J*_{CF} 283 Hz, *C*F₃), 126.47-126.56, 128.58 (*o*-, *m*-C₆H₅), 129.18-129.24 (m, *p*-C₆H₅), 138.97-139.22 (m, *i*-C₆H₅). MS (MALDI-TOF/DCTB) *m/z* calcd for C₅₈H₆₆O₆F₆NaSi₂ (M+Na): 1051.4200 found: 1051.4163.

4,7,13,16-tetramethoxy-4,7-diphenyl-1,10-bis(2-phenylethynyl)-13,16-bis

(trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol (7h). To a solution of HMDS (0.87 mL, 4.12 mmol), in THF (50 mL) at -78 °C was added *n*-BuLi (1.6 mL, 4.0

mmol). The resulting mixture was stirred 30 min before adding a solution of the diketone **10h** (0.380 g, 0.67 mmol) in THF (10 mL) at the same temperature. After stirring 30 min at – 78 °C, the solution was diluted by addition of 40 mL of THF, to have a total volume of 100 mL. This reaction mixture, and a solution of the triyne **1** (0.200 g, 0.67 mmol) in THF (100 mL) were transferred simultaneously into a 1 L flask filled with 500 mL of THF under stirring at – 78 °C. The temperature was allowed to warm slowly up to room temperature and the stirring was maintained overnight before treatment with saturated aqueous NH₄Cl. After evaporation of about 500 mL of THF, the layers were separated, the aqueous one was extracted with diethylether, and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silicagel chromatography (acetone/pentane 2:8) to give the expected [6]pericyclynediol **7h** as a pale brown solid in 13 % yield (0.080 g).

 $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.48-3.69 (14 H, m, O-CH₃, OH), 7.37-7.40 (12 H, m, *m*-, *p*-C₆H₅-C=C=C, *m*-, *p*-C₆H₅-C-OCH₃), 7.49-7.52 (4 H, m, *o*-C₆H₅-C=C), 7.75-7.82 (4 H, m, *o*-C₆H₅-C-OCH₃). $\delta_{\rm F}$ (CDCl₃, 376 MHz) -79.06-(-78.78) (m, CF₃). $\delta_{\rm C\{H\}}$ (CDCl₃, 75 MHz) 53.34-53.56, 54.07-54.41 (2 m, OCH₃), 70.85 (q, ²J_{CF} 36 Hz, C-CF₃), 71.78-71.85, 72.24-72.33 (2 m, C(OCH₃)(C₆H₅), C-OH), 78.51-78.72, 80.60-80.85, 83.73-84.91, 86.17-86.34, 86.55-86.62 (m, C=C), 121.00 (br s, *i*-C₆H₅-C=C), 121.08 (q, ¹J_{CF} 285 Hz, CF₃), 126.49-126.59, 128.45, 128.59, 129.20-129.26, 129.52 (m, *o*-, *m*-, *p*-C₆H₅-C-OCH₃, *m*-, *p*-C₆H₅-C=C), 132.02 (*o*-C₆H₅-C=C), 138.83-139.27 (m, *i*-C₆H₅-C-OCH₃). MS (DCI/CH₄) *m*/z 837.2 (M-OMe), 851.2 (M-OH), 869.2 (M+H). HRMS (DCI/CH₄) *m*/z calcd for C₅₂H₃₅O₆F₆ (M+H): 869.2338, found: 869.2362.

1,10-bis[4-(9H-carbazol-9-yl)phenyl]-4,7-dimethoxy-4,7-diphenyldeca-2,5,8-triyne-1,10-

dione (10e). To a solution of 11e (0.150 g, 0.18 mmol) in DCM (50 mL) at 0°C was added MnO_2 (0.450 g, 5.3 mmol). The reaction mixture was stirred 1 h at 0 °C and 3 h at room temperature. Then, the reaction mixture was filtered through celite, and the filtrate was evaporated under reduced pressure to give the diketone 10e as a light solid in 91% yield (0.140 g).

mp 84 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.73 (6 H, s, O-CH₃), 7.34 (4 H, d, ${}^{3}J_{\rm HH}$ 7.8 Hz, *H*8-, *H*12carbazole), 7.39-7.53 (14 H, m, *m*-, *p*-C₆*H*₅-C(OMe), *H*6-, *H*10-, *H*7-, *H*11-carbazole), 7.70 (4 H, d, ${}^{3}J_{\rm HH}$ 8.2 Hz, *o*-C₆*H*₄-N), 7.89 (4 H, d, ${}^{3}J_{\rm HH}$ 8.0 Hz, *o*-C₆*H*₅-C(OMe)), 8.15 (4 H, d, ${}^{3}J_{\rm HH}$ 7.8 Hz, *H*9-, *H*13-carbazole), 7.70 (4 H, d, ${}^{3}J_{\rm HH}$ 8.2 Hz, *o*-C₆*H*₄-N), 8.33 7.70 (4 H, d, ${}^{3}J_{\rm HH}$ 8.2 Hz, *m*-C₆*H*₄-N). $\delta_{\rm C{H}}$ (CDCl₃, 100 MHz) 54.09 (OCH₃), 72.23 (C-OCH₃), 83.58, 84.57, 89.68 (C-*C*=*C*-C), 109.82 (C6-, C10-carbazole), 120.50 (*o*-C₆H₄-N), 120.91 (C8-, C12carbazole), 124.05 (C3-, C4-carbazole), 126.31, 126.37, 126.53 (C9-, C13-, C7-, C11carbazole, *o*-C₆H₅), 128.91 (*m*-C₆H₅), 129.66 (*p*-C₆H₅), 131.39 (*m*-C₆H₄-N), 134.61 (*p*-C₆H₄-N), 138.37, 139.95, 143.60 (C2-, C5-carbazole, *i*-C₆H₅, *i*-C₆H₄-N), 175.71 (C=O). MS (MALDI-TOF/DCTB) *m/z* 852.4 (M). HRMS (MALDI-TOF/DCTB) *m/z* calcd for C₆₀H₄₀N₂O₄: 852.2988, found: 852.2997.

1,10-bis[4-(1H-indol-1-yl)phenyl]-4,7-dimethoxy-4,7-diphenyldeca-2,5,8-triyne-1,10-

dione (10f). To a solution of diol 11f (0.210 g, 0.28 mmol) in DCM (50 mL) at 0 °C was added MnO_2 (0.720 g, 8.3 mmol). The resulting mixture was stirred 1 h at 0 °C and 3 h at room temperature before filtration through celite. The filtrate was evaporated under reduced pressure to give the diketone 10f as a light solid in 91 % yield (180 mg).

mp 87 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.74 (6 H, s, O-CH₃), 6.72 (2 H, s, H3-indole) 7.28-7.64 (20 H, m, H2-, H5-, H6-, H7-, H8-indole, m-, p-C₆H₅, o-C₆H₄-N), 7.73 (2 H, d, ³J_{HH} 7.5 Hz, H9-indole), 7.91 (4 H, d, ³J_{HH} 6.5 Hz, o-C₆H₅) 8.28 (4 H, d, ³J_{HH} 8.2 Hz, m-C₆H₄-N). $\delta_{\rm C}$ (H) (CDCl₃, 100 MHz) 54.09 (O-CH₃), 72.26 (C-OCH₃), 83.65, 84.60, 89.55 (-C=C-), 105.72 (C3-indole), 110.73 (C6-indole), 121.37 (o-C₆H₄-N), 121.56, 123.13, 123,17, 124.31 (C2-, C7-, C8-, C9-indole), 126.57 (o-C₆H₅), 127.21 (p-C₆H₅), 128.93 (m-C₆H₅), 129.68 (C4-indole), 131.41 (m-C₆H₄-N), 133.78 (*i*-C₆H₄-N), 135.24 (C5-indole), 138.42 (*i*-C₆H₅), 145.08 (p-C₆H₄-N), 175.66 (C=O) . MS (MALDI-TOF/DCTB) m/z 752.2 (M). HRMS (MALDI-TOF/DCTB) m/z calcd for C₅₂H₃₆N₂O₄: 752.2675, found: 752.2744.

6,9-dimethoxy-1,6,9,14-tetraphenyltetradeca-1,4,7,10,13-pentayne-3,12-dione (10h). To a solution of **11h** (0.450 g, 0.78 mmol) in DCM (50 mL) was added MnO_2 (0.680 g, 7.82 mmol) at room temperature. The resulting mixture was stirred for 4 h and then filtered through celite and evaporated under reduced pressure to give the diketone **10h** in 96 % yield (0.430 g) as a light oil.

 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 3.66 (6 H, s, O-CH₃), 7.40-7.55 (12 H, m, *m*-, *p*-C₆H₅-C=C, *m*-, *p*-C₆H₅-C-OCH₃), 7.62 (4 H, d, ³J_{HH} 6.9 Hz, *o*-C₆H₅-C=C), 7.81 (4 H, d, ³J_{HH} 6.3 Hz, *o*-C₆H₅-C-OCH₃). $\delta_{\rm C\{H\}}$ (CDCl₃, 100 MHz) 54.00 (O-CH₃), 72.05 (C-OCH₃), 84.25, 85.47, 87.42, 89.18, 93.15 (*C*=*C*), 119.08 (*i*-C₆H₅-C=C), 126.54, 128.79 (*o*-, *m*-C₆H₅-C-OCH₃, *m*-C₆H₅-C=C), 129.62, 131.59 (*p*-C₆H₅-C=C, *p*-C₆H₅-C-OCH₃), 133.51 (*o*-C₆H₅-C=C), 138.10 (*i*-C₆H₅-C-OCH₃), 159.84 (*C*=O). MS (DCI/NH₃) *m*/*z* 588.2 (M+NH₄). HRMS (DCI/CH₄) *m*/*z* calcd for C₃₉H₂₃O₃ (M-OMe): 539.1674, found: 539.1663.

1,10-bis[4-(9H-carbazol-9-yl)phenyl]-4,7-dimethoxy-4,7-diphenyldeca-2,5,8-triyne-1,10-

diol (11e). To a solution of 9-(4-bromophenyl)-9Hcarbazole (0.124 g, 0.385 mmol) in THF (15 mL) under stirring at -78 °C was added *n*-BuLi (147 μ l, 0.37 mmol). The reaction mixture was stirred during 1 h at -78 °C before adding a solution of the dialdehyde **9** (0.065 g, 0.175 mmol) in THF (3 mL). The temperature was allowed to increase slowly up to - 10 °C in 3 h before adding saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (EtOAc/Pentane 2:8) to give **11e** as a yellow solid in 32 % yield (0.150 g).

mp 73 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.69 (2 H, br s, O*H*), 3.63 (6 H, s, O-C*H*₃), 5.72 (2 H, br s, C*H*-OH), 7.29-7.47 (18 H, m, *m*-, *p*-C₆*H*₅, *H*6-, *H*10-, *H*7-, *H*11-, *H*8-, *H*12-carbazole), 7.56 (4 H, d, ${}^{3}J_{\rm HH}$ 7.9 Hz, *o*-C₆*H*₄-N), 7.78 (4 H, d, ${}^{3}J_{\rm HH}$ 7.9 Hz, *m*-C₆*H*₄-N), 7.87 (4 H, d, ${}^{3}J_{\rm HH}$ 7.5 Hz, *o*-C₆*H*₅), 8.18 (4 H, d, ${}^{3}J_{\rm HH}$ 7.7 Hz, *H*9-, *H*13-carbazole). $\delta_{C\{\rm H\}}$ (CDCl₃, 100 MHz) 53.50 (O-CH₃), 64.19 (C-OH), 72.1 (C-OCH₃), 84.46, 84.74, 86.70 (*C*=*C*), 109.73 (*C*6-, *C*10-carbazole), 120.14 (*o*-C₆H₄-N), 120.38 (*C*8-, C12-carbazole), 123.49 (*C*3-, *C*4-carbazole), 126.03 (*C*9-, C13-carbazole), 126.6 (*o*-C₆H₅), 127.2 (*C*7-, C11-carbazole), 128.33 (*m*-C₆H₄-N), 128.63 (*m*-C₆H₅), 129.20 (*p*-C₆H₅), 137.99 (*C*2-, *C*5-carbazole) 138.95, 139.59, 140.71 (*i*-C₆H₅, *i*-, *p*-C₆H₄-N). MS (MALDI-TOF/DCTB) *m*/*z* 856.3 (M). HRMS (MALDI-TOF/DCTB) *m*/*z* calcd for C₆₀H₄₄N₂O₄: 856.3301, found: 856.3372.

1,10-bis[4-(1*H*-indol-1-yl)phenyl]-4,7-dimethoxy-4,7-diphenyldeca-2,5,8-triyne-1,10-diol

(11f). To a solution of 1-(4-bromophenyl)-1H-indole (0.690 g, 2.53 mmol) in THF (15 mL) was added *n*-BuLi (0.92 mL, 2.3 mmol) at -78°C. The reaction mixture was stirred 1 h at -78

°C before adding a solution of the dialdehyde **9** (0.380 g, 1.03 mmol) in THF (3mL). The temperature was allowed to increase slowly up to -10 °C in 3 h before treatment with saturated aqueous NH₄Cl. The aqueous layer was extracted with diethylether and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (EtOAc/Pentane 2:8) to give diol **11f** as yellow solid in 27 % yield (0.210 g).

mp 76 °C. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 2.70 (2 H, br s, O*H*), 3.60 (6 H, s, O-C*H*₃), 5.65 (2 H, s, C*H*-OH), 6.72 (2 H, s, *H*3-indole), 7.15-7.74 (24 H, m, *H*2-, *H*5-, *H*6-, *H*7-, *H*8-indole, *o*-, *m*-, *p*-C₆*H*5, *o*-C₆*H*4-N), 7.84 (4 H, d, ³*J*_{HH} 7.3 Hz, *m*-C₆*H*4-N). $\delta_{\rm C\{H\}}$ (CDCl₃, 100 MHz) 53.47 (O-CH₃), 64.10 (*C*-OH), 72.08 (*C*-OCH₃), 84.29, 84.71, 86.74 (*C*=C), 103.99 (*C*3-indole), 110.48 (*C*6-indole), 120.59 (*o*-C₆H₄-N), 121.26 (*C*2-indole), 122.56 (*C*9-indole), 124.31 (*C*7-, *C*8-indole), 126.59 (*o*-C₆H₅), 127.78, 128.10, 128.60 (*m*-, *p*-C₆H₅, *m*-C₆H₄-N), 129.17 (*C*4-indole), 135.72 (*C*5-indole), 137.73 (*i*-C₆H₄-N), 139.59, 139.98 (*i*-C₆H₅, *p*-C₆H₄-N). MS (MALDI-TOF/DCTB) *m*/*z* 756.3 (M). HRMS (MALDI-TOF/DCTB) *m*/*z* calcd for C₅₂H₄₀N₂O₄Na (M+Na): 779.2886, found: 779.2939.

6,9-dimethoxy-1,6,9,14-tetraphenyltetradeca-1,4,7,10,13-pentayne-3,12-diol (11h). To a solution of phenylacetylene (0.30 mL, 2.73 mmol) in THF (5 mL) under stirring at -78 °C was added *n*-BuLi (1.08 mL, 2.73 mmol). After 45 min, a solution of the dialdehyde **9** (0.40 g, 1.08 mmol) in THF (20 mL) was added at the same temperature. The resulting mixture was stirred at -78 °C for 1.5 h before treatment with saturated aqueous NH₄Cl. The separated aqueous layer was extracted with diethylether, and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was

purified by silicagel chromatography (acetone/DCM/Pentane 0.6:2.4:7 to 0.8:3.2:6) to finally give **11h** as a pale oil in 72 % yield (0.450 g).

 $\delta_{\rm H}$ (CDCl₃, 400 MHz) 3.43 (2 H, br s, O*H*), 3.59 (6 H, s, O-C*H*₃), 5.48 (2 H,d, ³*J*_{HH} 8.0 Hz, C*H*-OH), 7.30-7.48 (16 H, m, *o*-, *m*-, *p*-C₆*H*₅-C=C, *m*-, *p*-C₆*H*₅-C-OCH₃), 7.83 (4 H, d, ³*J*_{HH} 8.0 Hz, *o*-C₆*H*₅-C-OCH₃). $\delta_{C{H}}$ (CDCl₃, 100 MHz) 52.63 (*C*H-OH), 53.47 (O-CH₃), 71.95 (*C*-OCH₃), 81.42, 84.55, 84.63, 84.77, 85.65 (*C*=*C*), 121.88 (*i*-C₆H₅-C=C), 126.67, 128.38, 128.56 (*o*-, *m*-C₆H₅-C-OCH₃, *m*-C₆H₅-C=C), 128.95, 129.09 (*p*-C₆H₅-C-OCH₃, *p*-C₆H₅-C=C), 131.90 (*o*-C₆H₅-C=C), 139.47 (*i*-C₆H₅-C-OCH₃). MS (DCI/CH₄) *m/z* 557.2 (M-OH). HRMS (DCI/CH₄) *m/z* calcd for C₄₀H₂₉O₃ (M-OH): 557.2117, found: 557.2124.

13,16-dimethoxy-1,10-bis(4-methoxyphenyl)-4,7-diphenyl-13,16-bis(trifluoromethyl)

cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne (12b). To a solution of 7b (0.073 g, 0.083 mmol) under stirring at -78 °C in dry diethylether (50 mL) was added SnCl₂ (0.157 g, 0.83 mmol) and then HCl·Et₂O (0.83 mL, 1.66 mmol). The temperature was allowed to increase slowly up to -10 °C in 3 h, thus giving a dark green mixture. Then aqueous 1 M NaOH (2.0 mL) was added and the mixture was allowed to warm up to room temperature. The aqueous layer was extracted with diethylether and the organic layer was washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (DCM/pentane 1:9) to give **12b** as dark-red solid in 69 % yield (0.045 g). Few mg of one pure isomer could be isolated.

