ELECTRONIC SUPPLEMENTARY INFORMATION

Ultrafast photoinduced electron transfer in face-to-face charge-transfer π -complexes of planar porphyrins and hexaazatriphenylene derivatives

Toru Aoki,^a Hayato Sakai,^a Kei Ohkubo,^b Tomo Sakanoue,^c Taishi Takenobu,^{*,c}

Shunichi Fukuzumi,*,^b and Taku Hasobe*,^a

^a Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan

^b Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology (JST), Suita, Osaka 565-0871, Japan

^c Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan

Experimental section

Femtosecond laser flash photolysis. Femtosecond transient absorption spectroscopy experiments were conducted using an ultrafast source: Integra-C (Quantronix Corp.), an optical parametric amplifier: TOPAS (Light Conversion Ltd.) and a commercially available optical detection system: Helios provided by Ultrafast Systems LLC. The source for the pump and probe pulses were derived from the fundamental output of Integra-C (λ = 786 nm, 2 mJ/pulse and fwhm = 130 fs) at a repetition rate of 1 kHz. 75% of the fundamental output of the laser was introduced into a second harmonic generation (SHG) unit: Apollo (Ultrafast Systems) for excitation light generation at $\lambda =$ 393 nm, while the rest of the output was used for white light generation. The laser pulse was focused on a sapphire plate of 3 mm thickness and then white light continuum covering the visible region from $\lambda = 410$ nm to 800 nm was generated via self-phase modulation. A variable neutral density filter, an optical aperture, and a pair of polarizer were inserted in the path in order to generate stable white light continuum. Prior to generating the probe continuum, the laser pulse was fed to a delay line that provides an experimental time window of 3.2 ns with a maximum step resolution of 7 fs. In our experiments, a wavelength at $\lambda = 393$ nm of SHG output was irradiated at the sample cell with a spot size of 1 mm diameter where it was merged with the white probe pulse in a close angle ($< 10^{\circ}$). The probe beam after passing through the 2 mm sample cell was focused on a fiber optic cable that was connected to a CMOS spectrograph for recording the time-resolved spectra ($\lambda = 410$ - 1600 nm). Typically, 1500 excitation pulses were averaged for 3 seconds to obtain the transient spectrum at a set delay time. Kinetic traces at appropriate wavelengths were assembled from the time-resolved spectral data. All measurements were conducted at room temperature.

Scheme S1 Synthetic schemes of H₂P and ZnP

Fig. S1 ¹H NMR spectrum of C_3 HAT-TIm in DMSO- d_6 .

Fig. S2 ¹³C NMR spectrum of C_3HAT -TIm in DMSO- d_6 .

Fig. S3 MALDI-TOF mass spectrum of C₃HAT-TIm.

Fig. S4 Cyclic voltammograms of (a) C_3 HAT-TIm and (b) C_{12} HAT-TIm in CH₂Cl₂ with 0.10 M ^{*n*}Bu₄NPF₆ as supporting electrolyte. Saturated calomel electrode (SCE) was used as a reference electrode. Scan rate: 0.1 V s⁻¹.

Fig. S5 Molecular orbitals and energy levels calculated in B3LYP/6-31+G(d) level of TPh and porphyrin derivatives.

Fig. S6 Molecular orbitals and energy levels calculated in B3LYP/6-31+G(d) level of HAT derivatives.

Fig. S7 Cyclic voltammograms of H_2P and ZnP in CH_2Cl_2 with 0.10 M nBu_4NPF_6 as supporting electrolyte. Saturated calomel electrode (SCE) was used as a reference electrode. Scan rate: 0.1 V s⁻¹.

Fig. S8 CT absorption band of H_2P-C_3HAT -TIm (red) and absorption spectrum of H_2P pristine monomer (black) in CH_2Cl_2 .

Fig. S9 (A) Fluorescence spectral changes of H_2P ([H_2P] = 10 μ M) upon addition of increasing equivalents of C₆HAT-TIm (0 μ M - 250 μ M) in CH₂Cl₂. Excitation wavelength: 550 nm. (B) Plot of the fluorescence intensity vs [C₆HAT-TIm] at 663 nm. Inset: Plot of (α^{-1} –1)⁻¹ vs [C₆HAT-TIm] – α [H₂P]₀.

Fig. S10 (A) Fluorescence spectral changes of H₂P ([H₂P] = 10 μ M) upon addition of increasing equivalents of C₆HAT-TIm (0 μ M - 250 μ M) in CH₂Cl₂. Excitation wavelength: 550 nm. (B) Plot of the fluorescence intensity vs [C₁₂HAT-TIm] at 663 nm. Inset: Plot of (α^{-1} -1)⁻¹ vs [C₁₂HAT-TIm] – α [H₂P]₀.

Fig. S11 (A) Fluorescence spectral changes of ZnP ([ZnP] = 10 μ M) upon addition of increasing equivalents of C₃HAT-TIm (0 μ M - 250 μ M) in CH₂Cl₂. Excitation wavelength: 550 nm. (B) Plot of the fluorescence intensity vs [C₃HAT-TIm] at 603 nm. Inset: Plot of (α^{-1} –1)⁻¹ vs [C₃HAT-TIm] – α [H₂P]₀.

Fig. S12 (A) Fluorescence spectral changes of ZnP ([ZnP] = 10 μ M) upon addition of increasing equivalents of C₆HAT-TIm (0 μ M - 250 μ M) in CH₂Cl₂. Excitation wavelength: 550 nm. (B) Plot of the fluorescence intensity vs [C₆HAT-TIm] at 603 nm. Inset: Plot of (α^{-1} –1)⁻¹ vs [C₆HAT-TIm] – α [H₂P]₀.

Fig. S13 (A) Fluorescence spectral changes of ZnP ([ZnP] = 10 μ M) upon addition of increasing equivalents of C₁₂HAT-TIm (0 μ M - 250 μ M) in CH₂Cl₂. Excitation wavelength: 550 nm. (B) Plot of the fluorescence intensity vs [C₁₂HAT-TIm] at 603 nm. Inset: Plot of (α^{-1} -1)⁻¹ vs [C₁₂HAT-TIm] – α [H₂P]₀.

Fig. S14 (A) ¹H NMR titration of H₂P ([H₂P] = 500 μ M) and C₆HAT-TIm upon addition of increasing equivalents of C₆HAT-TIm (0 μ M - 500 μ M) in CDCl₃. (B) ¹H NMR titration curve obtained from the chemical shift changes of β proton of H₂P by adding C₆HAT-Tim.

S15. Excitation energies and oscillator strengths for $ZnP-C_3HAT$ -TIm by TD-DFT B3LYP/6-31G(d)//B3LYP/6-31G(d) with assignment of electronic absorption