Characterization of one isolated diastereoisomer. mp (decomp) 187 °C. λ_{max} (CHCl₃) 604 (ϵ 62200 L.mol⁻¹.cm⁻¹), 442 (53200). δ_{H} (CDCl₃, 300 MHz) 3.71 (6 H, s, O-CH₃), 3.90 (6 H, s, C₆H₄-OCH₃), 7.00 (4 H, d, ³J_{HH} 8.9 Hz, *m*-C₆H₄-OCH₃), 7.42-7.46 (2 H, m, *p*-C₆H₅), 7.51-

7.56 (4 H, m, *m*-C₆*H*₅), 7.73 (4 H, d, ${}^{3}J_{HH}$ 8.9 Hz, *o*-C₆H₄-OCH₃), 7.92 (4 H, d, ${}^{3}J_{HH}$ 7.2 Hz, *o*-C₆H₅). δ_{F} (CDCl₃, 282 MHz) -78.77 (CF₃), second diastereoisomer: -78.93 (CF₃). $\delta_{C\{H\}}$ (CDCl₃, 75 MHz) 54.33 (O-CH₃), 55.54 (C₆H₄-OCH₃), 71.38 (q, ${}^{2}J_{CF}$ 35 Hz, *C*-CF₃), 85.62, 86.91, 100.32, 102.53, 105.58 (*C*-C=*C*-*C*), 114.59 (*m*-C₆H₄-OCH₃), 121.55 (q, ${}^{1}J_{CF}$ 285 Hz, *C*F₃), 127.46, 128.94, 128.97, 129.21, 129.47 (*m*-C₆H₄-OCH₃, *o*-, *m*-, *p*-C₆H₅), 130.89 (*i*-C₆H₄-OCH₃), 136.67 (*i*-C₆H₅), 145.43, 147.37 (C=*C*=*C*=C), 160.92 (*p*-C₆H₄-OCH₃). MS (MALDI-TOF/ DCTB) *m/z* 784.3 (M). HRMS (MALDI-TOF/DCTB) *m/z* calcd for C₄₈H₃₀O₄F₆: 784.2048, found: 784.2076.

13,16-dimethoxy-1,4,7,10-tetraphenyl-13,16-bis(trifluoromethyl)cyclooctadeca-

1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne (12c). To a solution of the pericyclynediol **7c** (0.085 g, 0.103 mmol) in DCM (40 mL) under stirring at -78 °C were added SnCl₂ (0.196 g, 1.03 mmol) and HCl⁻Et₂O (1.03 mL, 2.06 mmol). The resulting mixture was allowed to warm slowly up to -10 °C, and then it was removed from the cold bath and stirred during 10 min at room temperature before treatment with aqueous 1 M NaOH (2.06 mL). After filtration through celite, the organic layer was washed 3 times with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silicagel chromatography (pentane/diethylether 9:1) to give the expected *carbo*-cyclohexadiene **12c** as a dark violet solid in 20 % yield (0.015 g).

 λ_{max} (CHCl₃) 574 (ϵ 56700 L.mol⁻¹.cm⁻¹), 420 (44200). δ_{H} (CDCl₃, 300 MHz) 3.70 (6 H, s, O-CH₃), 7.36-7.56 (12 H, m, *m*-, *p*-C₆H₅), 7.77 (4 H, d, ³J_{HH} 7.5 Hz, *o*-C₆H₅), 7.92 (4 H, d, ³J_{HH} 7.6 Hz, *o*-C₆H₅). δ_{F} (CDCl₃, 282 MHz) –78.70 (CF₃). $\delta_{\text{C}}_{\text{H}}$ (CDCl₃, 75 MHz) 54.36 (O-CH₃), 71.40 (q, ²J_{CF} 36 Hz, C-CF₃), 85.43, 87.41, 100.16, 103.13, 107.36 (C-C=C-C), 121.56 (q, ¹J_{CF})

285 Hz, CF₃), 127.53, 127.55 (*m*-C₆H₅), 129.00, 129.05 (*o*-C₆H₅), 129.52, 129.63 (*p*-C₆H₅),
136.28, 136.43 (*i*-C₆H₅), 147.94, 148.60 (C=C=C=C). MS (MALDI-TOF/ DCTB) *m/z* 724.2
(M). HRMS (MALDI-TOF/DCTB) *m/z* calcd for C₄₆H₂₆O₂F₆: 724.1837, found: 724.1903.

13,16-dimethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)-1,10-bis[4-(trifluoromethyl)

phenyl]cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne (12d). To a solution of the 7d (0.040 g, 0.042 mmol) under stirring at -78 °C in dry DCM (20 mL) were added SnCl₂ (0.080 g, 0.42 mmol) and then HCl·OEt₂ (0.42 mL, 0.84 mmol). The temperature was allowed to increase slowly up to -5 °C, thus giving a red solution. Then aqueous 1 M NaOH (0.92 mL) was added and the mixture was allowed to warm up to room temperature. The aqueous layer was extracted with DCM and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (DCM/pentane 1:9) to give **12d** as a blue solid in 39 % yield (0.014 g). Few mg of one pure isomer could be isolated.

Characterization of one isolated diastereoisomer. λ_{max} (CHCl₃) 572 (ε 78300 L.mol⁻¹.cm⁻¹), 420 (112900). δ_{H} (CDCl₃, 300 MHz) 3.70 (6 H, s, O-C*H*₃), 7.47-7.58 (6 H, m, *m*-, *p*- C₆H₅), 7.71 (4 H, d, ³*J*_{HH} 8.1 Hz, *m*-C₆*H*₄-CF₃), 7.84-7.98 (8 H, m, *o*-C₆*H*₅, *o*-C₆*H*₄-CF₃). δ_{F} (CDCl₃, 282 MHz) -78.66 (C*F*₃), -62.73 (C₆H₄-C*F*₃); second diastereoisomer: -78.63 (C*F*₃), -62.73 (C₆H₄-C*F*₃). $\delta_{C\{H\}}$ (CDCl₃, 75 MHz) 54.42 (O-CH₃), 71.38 (q, ²*J*_{CF} 36 Hz, *C*-CF₃), 84.82, 88.08, 100.53, 101.64, 109.33 (*C*-C=*C*-*C*), 121.48 (q, ¹*J*_{CF} 285 Hz, *C*F₃-C(OCH₃)), 123.84 (q, ¹*J*_{CF} 272 Hz, C₆H₄-CF₃), 125.96 (q, ³*J*_{CF} 3.7 Hz, *m*-C₆H₄-CF₃), 127.40, 127.77, 129.23 (*o*-, *m*-C₆H₅, *o*-C₆H₄-CF₃), 130.25 (*p*-C₆H₅), 130.87 (q, ²*J*_{CF} 33 Hz, *p*-C₆H₄-CF₃), 136.11 (*i*-C₆H₅), 139.44 (*i*-C₆*H*₄-CF₃), 148.85, 149.25 (C=*C*=*C*=C). MS (MALDI-TOF/DCTB) *m/z* 860.3 (M).

9-(4-{10-[4-(9*H*-carbazol-9-yl)phenyl]-13,16-dimethoxy-4,7-diphenyl-13,16-bis (trifluoromethyl)cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl}phenyl)-9Hcarbazole (12e).

To a solution of **7e** (not purified) in dry DCM (20 mL) at -78 °C were added SnCl₂ (0.125 g, 0.70 mmol) and then HCl·Et₂O (0.7 mL, 0.14 mmol). The temperature of the reaction mixture was slowly increased up to -10 °C in 3 h. Then aqueous 1 M NaOH (1.6 mL) was added. The aqueous layer was extracted with DCM and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (EtOAc/Pentane 5:95) to give **12e** (mixture of isomers) as a dark solid in 21% yield (for two steps) (0.022 g). 10 mg of one pure isomer could be separated.

Characterization of one isolated diastereoisomer: mp 92 °C. λ_{max} (CHCl₃) 243 (ε 21200 L.mol⁻¹.cm⁻¹), 417 (9500), 616 (9300). Fluo (λ_{ex} 243 nm), λ_{em} 427. δ_{H} (CDCl₃, 400 MHz) 3.78 (6 H, s, O-CH₃), 7.35 (4 H, m, H8-, H12-carbazole), 7.43-7.62 (14 H, m, *m*-, *p*-C₆H₅, H6-, H10-, H7-, H11-carbazole), 7.73 (4 H, d, ³J_{HH} 8.3 Hz, *o*-C₆H₄-N), 7.96-8.07 (8 H, m, *o*-C₆H₅, *m*-C₆H₄-N), 8.19 (4 H, d, ³J_{HH} 7.5 Hz, H9-, H13-carbazole). δ_{F} (CDCl₃, 376 MHz) –78.60 (CF₃), second diastereoisomer: -78.72 (CF₃). $\delta_{C\{H\}}$ (CDCl₃, 100 MHz) 54.09 (O-CH₃), 73.33 (C-OCH₃), 81.88, 85.91, 87.75 (C=C), 109.89 (C6-, C10-carbazole), 120.47, 120.51 (*o*-C₆H₄-N, C8-, C12-carbazole), 123.79 (C3-, C4-carbazole), 125.53, 126.19, 127.14, 127.71, 128.77, 129.19, 129.87, 130.89 (C9-, C13-, C7-, C11-carbazole, *o*-, *m*-, *p*-C₆H₅, *m*-C₆H₄-N), 145.98, 147.63 (=C=C=). The very small quadruplet of C-CF₃ carbons was not observed. MS

(MALDI-TOF/DCTB) *m/z* 1054.3 (M). HRMS (MALDI-TOF/DCTB) *m/z* calcd for C₇₀H₄₀N₂O₄F₆: 1054.2994, found: 1054.3030.

1-(4-{10-[4-(1H-indol-1-yl)phenyl]-13,16-dimethoxy-4,7-diphenyl-13,16-bis

(trifluoromethyl)cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl}phenyl)-1H-

indole (12f). To a solution of 7f (0.090 g, 0.085 mmol) in dry DCM (20 mL) at -78 °C were added SnCl₂ (0.163 g, 0.85 mmol) and then HCl·Et₂O (0.85 mL, 1.7 mmol). The temperature of the reaction mixture was slowly increased up to -10 °C in 3 h. Then aqueous 1 M NaOH (2.0 mL) was added. The aqueous layer was extracted with DCM and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (EtOAc/Pentane 5:95) to give the *carbo*-cylohexadiene **12f** (mixture of isomers) as a dark solid in 44 % yield (0.036 g). 12 mg of one pure isomer could be separated.

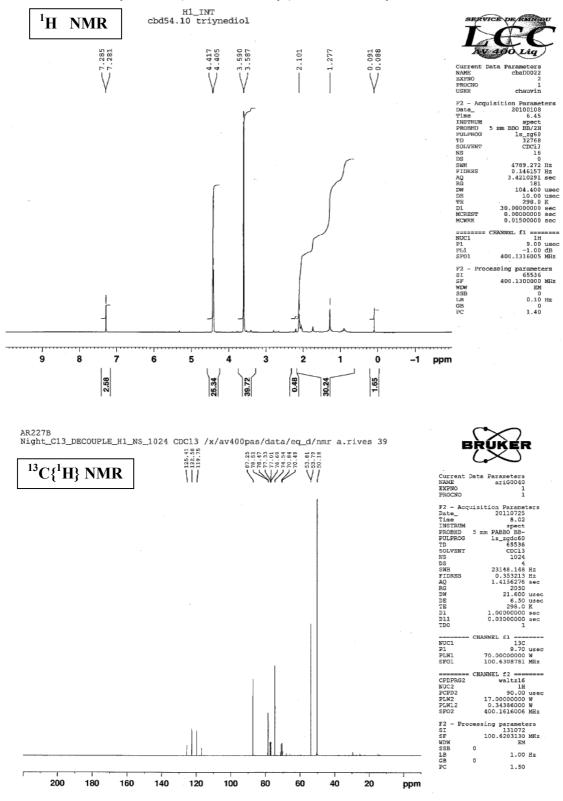
Characterization of one isolated diastereoisomer: mp 148 °C. λ_{max} (CHCl₃) 243 (ϵ 9900 L.mol⁻¹.cm⁻¹), 412 (6200), 615 (7700). Fluo (λ_{ex} 348 nm), λ_{em} 485; (λ_{ex} 243 nm), λ_{em} 326, 341, 485. δ_{H} (CDCl₃, 400 MHz) 3.76 (6 H, s, O-CH₃), 6.77 (2 H, br s, H3-indole), 7.20-7.35 (4 H, m, H7-, H8-indole), 7.41 (2 H, s, H2-indole), 7.37-7.79 (14 H, m, *m*-, *p*-C₆H₅, *m*-C₆H₄-N, H6-, H9-indole), 7.87-8.02 (8 H, m, *o*-C₆H₄-N, *o*-C₆H₅). δ_{F} (CDCl₃, 376 MHz) -78.66 (CF₃), second diastereoisomer: -78.83 (CF₃). δ_{C} {H} (CDCl₃, 100 MHz) 54.44 (O-CH₃), 85.26, 87.58, 100.71, 102.07, 107.46 (*C*-C=*C*-*C*), 104.81 (C3-indole), 110.67 (C6-indole), 120.92 (*o*-C₆H₄-N), 121.39 (C2-indole), 122.82 (C9-indole), 124.08 (C7-, C8-indole), 127.44, 127.65, 128.63, 128.83, 129.14, 130.90 (*m*-, *p*-C₆H₅, *m*-C₆H₄-N), 129.75 (C4-indole), 134.26 (*i*-C₆H₄-N), 135.52 (C5-indole), 136.45 (*i*-C₆H₅), 140.68 (*p*-C₆H₄-N), 147.10, 147.92 (=*C*=*C*=). The small quadruplet of *C*-CF₃ carbons could not be detected. MS (MALDI-TOF/DCTB) m/z 954.2 (M). HRMS (MALDI-TOF/DCTB) m/z calcd for C₆₂H₃₆N₂O₂F₆: 954.2681, found: 954.2658.

$\label{eq:constraint} \ensuremath{\{2\-[13,16\-dimethoxy-4,7\-diphenyl-13,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(trifluoromethyl)\-10\-\{2\-[tris(propan-2-10,16\-bis(tris(propa$

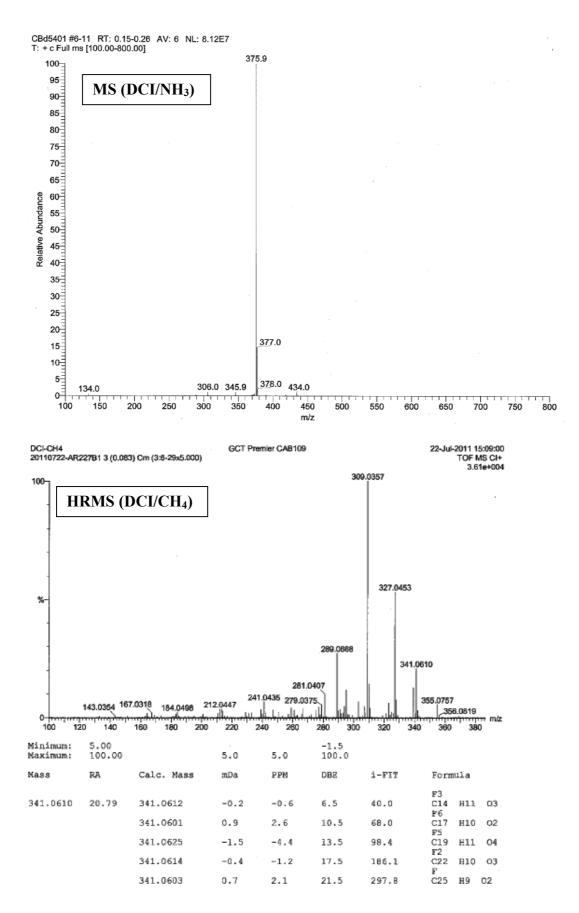
yl)silyl]ethynyl}cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl]ethynyl}

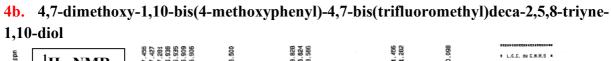
tris(propan-2-yl)silane (12g). To a solution of 7g (0.066 g, 0.064 mmol) under stirring at – 78 °C in dry DCM (20 mL) were added SnCl₂ (0.122 g, 0.65 mmol) and then HCl·OEt₂ (0.62 mL, 1.28 mmol). The temperature was allowed to increase slowly up to – 20 °C, thus giving a brown solution. Then aqueous 1 M NaOH (1.40 mL) was added and the mixture was allowed to warm up to room temperature. The aqueous layer was extracted with DCM and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel chromatography (DCM/pentane 5:95) to give a pure diastereoisomer of **12g** as a dark-purple solid in 2 % yield (2 mg).

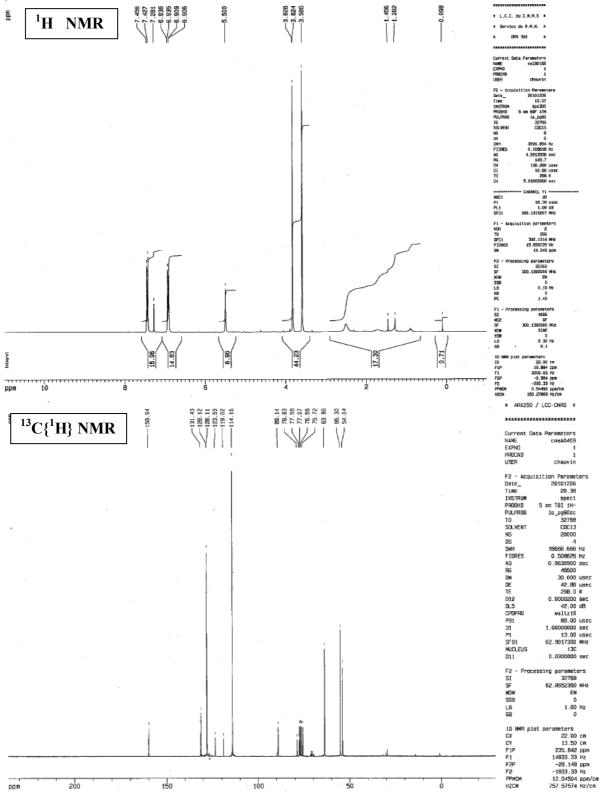
 $\delta_{\rm H}$ (CDCl₃, 300 MHz) 1.15 (42 H, br s, Si-CH-CH₃), 3.62 (6 H, s, OCH₃), 7.43-7.45 (6 H, br d, *m*-, *p*-C₆H₅), 7.82-7.85 (4 H, br d, *o*-C₆H₅). $\delta_{\rm F}$ (CDCl₃, 282 MHz) -78.75 (CF₃). MS (MALDI-TOF/DCTB) *m*/*z* 932.4 (M). HRMS (MALDI-TOF/DCTB) *m*/*z* calcd for C₅₆H₅₈O₂F₆Si₂: 932.3880, found: 932.3913.

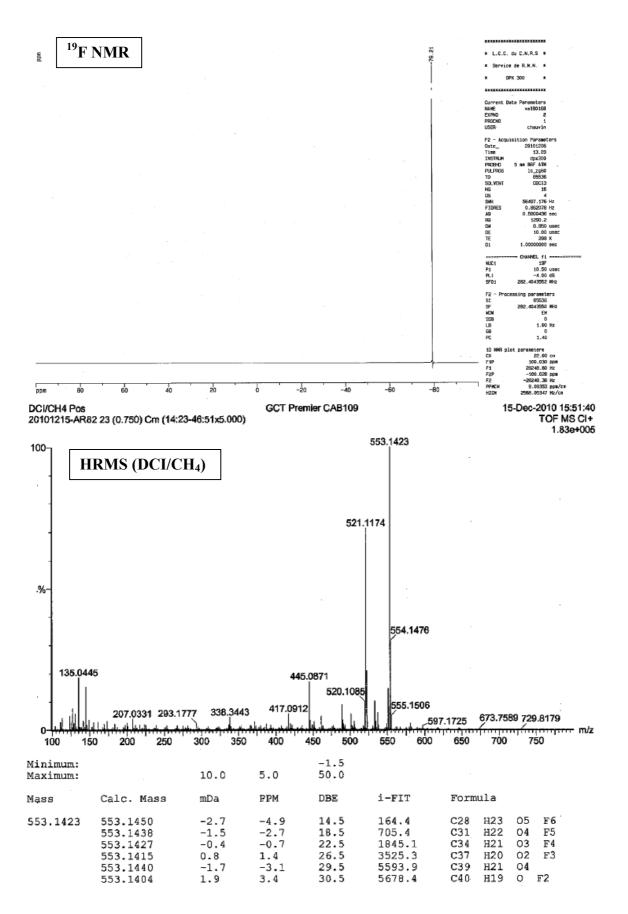

13,16-dimethoxy-4,7-diphenyl-1,10-bis(2-phenylethynyl)-13,16-bis(trifluoromethyl)

cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne (12h). To a solution of the [6]pericyclynediol 7h (0.050 g, 0.06 mmol) in DCM (20 mL) under stirring at -78 °C were added SnCl₂ (0.115 g, 0.60 mmol) and HCl·Et₂O (0.6 mL, 1.2 mmol). The resulting mixture was stirred 1 h at -78 °C and then 1 h at room temperature before treatment with 1 M NaOH

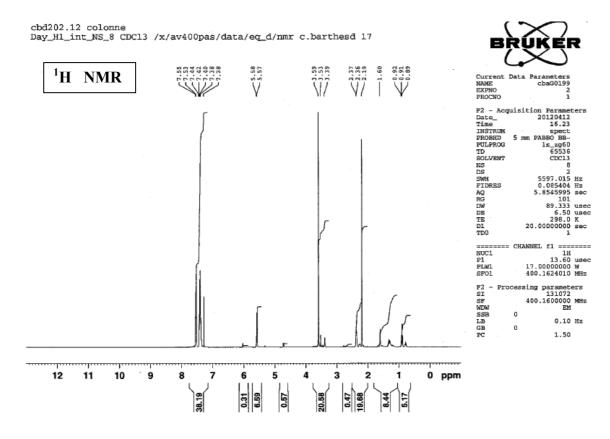

(1.2 mL). The separated organic layer was washed with brine, dried over MgSO₄ and concentrated to a 5 mL volume without going to dryness. This solution was directly deposited on a silicagel chromatography column (DCM/Pentane 2:8 to 5:5). The blue-green fraction corresponding to the two diastereoisomers (two spots on TLC) of the *carbo*-cyclohexadiene **12h** was concentrated under vacuum without going to dryness (product instable in the solid state). The NMR tube was prepared by addition of CDCl₃ in the DCM/pentane solution of **12h** followed by selective evaporation of the non-deuterated solvents under reduced pressure. The instability of the product did not allow determining a yield for this step.

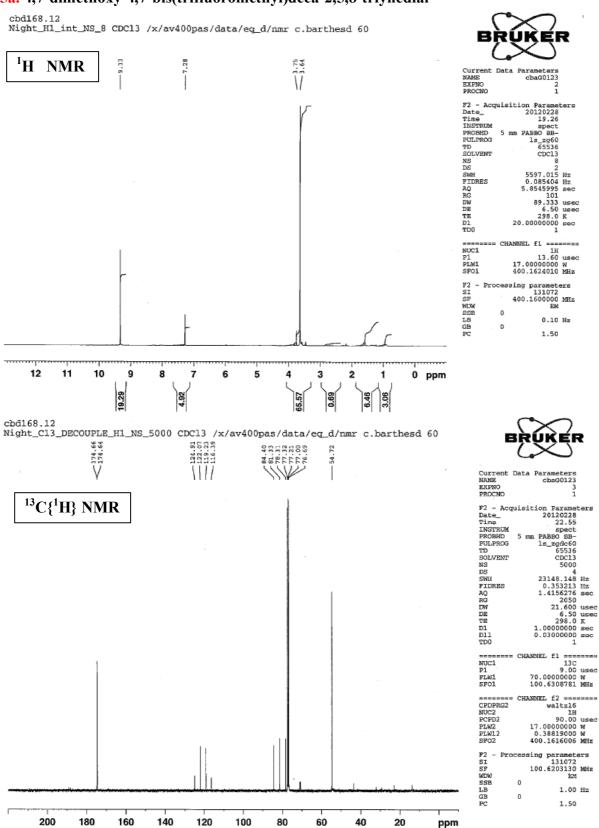

Mixture of diastereoisomers. λ_{max} (CHCl₃, 300 MHz) 435, 594. δ_{H} (CDCl₃) 3.69, 3.72 (6 H, 2 s, O-CH₃), 7.28-7.59 (16 H, m, *o*-, *m*-, *p*-C₆H₅-C=C, *m*-, *p*-C₆H₅-C≤), 7.90-7.92 (4 H, m, *o*-C₆H₅-C≤). δ_{F} (CDCl₃, 282 MHz) -78.78-(-78.57) (2 s, CF₃). $\delta_{C\{H\}}$ (CDCl₃, 75 MHz) 54.34, 54.42 (2 s, O-CH₃), 71.27 (q, ²J_{CF} 35 Hz, C-CF₃), 83.24-83.34, 84.13, 85.44, 85.74, 88.50-88.55, 98.42, 101.22-101.26, 108.87 (*C*-*C*=*C*-*C*, *C*=*C*-C₆H₅), 121.36 (q, ¹J_{CF} 284 Hz, *C*F₃), 122.02 (*i*-C₆H₅-C=C), 127.73, 128.58, 129.06 (*o*-, *m*-C₆H₅≤, *m*-C₆H₅-C=C), 129.62, 130.25 (*p*-C₆H₅≤, *p*-C₆H₅-C=C), 131.94 (*o*-C₆H₅-C=C), 135.56 (*i*-C₆H₅≤), 143.56, 153.36 (=*C*=*C*=). MS (MALDI-TOF/DCTB) *m*/*z* 772.2 (M). HRMS (MALDI-TOF/DCTB) *m*/*z* calcd for C₅₀H₂₆O₂F₆: 772.1837, found: 772.1794.

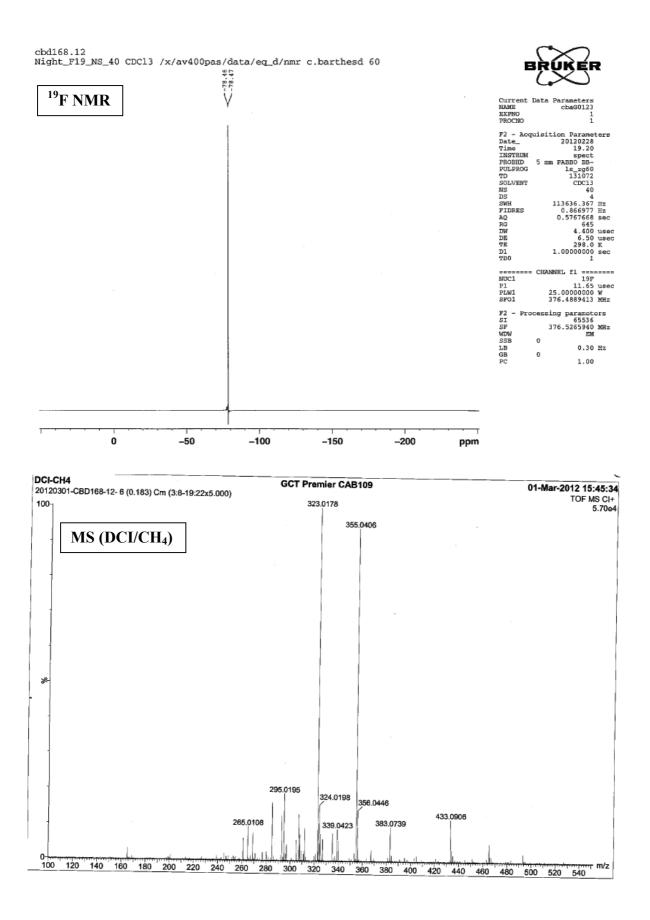

5. Copies of ¹H, ¹³C and ¹⁹F NMR spectra and MS analyses

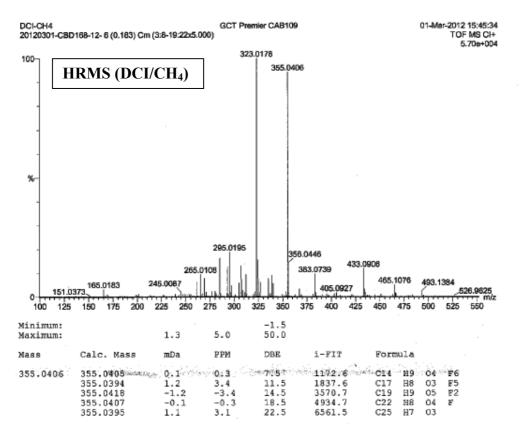


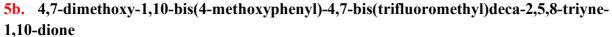
4a. 4,7-dimethoxy-4,7-bis(trifluoromethyl)deca-2,5,8-triyne-1,10-diol.

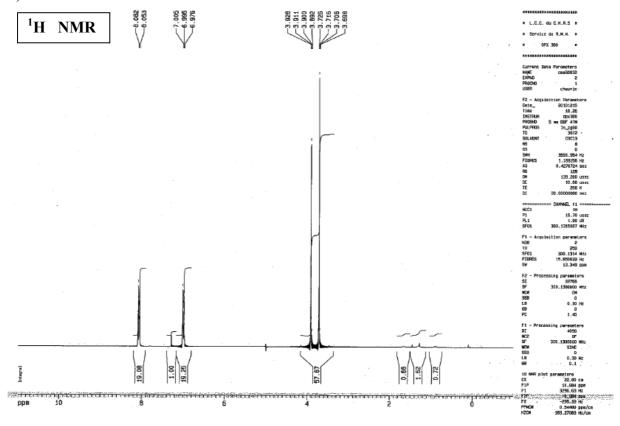


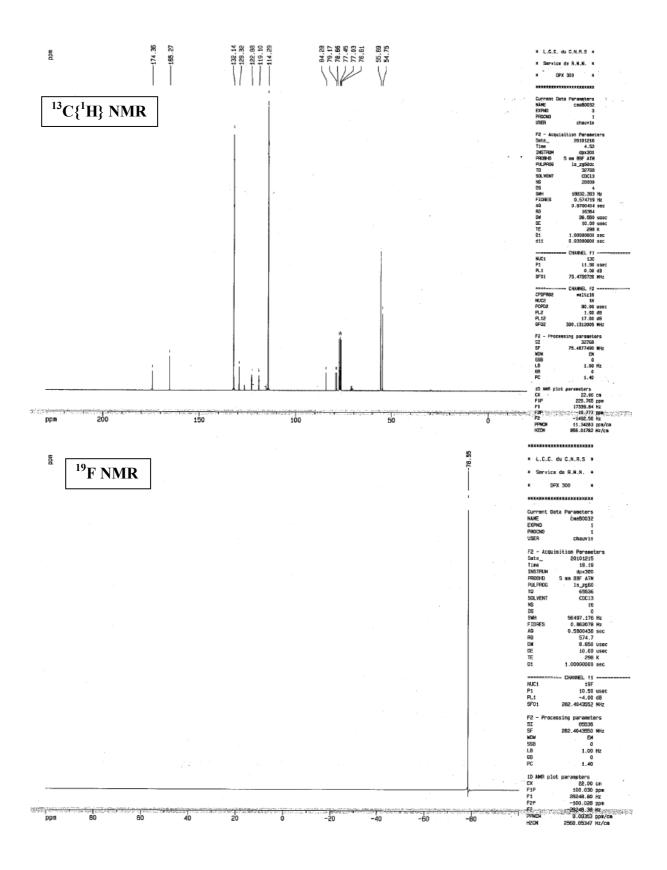


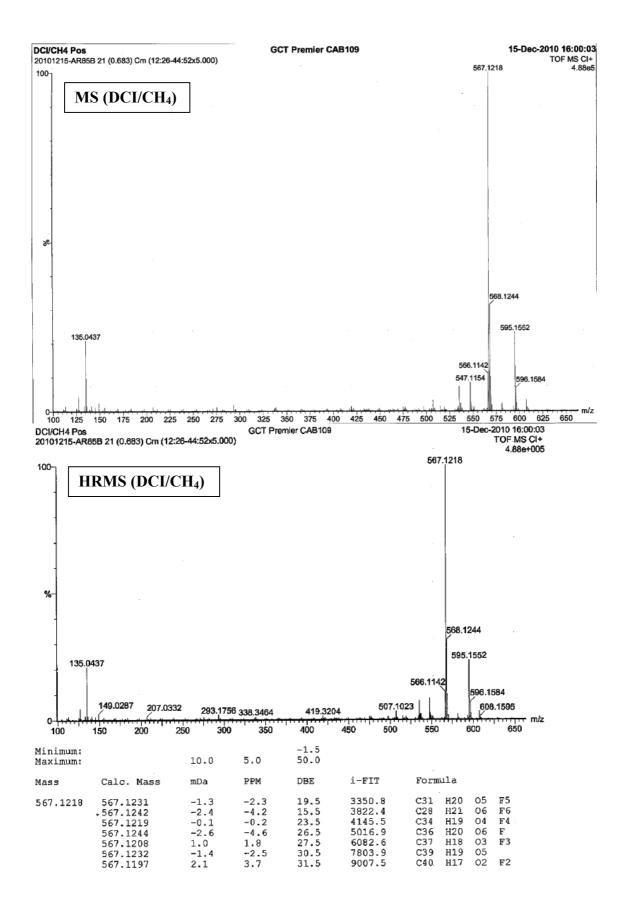


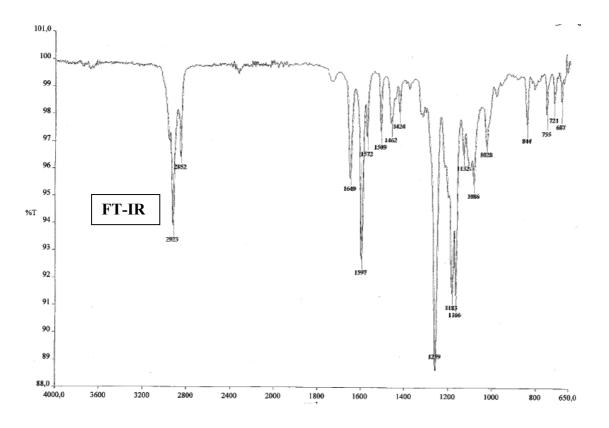


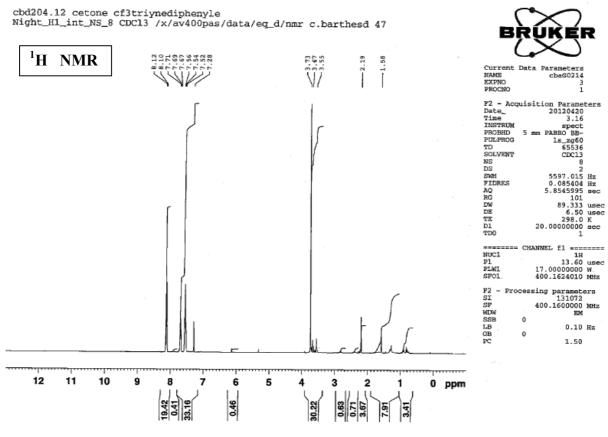


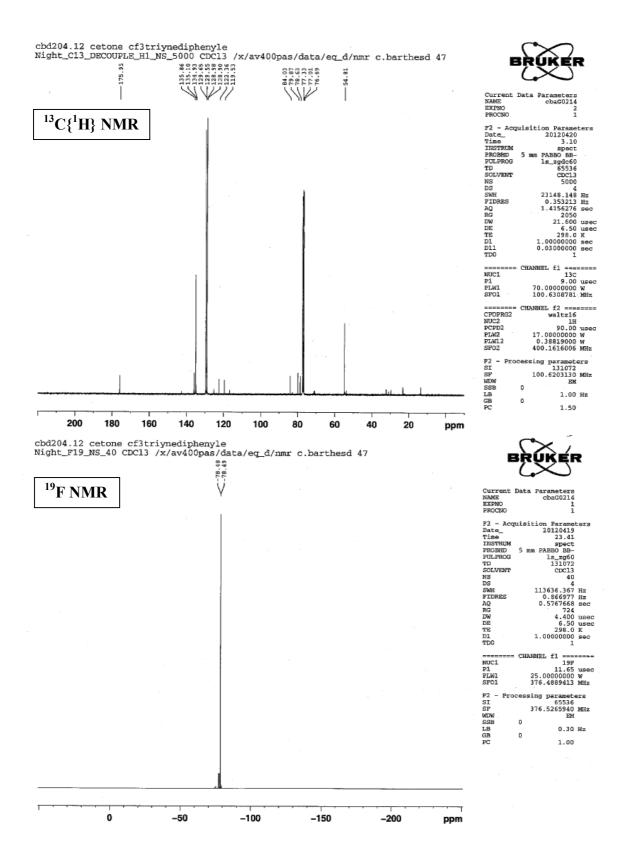

5a. 4,7-dimethoxy-4,7-bis(trifluoromethyl)deca-2,5,8-triynedial

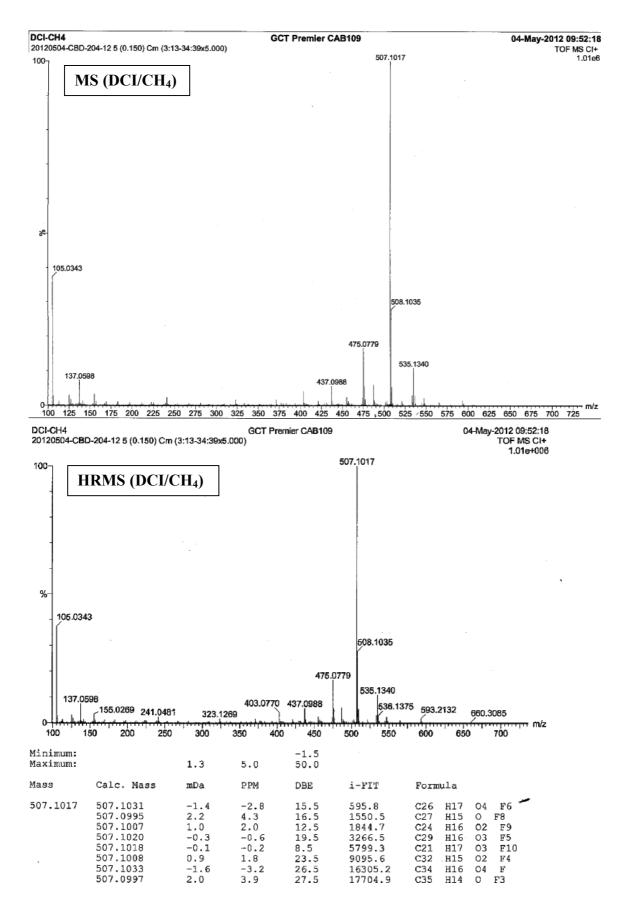

34

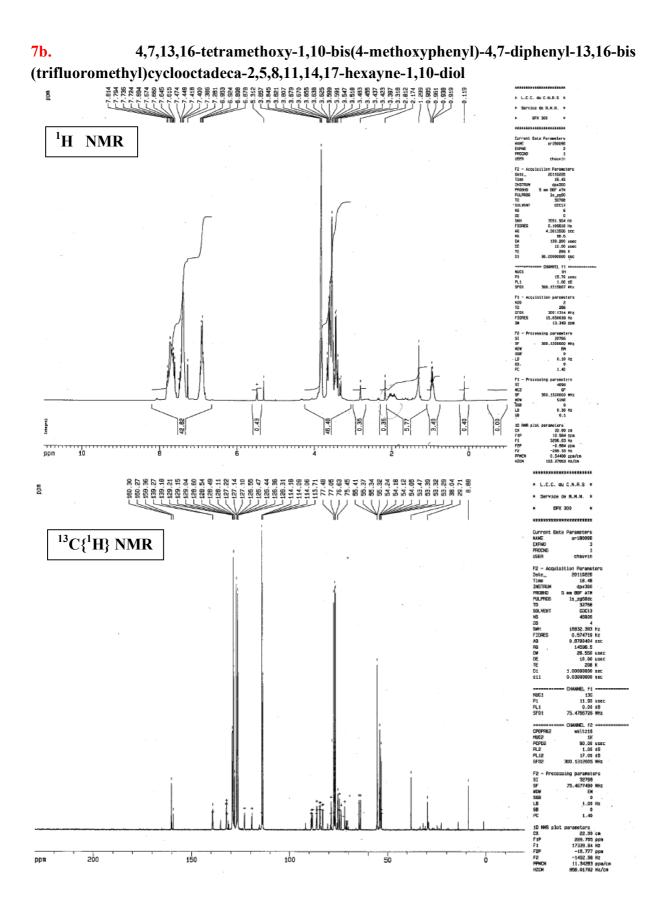


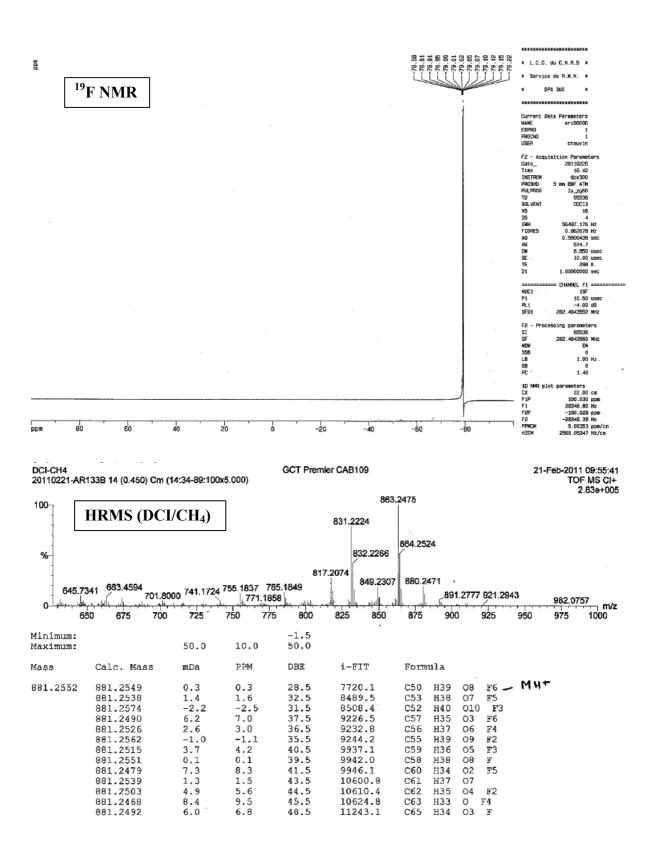


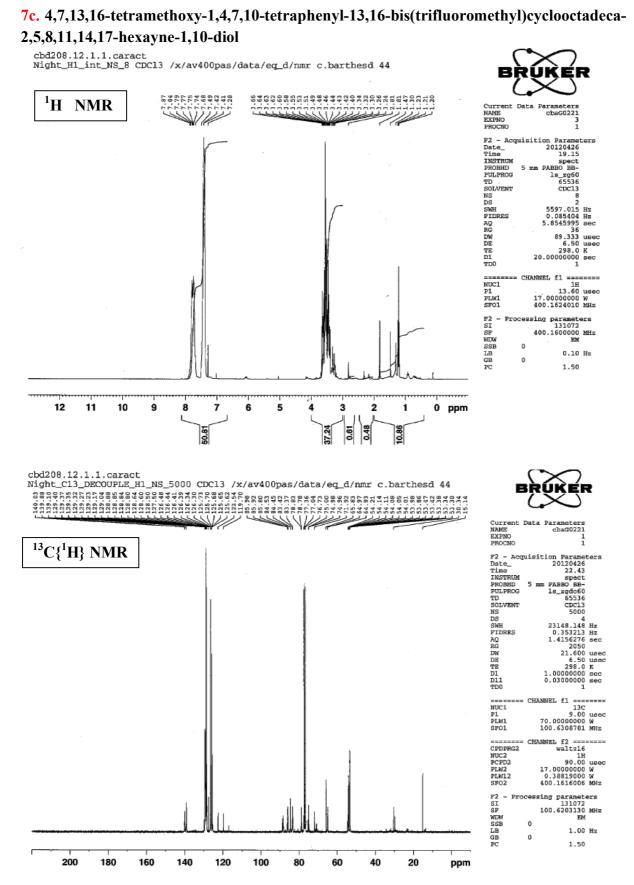


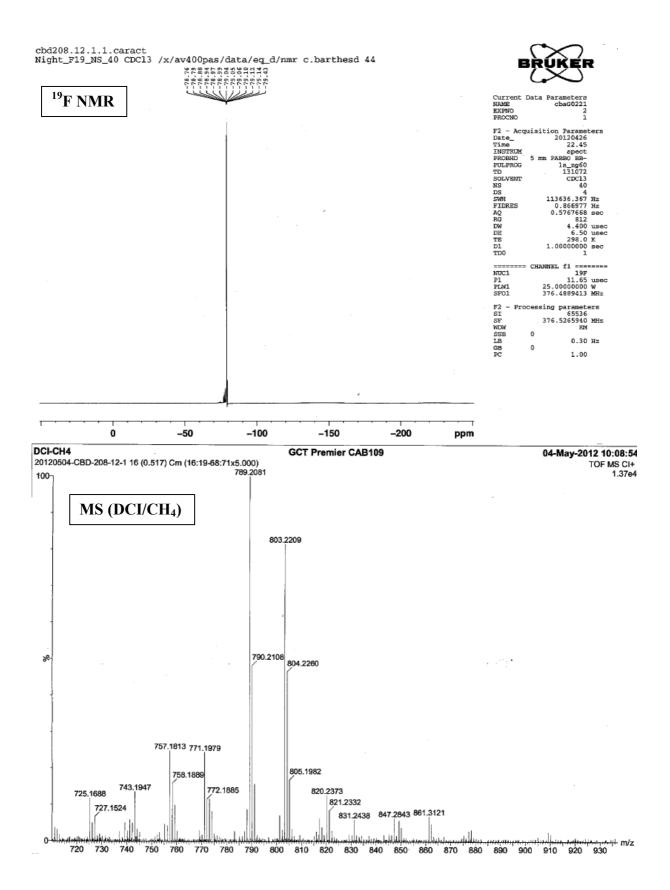


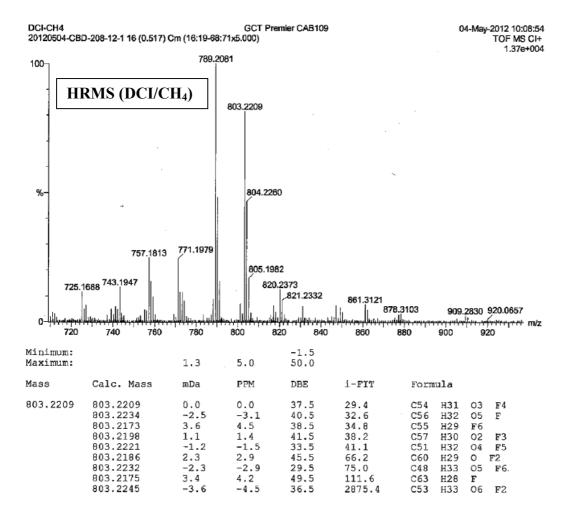


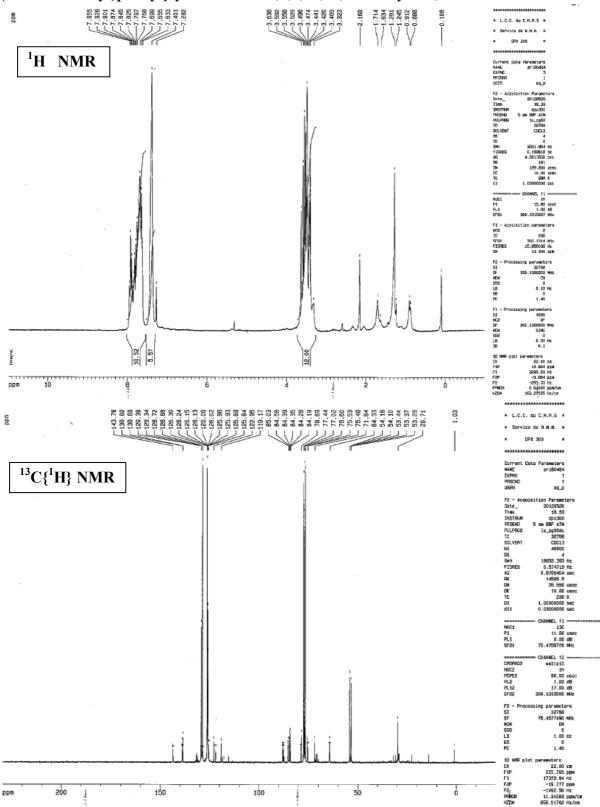


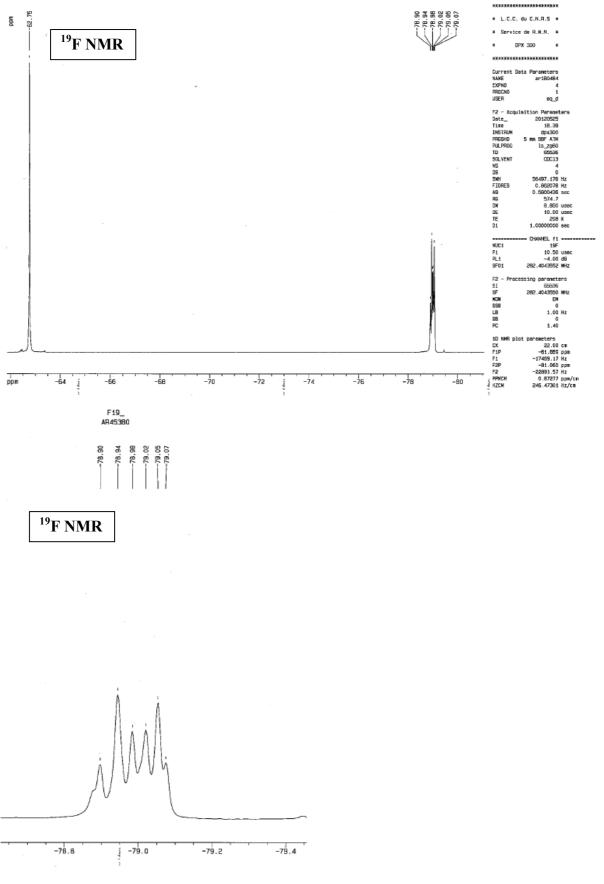


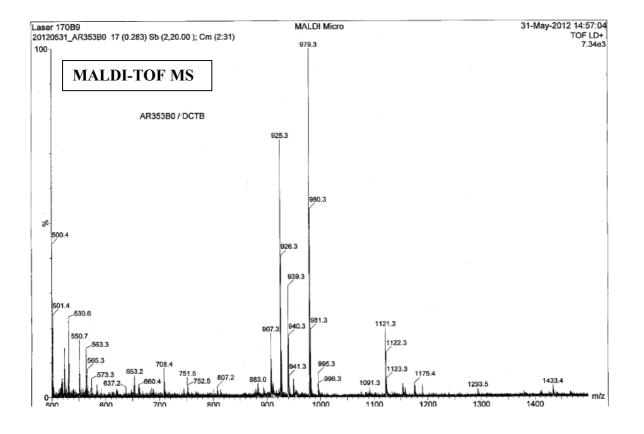




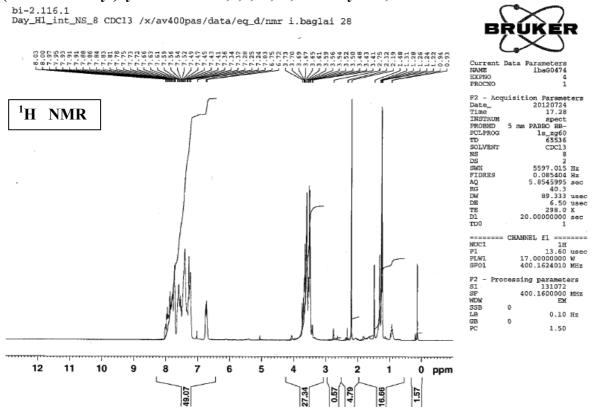






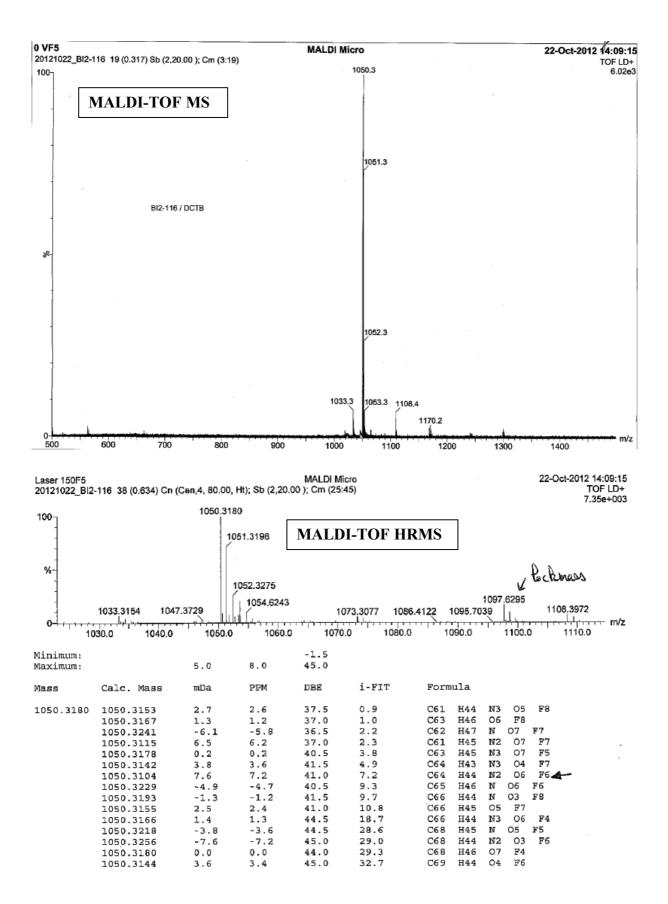

7d.

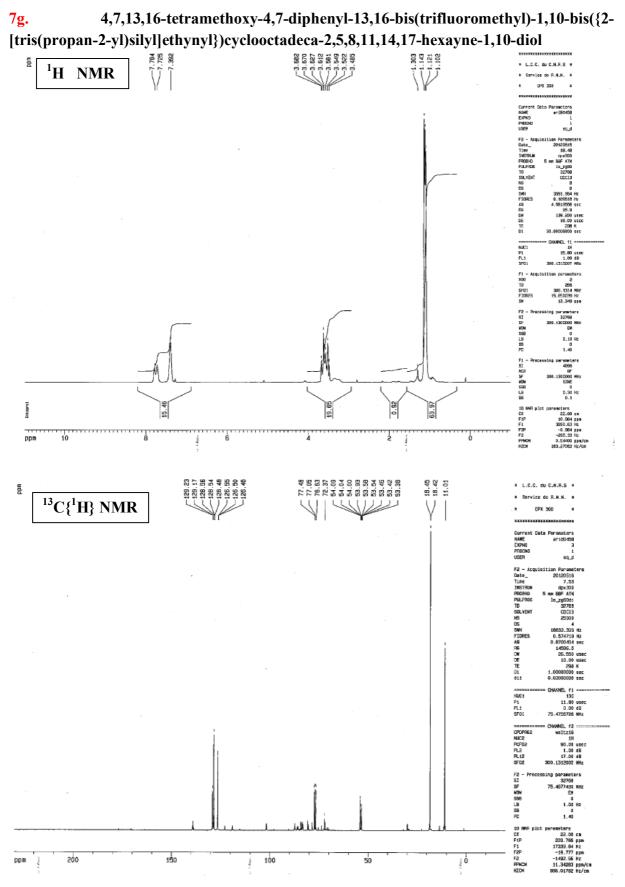
4,7,13,16-tetramethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)-1,10-bis[4-(trifluoromethyl)phenyl]cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol

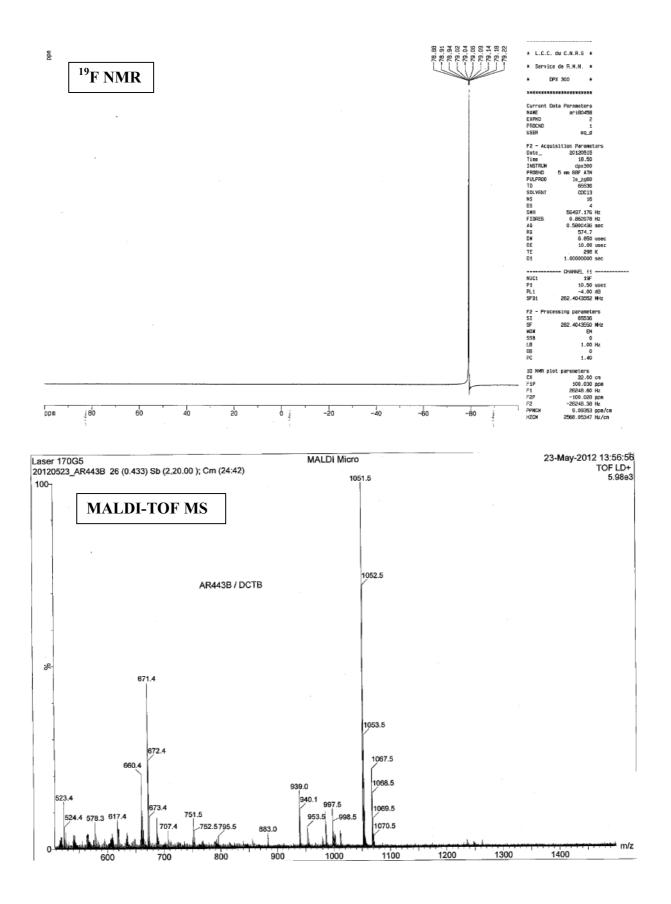

Laser 170B9 MALDI Micro 20120531_AR353B0 41 (0.683) Cn (Cen,4, 80.00, Ht); Sb (2,20.00); Cm (40:52) 31-May-2012 14:57:04 TOF LD+ 1.20e+003

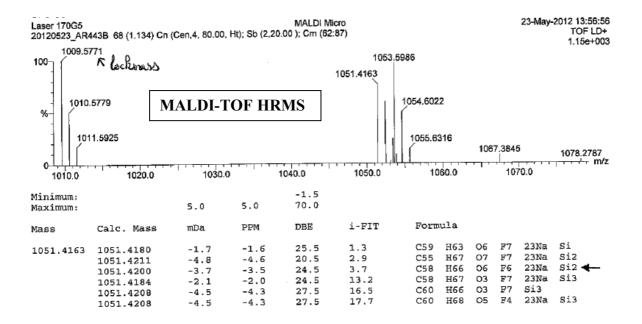
_				979.	1060			1.20e+003
100-	965.5508			979.	1969			
		MALDI-T	OF HR	MS	980.2012			~
%-]	966	5.5546						
-		967.5582			981.20			
	6431	970.5682	973.5796	977,6412	9	82.2169 985.2043	989.5681	993.5541 995.3866
0- 1, , , , , , ,	965.0	970.0	975.0		980.0	985.0	990.0	995.0
Minimum:				-1.5				
Maximum:		5.0	10.0	70.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
979.1969	979,1916	5.3	5.4	24.5	0.2	C47 H33	07 F13	23Na
	979.1905	б.4	6.5	28.5	1.9	C50 H32	O6 F12	
	979,1894	7.5	7.7	32.5	6.1	C53 H31	05 F11	23Na
	979.2058	-8.9	-9.1	32.5	7.2	C54 H32	03 F12 07 F8	
	979.1918	5.1	5.2	35.5	11.3 12.4	C55 H32 C56 H30	07 F8 04 F10	23Na 23Na
	979.1882	8.7	8.9	36.5 36.5	13.8	C57 H31	04 F10	23Na 23Na
	979.2046 979.1907	-7.7 6.2	6.3	39.5	19.4	C58 H31	02 F11 06 F7	23Na
	979.1907	7.4	7.6	43.5	29.4	C61 H30	05 F6	23Na
	979.2059	-9.0	-9.2	43.5	31.7	C62 H31	03 F7	23Na
	979.2048	-7,9	-8.1	47.5	43.3	C65 H30	02 F6	23Na

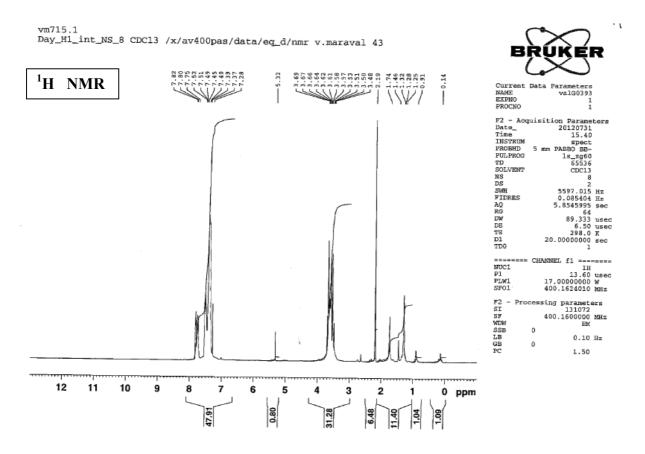

7e. 1,10-bis[4-(9H-carbazol-9-yl)phenyl]-4,7,13,16-tetramethoxy-13,16-diphenyl-4,7bis(trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol

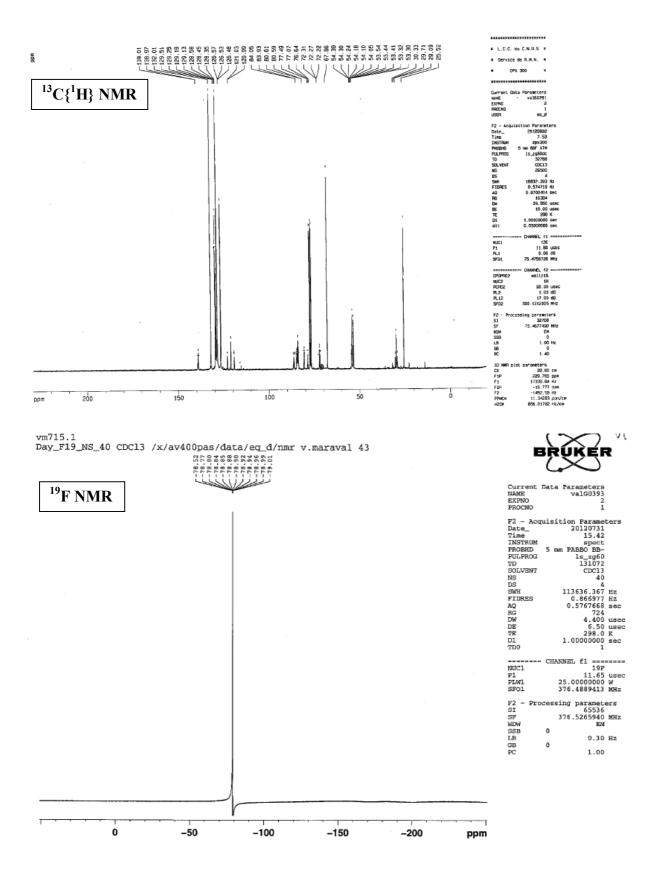

Laser 140C4 20120615_BI-3	2-077-2 66 (1.100) Cn	(Cen,4, 80.00	Ht); Sb (2,20	MALDI Mic 0.00); Cm (62						15-Jun-20	12 14:49:06 TOF LD+ 1.63e+004
100-			1150.3440								1.0087004
			1151.3	3462							
" "	ALDI-TOF	HRMS									
1120.3	1134.3396	1141,6558	115	.3462 3.3416 1164.3	3566 1173.3376		1185.68	.11	188.69	37 120	5.2338 m/z
1120	.0 1130.0	1140.0	1150.0	1160.0	1170.0	1180.0)	1190		1200.0	
Minimum: Maximum;		5.0	5.0	-1.5 55.0			I				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ula				
1150.3440	1150.3417 1150.3455 1150.3468 1150.3479 1150.3443 1150.3465 1150.3405 1150.3407 1150.3495 1150.3421 1150.3421 1150.3421 1150.3481 1150.3481 1150.3481	2.3 -1.5 -2.8 -4.0 -3.9 -0.3 -2.6 3.5 3.3 -1.7 -5.5 1.9 -2.8 4.6 -4.1 -0.5	2.0 -1.3 -2.4 -3.5 -3.4 -0.3 -2.3 3.0 2.9 -1.5 -4.8 1.7 -2.4 4.0 -3.6 -0.4	47.0 47.5 50.5 51.5 51.0 51.0 51.0 51.0 51.0 51	0.3 0.8 4.1 5.8 12.0 13.6 13.7 14.6 18.1 27.4 29.3 32.3 45.0 52.6 62.4 74.0	C72 C74 C71 C75 C75 C75 C75 C75 C76 C77 C78 C77 C78 C77 C78 C79 C80	H48 H47 H49 H50 H48 H46 H48 H47 H44 H47 H46 H47 H46 H49 H47	N2 N3 O5 N3 N3 N3 N2 N3 O4 N3 N3 N2 O6 O3	06 04 F7 F8 06 03 05 F8 F6 02 F8 05 04 F3 F5	F6 F7 F4 F6 F8 F5 F7 F3 F4	

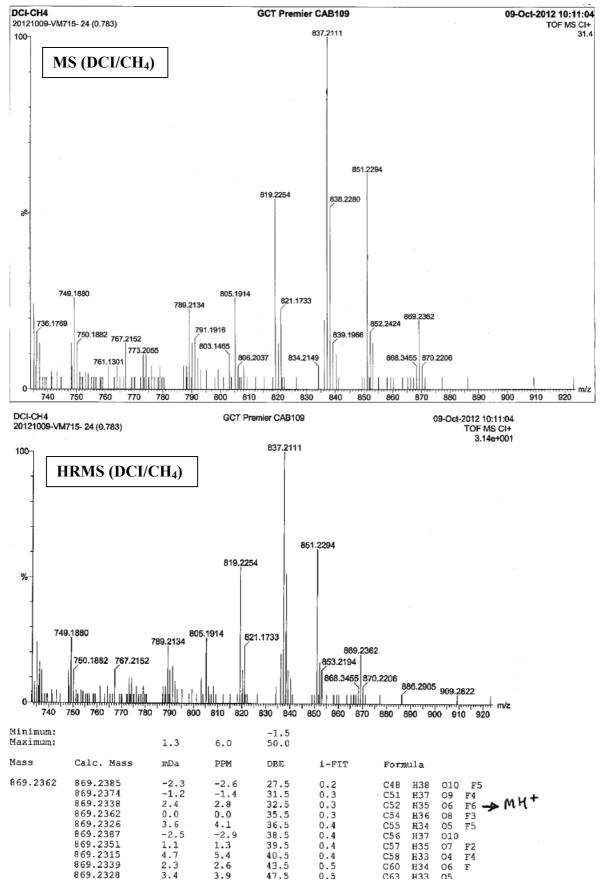

7f. 1,10-bis[4-(1H-indol-1-yl)phenyl]-4,7,13,16-tetramethoxy-4,7-diphenyl-13,16-bis (trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol



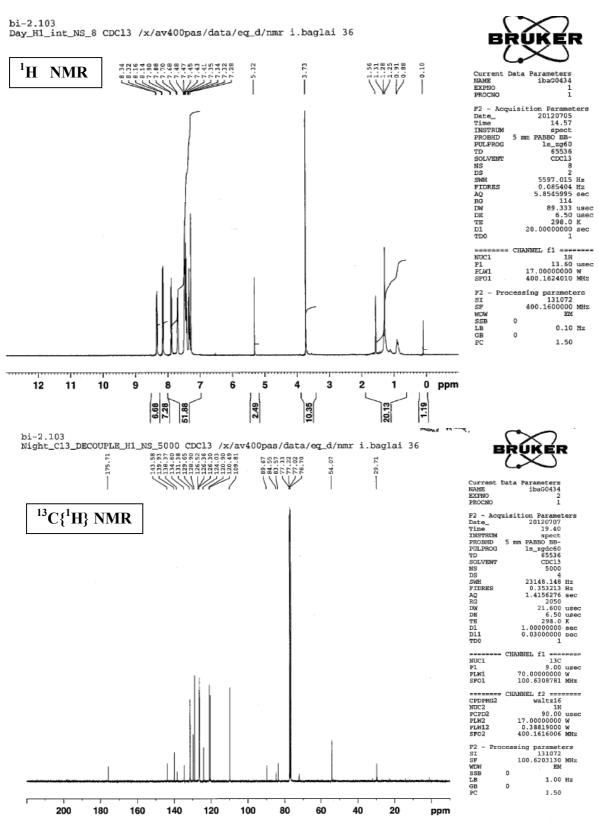

50

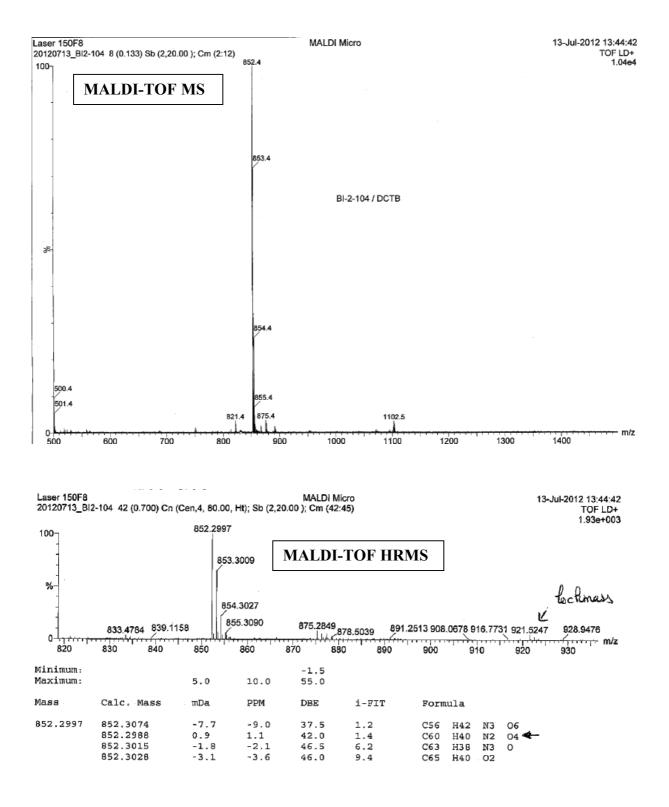


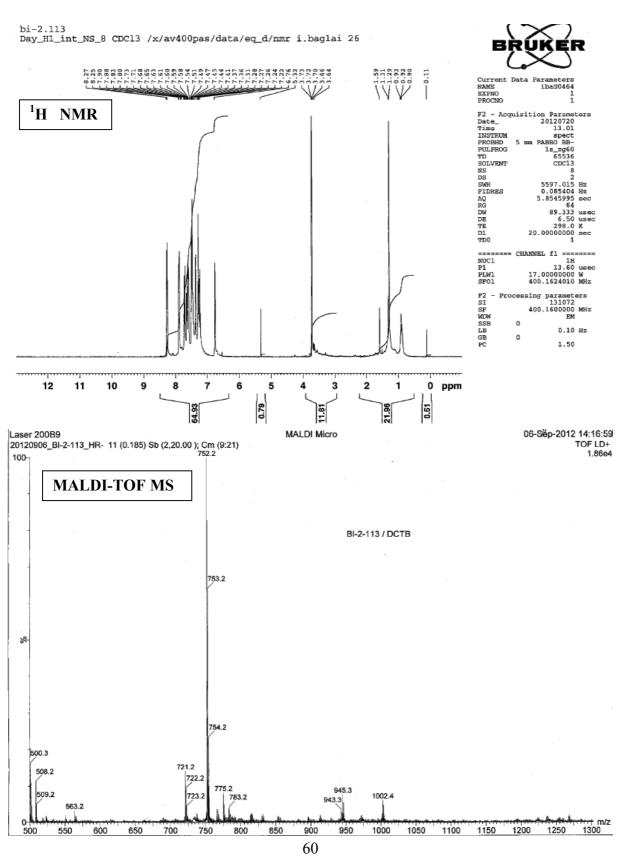


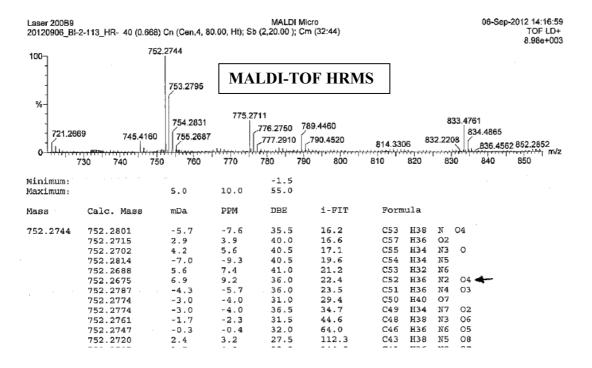


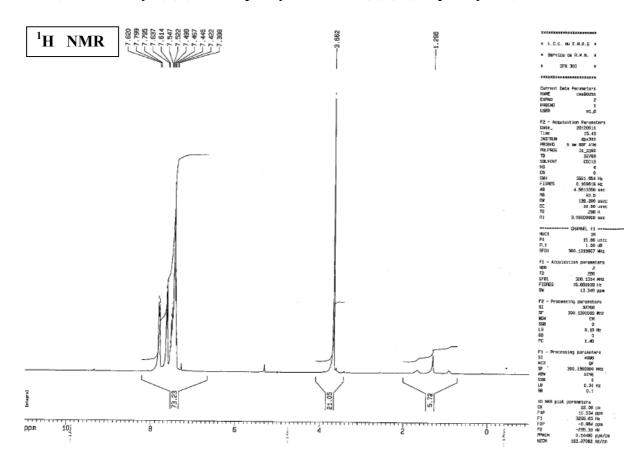
7h. 4,7,13,16-tetramethoxy-4,7-diphenyl-1,10-bis(2-phenylethynyl)-13,16-bis (trifluoromethyl)cyclooctadeca-2,5,8,11,14,17-hexayne-1,10-diol

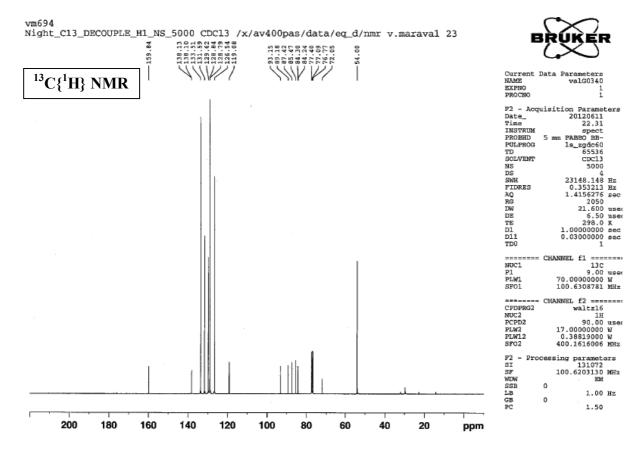


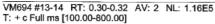


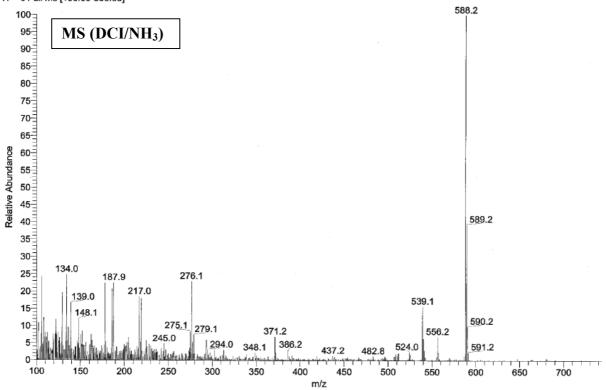


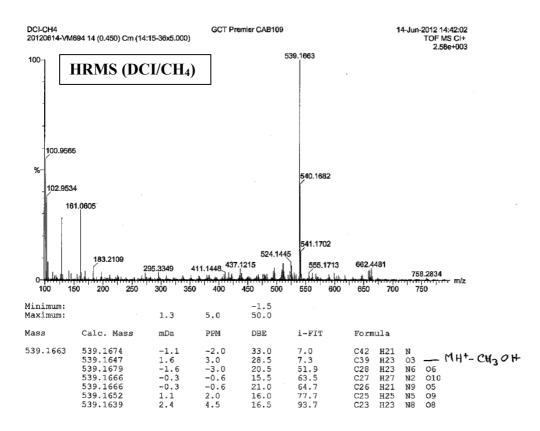

10e. 1,10-bis[4-(9*H*-carbazol-9-yl)phenyl]-4,7-dimethoxy-4,7-diphenyldeca-2,5,8-triyne-1,10-dione

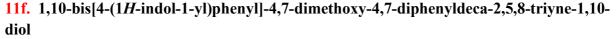


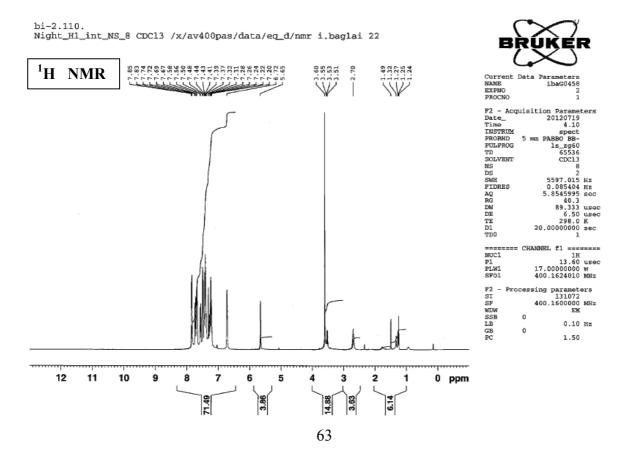

10f. 1,10-bis[4-(1*H*-indol-1-yl)phenyl]-4,7-dimethoxy-4,7-diphenyldeca-2,5,8-triyne-1,10-dione

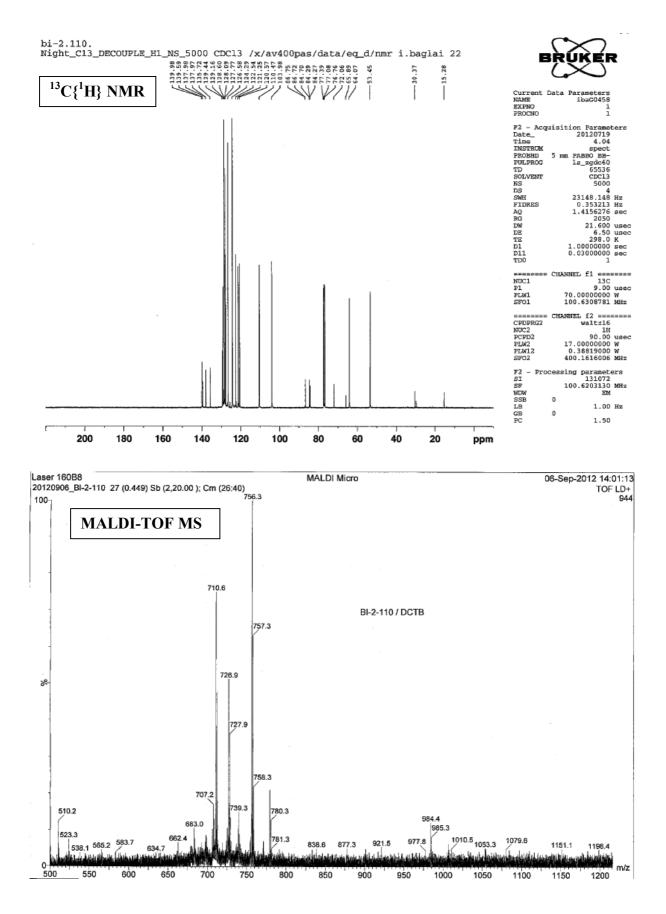


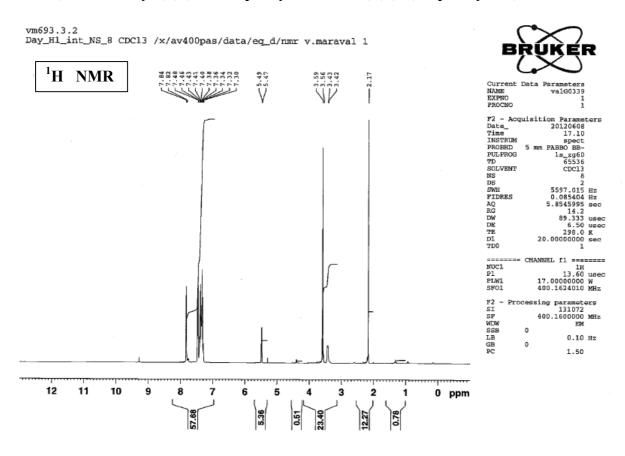


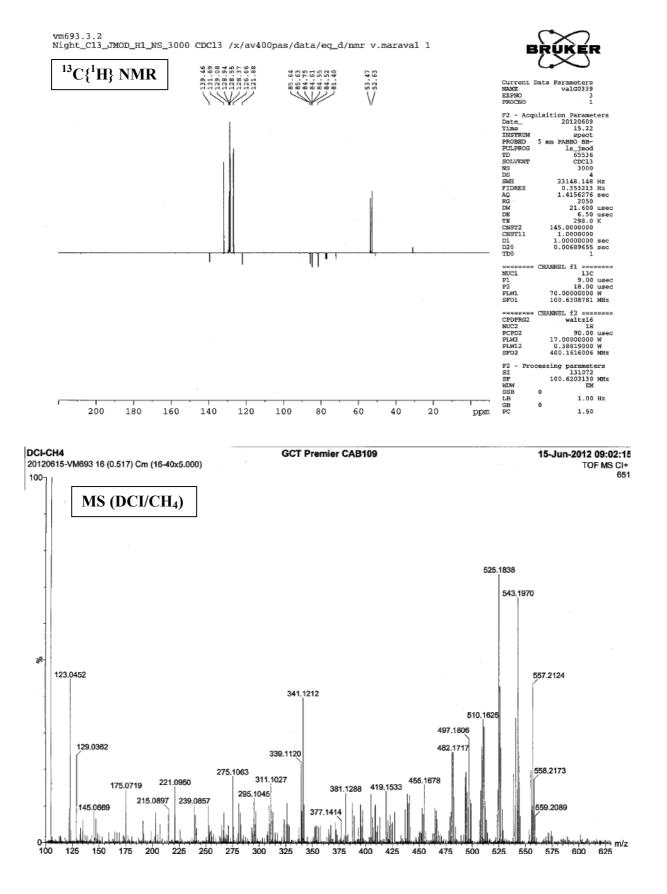

10h. 6,9-dimethoxy-1,6,9,14-tetraphenyltetradeca-1,4,7,10,13-pentayne-3,12-dione

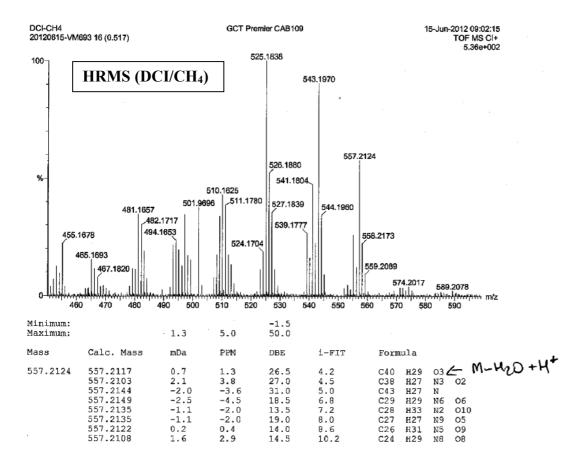


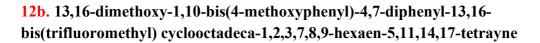


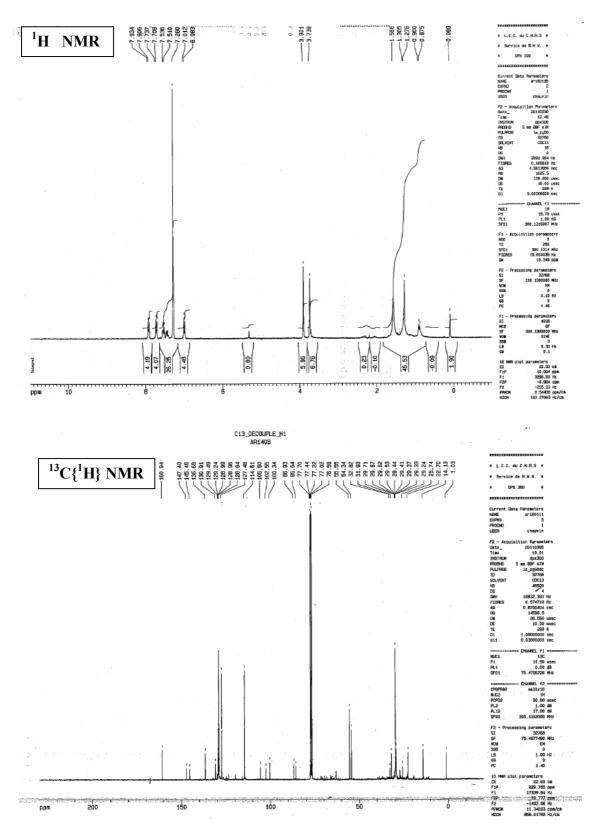


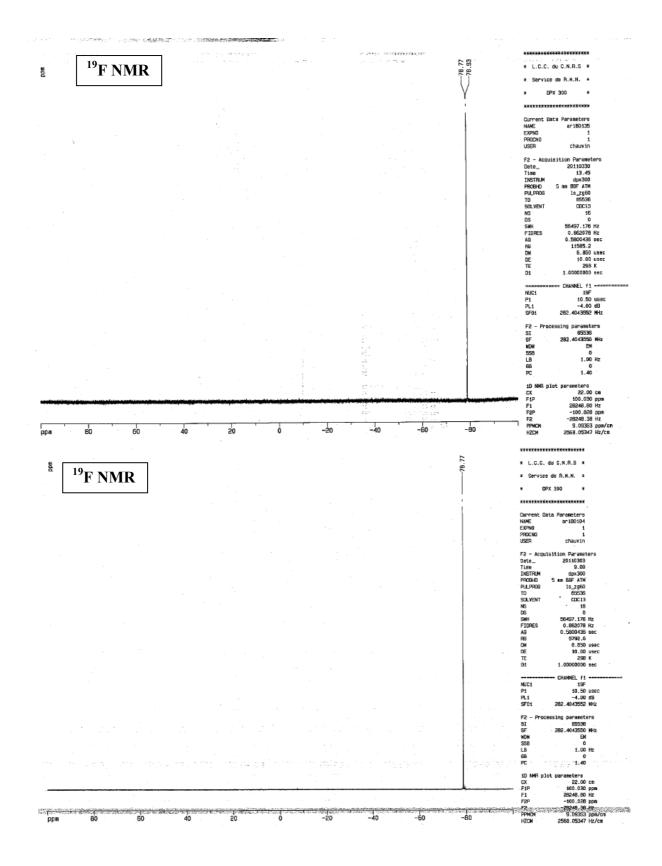


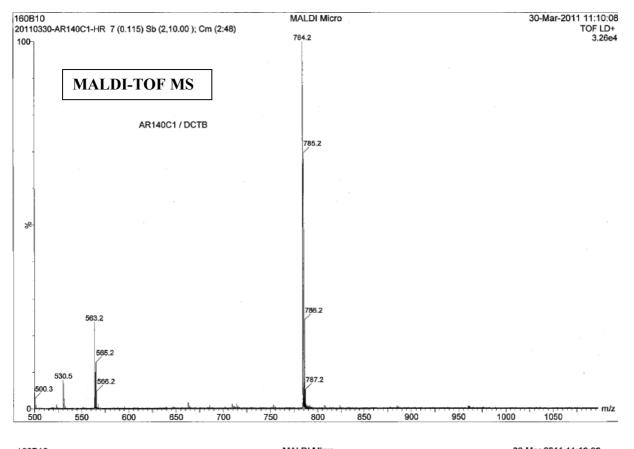


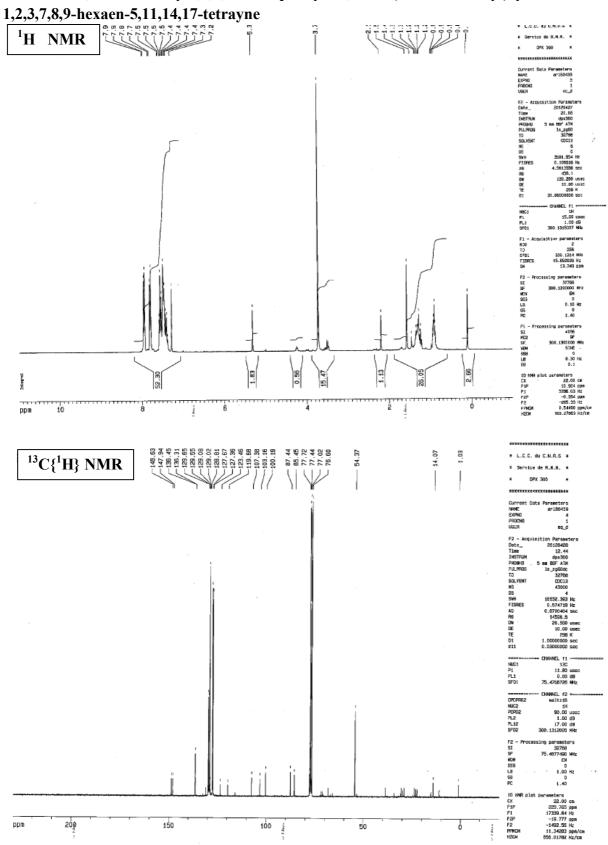

0 V 20120906_BI-	2-110_HR- 22 (0.368)	Cn (Cen,4,	80.00, Ht); \$	MALI Sb (2,20.00); Cm	DI Micro (22:24)	MALDI-T	OF H	RMS	06-5		14:23:17 OF LD+ 38e+002
	770.3342 771.3400 774 3389 777.2881			779.2939 780.2994 781.2985 784.60			7 792.3041 795.2575 796.2737				
770.0	772.0 774.0	776.0	778.0	780.0 782.0	784.0	786.0 788.0	790.0	792.0	794.0	796.0	
Minimum: Maximum:		3.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No	rm) Form	ula			
779.2939	779.2950 779.2937 779.2926 779.2913 779.2910 779.2896 779.2971 779.2998 779.2896 779.2896 779.2895 779.3012 779.3012 779.2872	-1.1 0.2 1.3 2.6 2.9 4.3 -3.2 -5.9 5.3 -5.6 -7.3 6.7 6.9	-1.4 0.3 1.7 3.3 3.7 5.5 -4.1 -7.6 6.8 -7.2 -9.4 8.6 8.9	40.5 41.0 37.5 38.0 36.5 37.0 29.0 33.5 33.5 32.0 34.0 34.0 32.5	37.7 37.8 38.1 38.6 38.8 39.6 40.0 40.2 40.3 40.3 40.3 40.5 41.2 41.5	1.3 1.5 1.7 2.3 3.3 3.7 3.9 3.9 3.9 3.9 4.1 4.9 5.2	C59 C57 C55 C52 C48 C51 C52 C50 C53 C53 C50 C49	H37 H40 H38 H39 H37 H42 H40 H40 H40 H41 H42 H38	02 N3 0 02 23 N3 0 N2 04 N5 03 N5 03 N4 03 N1 04 N3 06 N 04 N 04 N5 03 N4 06	23Na 23Na 23Na	4

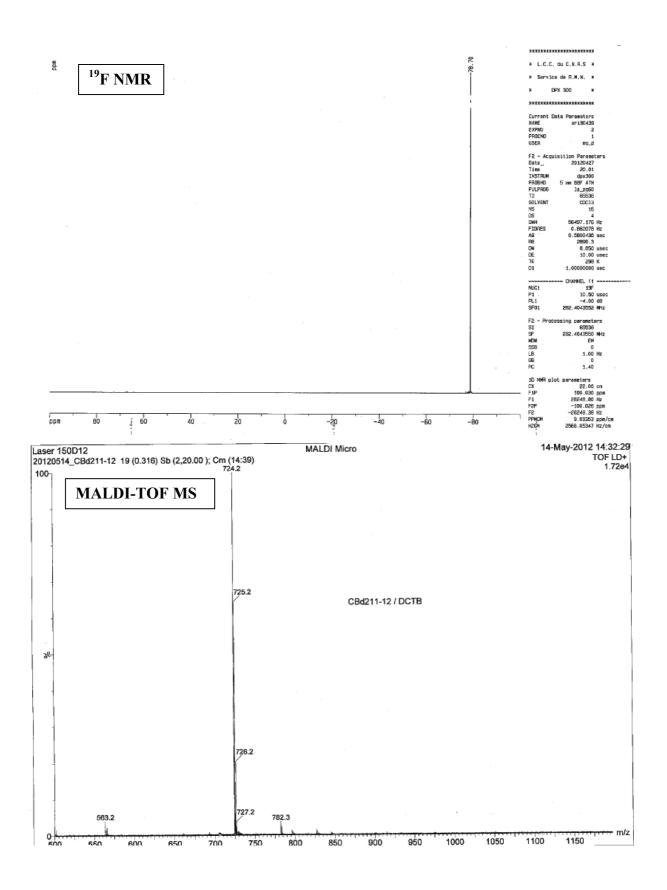

11h. 6,9-dimethoxy-1,6,9,14-tetraphenyltetradeca-1,4,7,10,13-pentayne-3,12-diol

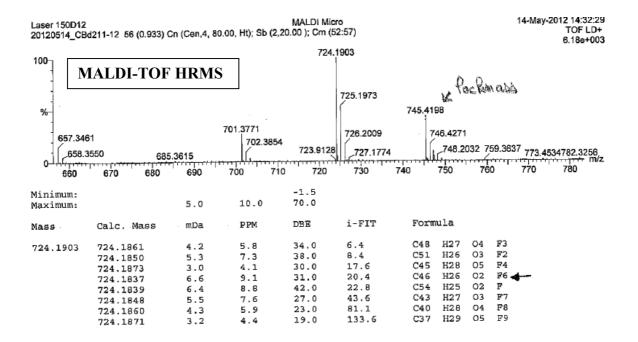


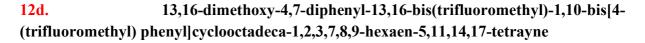


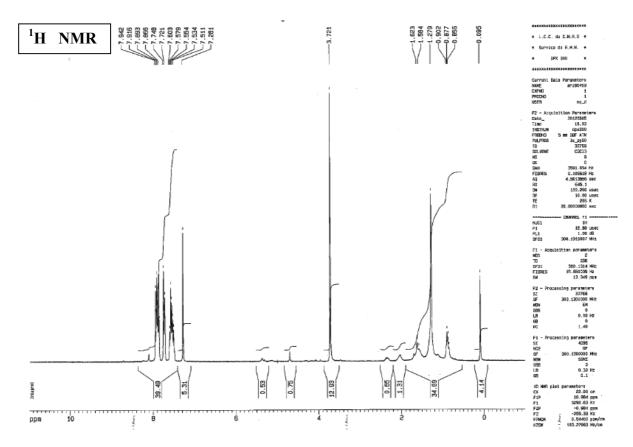


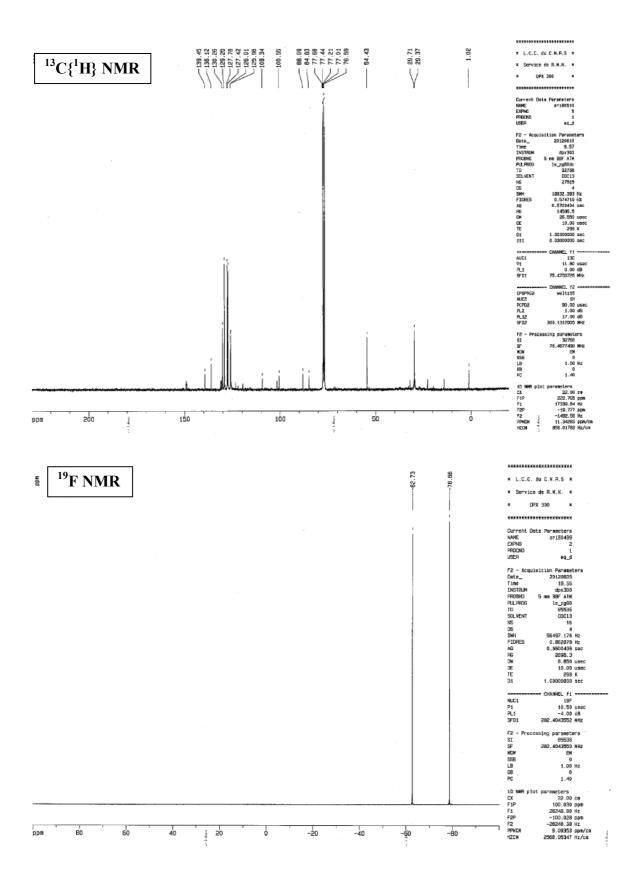


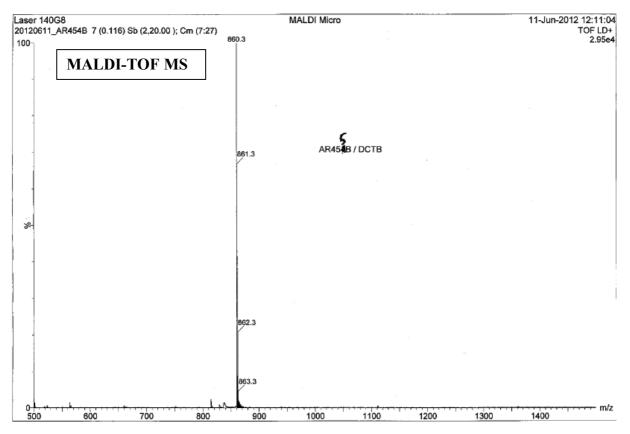


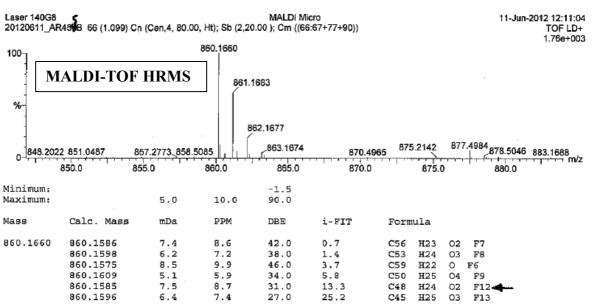

160B10 MALDI Micro 20110330-AR140C1-HR 115 (1.916) Cn (Cen,4, 80.00, Ht); Sm (Mn, 2x2.00); Sb (2,10.00); Cm (115:123) 30-Mar-2011 11:10:08 TOF LD+ 1.25e+004

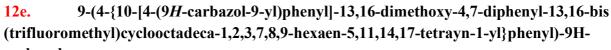

100-				78	4.2024						
	MALDI-TOP	FHRMS			785.2039						
%-	•				786.2111						
0 738.	1425 745.4126 754 740.0 750.0	.1877 768 760.0	4134 774.46 770.0	87 781.6213	787.2084	800		07.18	74	813.3699 823.1838 820.0	n/z
Minimum: Maximum:		30.0	5.0	-1.5 50.0							
Mass	Calc. Mass	mDa.	PPM	DBE	i-FIT	Form	la				
784.2024	784.2025 784.2014 784.2037 784.2048 784.2050 784.2060 784.2061	-0.1 1.0 -1.3 -2.4 -2.6 -3.6 -3.7	-0.1 1.3 -1.7 -3.1 -3.3 -4.6 -4.7	39.0 43.0 35.0 31.0 42.0 27.0 38.0	250.1 152.1 374.9 525.8 162.8 703.6 264.7	C54 C57 C51 C48 C56 C45 C45 C53	H28 H27 H29 H30 H29 H31 H30	02 0 03 04 04 05 05	F4 F3 F5 F6 F7 F2		

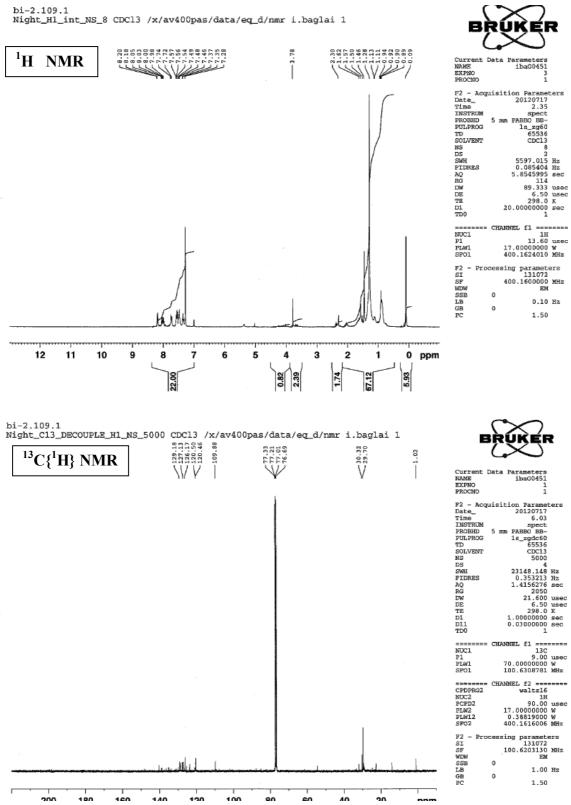


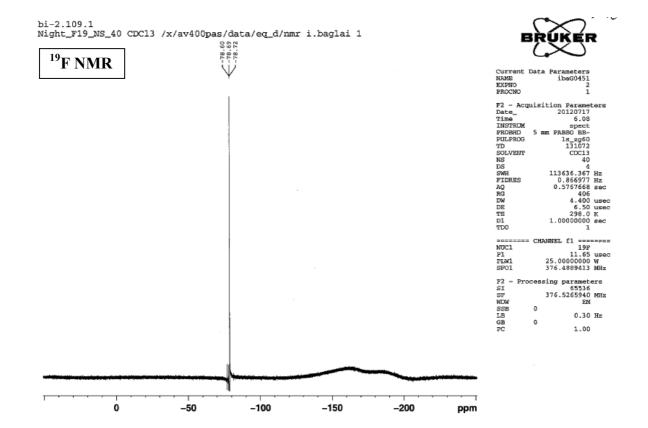

13,16-dimethoxy-1,4,7,10-tetraphenyl-13,16-bis(trifluoromethyl)cyclooctadeca-12c.

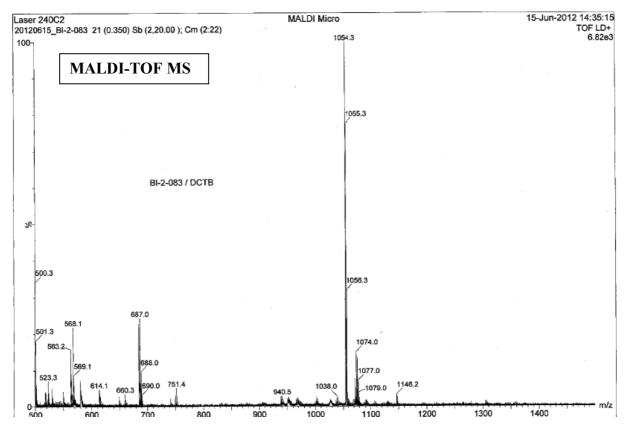


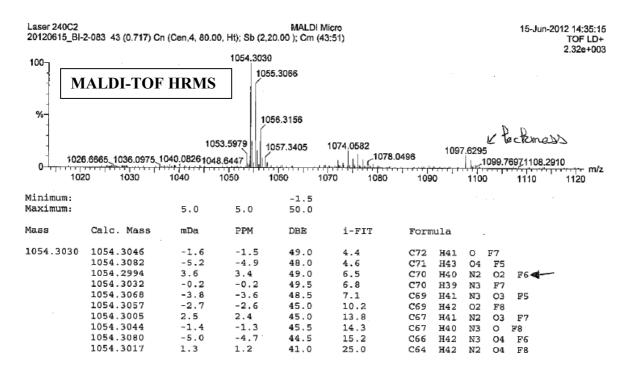




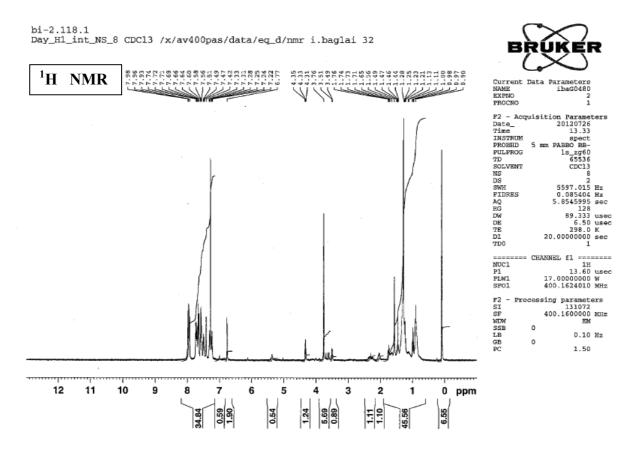


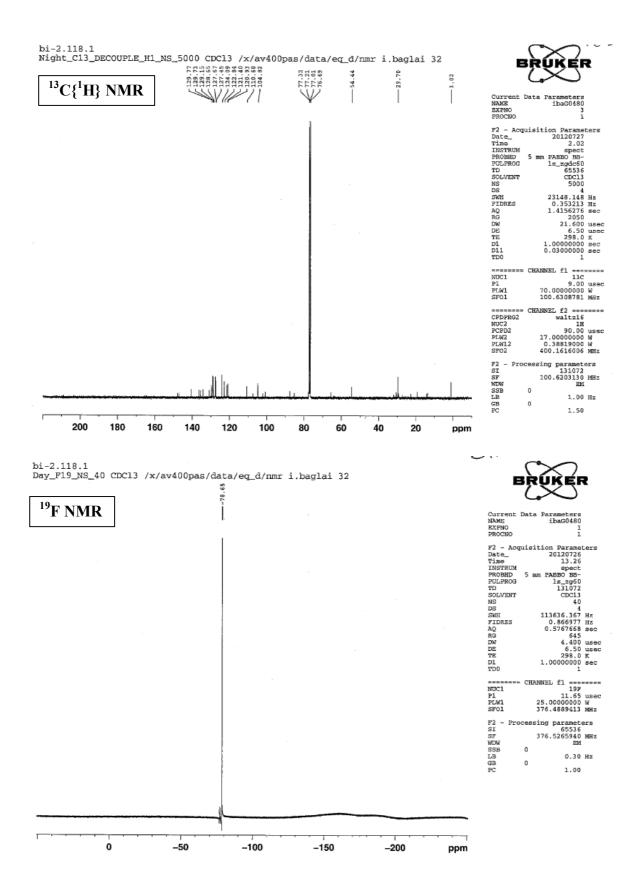




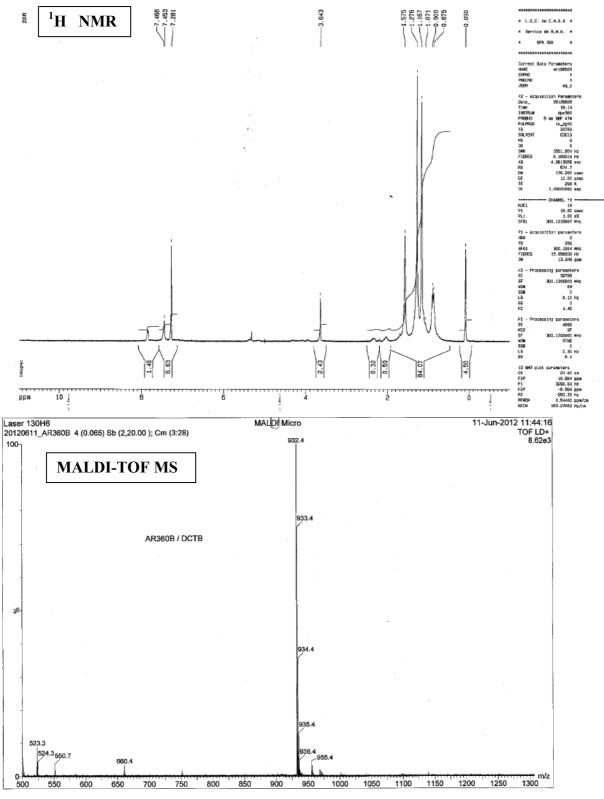


carbazole

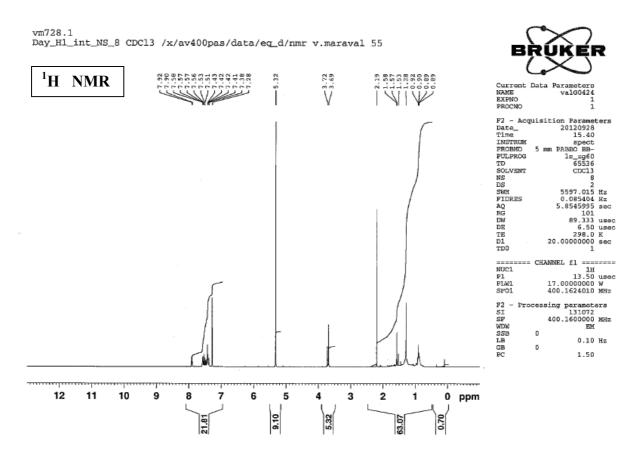


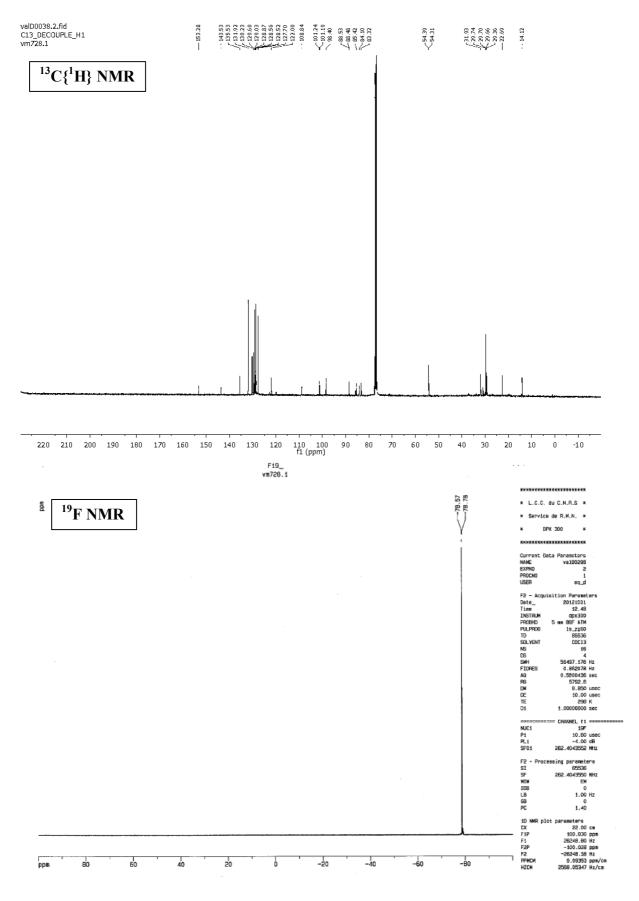


12f.1-(4-{10-[4-(1H-indol-1-yl)phenyl]-13,16-dimethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl}phenyl)-1H-indole



27-Sep-2012 14:46:24 Laser 170H2 MAL.DI Micro 20120927_BI-2-118 30 (0.500) Cn (Cen,4, 80.00, Ht); Sb (2,20.00); Cm (24:32) MALDI Micro TOF LD+ 1.46e+003 954.2658 100-**MALDI-TOF HRMS** e Cochmans 955.2673 % 965.5508 956.2753 966.5551 957.2765 967.5615 940.5130 945,8511 961.1725 953.4049 974.2807 978.3483 983.9665 ⊔++++++ m/z 0· TT. **___** 970.0 975.0 980.0 965.0 940.0 945.0 950.0 955.0 960.0 Minimum: -1.5 Maximum: 5.0 5.0 55.0 PPM DBE i-FIT Formula Calc. Mass mDa Mass 954.2631 2.7 2.8 46.5 2.5 C65 H36 N 03 F4 954.2658 N2 O F5 N2 O2 F6 954,2670 -1.2 -1.3 47.0 2.9 C65 H35 954.2681 -2.3 -2.4 43.0 3.5 C62 H36 H35 N 02 F3 C68 4.0 50.5 51.0 954.2620 3.8 4.4 4.6 C68 H34 N2 F4 0.0 954.2658 0.0 N 02 F8 N2 03 F 4.2 39.5 6.1 C60 H36 954.2618 4.0 954.2692 -3.4 -3.6 39.0 6.6 C59 H37 03 F7

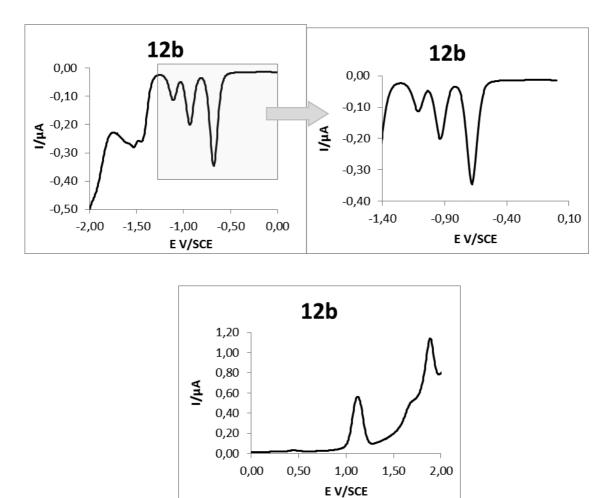

12g. {2-[13,16-dimethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)-10-{2-[tris(propan-2-yl)silyl]ethynyl}cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl]ethynyl} tris(propan-2-yl)silane

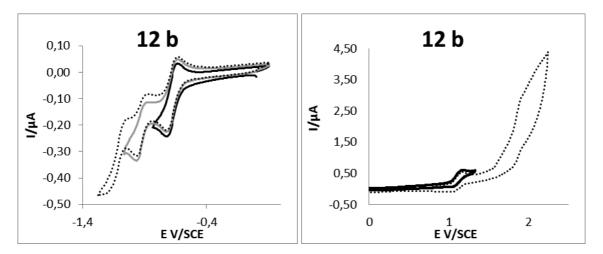



81

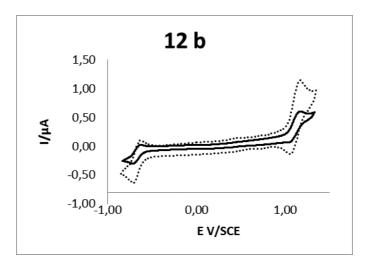
Laser 130H6 MALDI Micro 20120611_AR360B 50 (0.832) Cn (Cen,4, 80.00, Ht); Sb (2,20.00); Cm ((49:51+74:77))								11-Jun-2012 11:44:16 TOF LD+ 3.48e+003	
100 ₇	932.3913								
	MALDI-TOF HRMS			933.3939					
%				928	~ lockmans				
-	921.5302 910.9418		935.3931		965.5508 948.6069 955.3798 958.3975 965			98 1.967.50	643 983.0901
0 ~ \+ ++ ++ + +	910.0 920.0	930	┍╾┰╝┎╝┎╵╵┍╝┍╟╦┉		950.0	۲ <u>۰۴٬۲۰٬۲۰٬۳۰</u> ۰ 960.0	-, լելել	970.0	980.0 980.0
Minimum:				-1.5					
Maximum:		5.0	5.0	90.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formu	la		
932.3913	932.3904	0.9	1.0	30.0	0.8	C58	H5 9	04 I	73 Si2
	932.3868	4.5	4.8	31.0	1.7	C59	H57	O FS	5 Si2
	932.3880	3.3	3.5	27.0	3.4	C56	H58	02 1	76 Si2
	932.3891	2.2	2.4	23.0	10.1	C53	H59	03 I	77 Si2
	932.3873	4.0	4.3	35.0	10.4		H55		73 S1
	932.3884	2.9	3.1	31.0	19.1		H56		74 Si
	932.3902	1.1	1.2	19.0	22.3		H60 /		78 Si2
	932.3871	4.2	4.5	24.0	51.9	C54	H56	03 I	78 Si

12h. 13,16-dimethoxy-4,7-diphenyl-1,10-bis(2-phenylethynyl)-13,16-bis(trifluoromethyl) cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne

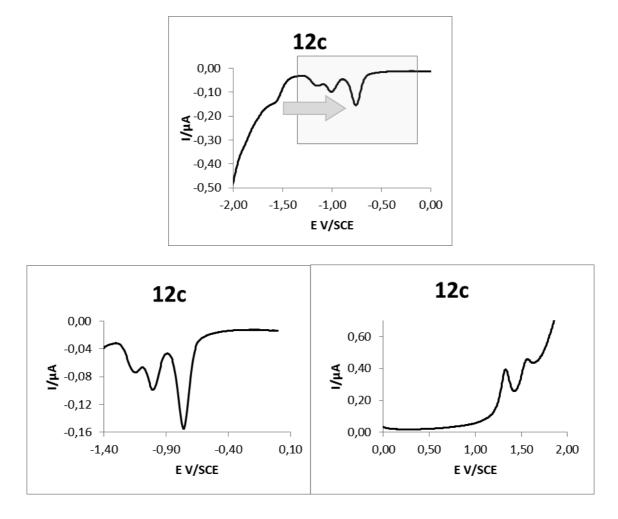



6. Voltammograms

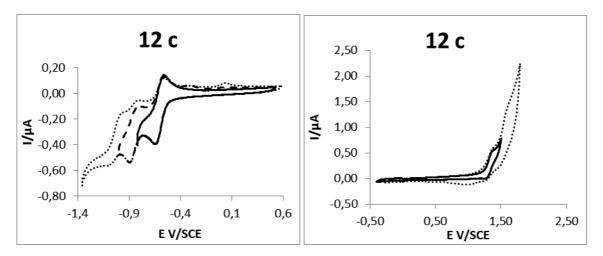
12b. 13,16-dimethoxy-1,10-bis(4-methoxyphenyl)-4,7-diphenyl-13,16-bis(trifluoromethyl) cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne


SW voltammograms for reduction and oxidation of **12b** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm).

Cyclic voltammograms for reduction and oxidation of **12b** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm), scan rate is 0.1 V/s.

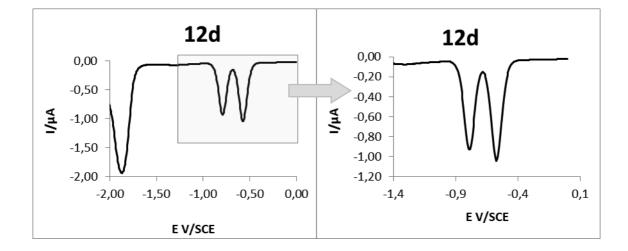


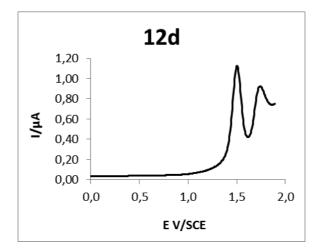
Influence of the scan rate: Cyclic voltammograms for first reduction and first oxidation of **12b** in CH₂Cl₂ (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm), scan rate is 0.1 V/s (solid line) and 0.5 V/s (dotted line).

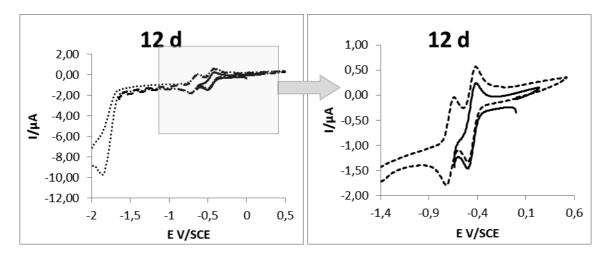


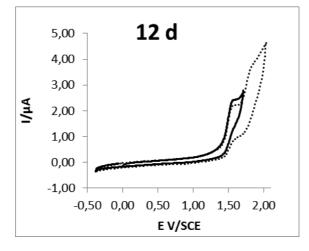
12c. 13,16-dimethoxy-1,4,7,10-tetraphenyl-13,16-bis(trifluoromethyl)cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne

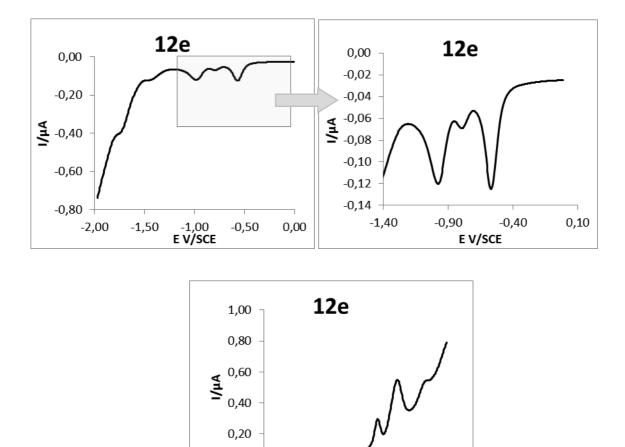
SW voltammograms for reduction and oxidation of **12c** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm).




Cyclic voltammograms for reduction and oxidation of **12c** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm), scan rate is 0.2 V/s


12d. 13,16-dimethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)-1,10-bis[4-(trifluoromethyl) phenyl]cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayne


SW voltammograms for reduction and oxidation of **12d** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm).


Cyclic voltammograms for reduction and oxidation of **12d** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm), scan rate is 0.2 V/s

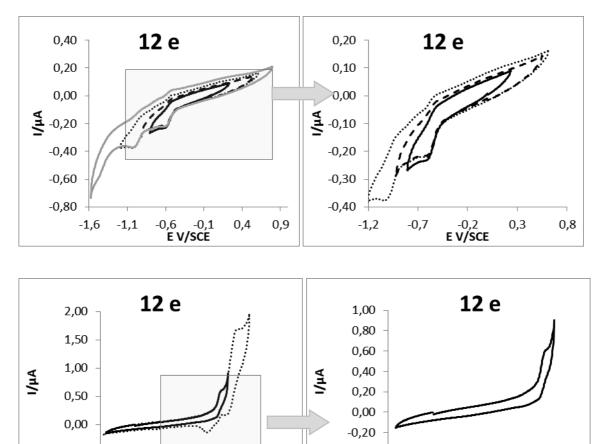
12e. 9-(4-{10-[4-(9*H*-carbazol-9-yl)phenyl]-13,16-dimethoxy-4,7-diphenyl-13,16-bis (trifluoromethyl)cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl}phenyl)-9H-carbazole

SW voltammograms for reduction and oxidation of **12e** in CH₂Cl₂ (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm).

0,00

0,00

0,50


1,00

E V/SCE

1,50

2,00

Cyclic voltammograms for reduction and oxidation of **12e** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm), scan rate is 0.2 V/s.

-0,40

-0,50

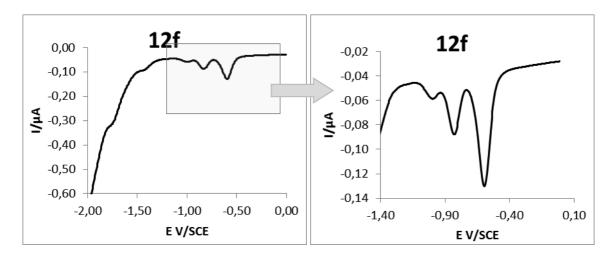
0,00

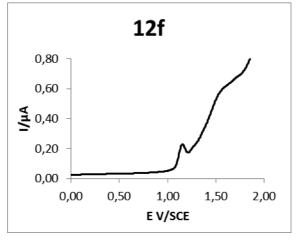
0,50

E V/SCE

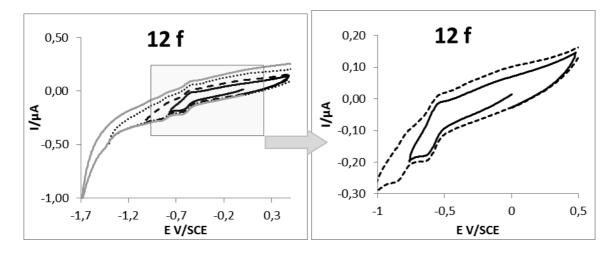
1,00

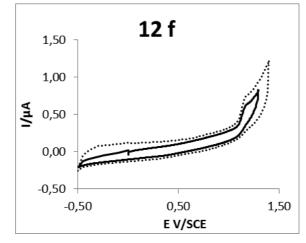
1,50


-0,50


-0,50 0,00 0,50 1,00 1,50 2,00

E V/SCE


12f.1-(4-{10-[4-(1H-indol-1-yl)phenyl]-13,16-dimethoxy-4,7-diphenyl-13,16-bis(trifluoromethyl)cyclooctadeca-1,2,3,7,8,9-hexaen-5,11,14,17-tetrayn-1-yl}phenyl)-1H-indole


SW voltammograms for reduction and oxidation of **12f** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm).

Cyclic voltammograms for reduction and oxidation of **12f** in CH_2Cl_2 (containing 0.1 mol.L⁻¹ (nBu₄N)PF₆) on Pt microdisk (r = 0.25 mm), scan rate is 0.2 V/s

7. UV-vis absorption spectra and solvatochromism of 12d.

8. References.

1. V. Maraval, L. Leroyer, A. Harano, C. Barthes, A. Saquet, C. Duhayon, T. Shinmyuzo, R. Chauvin, *Chem. Eur. J.* 2011, **17**, 5086.

2. a) L. Maurette, C. Tedeschi, E. Sermot, M. Soleilhavoup, F. Hussain, B. Donnadieu, R. Chauvin, *Tetrahedron 2004*, **60**, 10077; b) L. Leroyer, C. Zou, V. Maraval, R. Chauvin, *CR Chimie 2009*, **12**, 412.

3. A. Rives, V. Maraval, N. Saffon-Merceron, R. Chauvin, Chem. Eur. J. 2014, 20, 483.

4. A. Rives, I. Baglai, V. Malytskiy, V. Maraval, N. Saffon-Merceron, Z. V. Voitenko, R. Chauvin, *Chem. Commun. 2012*, 8763.

5. Palatinus L., Chapuis G. J. Appl. Cryst. 2007, 40, 786.

6. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K.; Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487.

7. International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham,

England, 1974.

8. R. H. Blessing, Acta Cryst. 1995, a51, 33.

9. SAINT-NT Bruker AXS: Madison Wisconsin, 2000.

10. SADABS (2006 and 2008), Program for data correction, Bruker-AXS.

11. SHELXL-97, Program for Crystal Structure Refinement, G. M. Sheldrick, University of Göttingen, *Acta Crystallogr., Sect. A 2008*, **64**, 112-122.