Singlet-A 1.2087 eV 1025.73 nm f=0.0000 <S**2>=0.000 ZnP --> HAT Excited State 1: 290 -> 291 0.70582 Singlet-A 1.2220 eV 1014.57 nm f=0.0070 <S**2>=0.000 70506 ZnP --> HAT Excited State 2: 290 -> 292 0.70506 Excited State 1.4256 eV 869.72 nm f=0.0038 <S**2>=0.000 3: Singlet-A 0.11556 289 -> 291 290 -> 293 ZnP --> HAT 0.69643 Singlet-A 1.4876 eV 833.47 nm f=0.0008 <S**2>=0.000 0.70402 ZnP --> HAT Excited State 4: 289 -> 292 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-A 1.5196 eV 815.89 nm f=0.0172 <S**2>=0.000 69517 ZnP --> HAT Excited State 5: 0.69517 289 -> 291 290 -> 293 -0.116581.7050 eV 727.18 nm f=0.0002 $<\!S^{**2}\!>\!=\!0.000$ ZnP --> HAT Excited State 6: Singlet-A 0.70350 289 -> 293 Excited State 7: Singlet-A 2.1728 eV 570.63 nm f=0.0114 <S**2>=0.000 289 -> 295 290 -> 294 ZnP --> ZnP -0.17689 ZnP --> HAT 0.68044 Excited State 2.2710 eV 545.94 nm f=0.0106 <S**2>=0.000 8: Singlet-A 0.29089 289 -> 294 289 -> 296 290 -> 295 0.31652 0.55438 ZnP --> ZnP Excited State 9: Singlet-A 2.3003 eV 538.99 nm f=0.0047 <S**2>=0.000 289 -> 295 290 -> 294 -0.37929 -0.10013 290 -> 296 0.58247 ZnP --> ZnP 2.4662 eV 502.74 nm f=0.0047 <S**2>=0.000 Excited State 10: Singlet-A 289 -> 294 -0.45103 289 -> 296 0.10916 290 -> 295 0.15600 290 -> 297 0.50163 ZnP --> HAT 2.4941 eV 497.11 nm f=0.0036 <S**2>=0.000 Excited State 11: Singlet-A -0.15503 289 -> 295 290 -> 296 -0.13928 290 -> 298 ZnP --> HAT 0.67293 2.4986 eV 496.21 nm f=0.0080 <S**2>=0.000 Excited State 12: Singlet-A 289 -> 294 0.41783 ZnP --> HAT289 -> 296 -0.29828 290 -> 297 0.47019 ZnP --> HAT Excited State 13: Singlet-A 2.5569 eV 484.89 nm f=0.0000 <S**2>=0.000 ZnP --> HAT 288 -> 292 0.69970 2.5715 eV 482.15 nm f=0.0000 <S**2>=0.000 ZnP --> HAT Excited State 14: Singlet-A 288 -> 291 0.70520 Excited State 15: Singlet-A 2.7435 eV 451.91 nm f=0.0171 <S**2>=0.000 -0.11116 286 -> 292

287 -> 291 0.16230 289 -> 295 0.21014 289 -> 297 0.62573 ZnP --> HAT Excited State 16: Singlet-A 2.7523 eV 450.48 nm f=0.0032 <S**2>=0.000 -0.23497 287 -> 292 289 -> 296 -0.27880 289 -> 298 0.58305 ZnP --> HAT 2.7730 eV 447.12 nm f=0.0000 <S**2>=0.000 Excited State 17: Singlet-A 0.69761 ZnP --> HAT 288 -> 293 2.7941 eV 443.73 nm f=0.0002 <S**2>=0.000 Excited State 18: Singlet-A 285 -> 291 -0.46791 ZnP --> HAT 286 -> 292 0.15087 287 -> 291 0.47694 289 -> 297 -0.14989ZnP --> HAT 2.8010 eV 442.64 nm f=0.0024 <S**2>=0.000 Excited State 19: Singlet-A -0.22802 285 -> 292 287 -> 292 0.60539 ZnP --> HAT 289 -> 298 0.25180 Excited State 20: Singlet-A 2.8105 eV 441.15 nm f=0.0000 <S**2>=0.000 -0.13790 285 -> 291 286 -> 292 0.60997 ZnP --> HAT 287 -> 291 -0.27502 289 -> 297 0.14621 2.8173 eV 440.09 nm f=0.0015 <S**2>=0.000 ZnP --> HAT Excited State 21: Singlet-A 0.47936 285 -> 292 286 -> 291 ZnP --> HAT -0.47514 287 -> 292 0.16990 2.8400 eV 436.56 nm f=0.0002 <S**2>=0.000 ZnP --> HAT Excited State 22: Singlet-A 0.48748 285 -> 291 286 -> 292 0.27234 286 -> 293 -0.15802 287 -> 291 0.39745 2.8468 eV 435.52 nm f=0.0010 <S**2>=0.000 ZnP --> HAT Singlet-A Excited State 23: 0.43873 285 -> 292 286 -> 291 ZnP --> HAT 0.49951 287 -> 292 287 -> 293 0.16904 -0.12965 Excited State 24: Singlet-A 2.9845 eV 415.42 nm f=0.0001 <S**2>=0.000 279 -> 294 -0.10487 281 -> 292 282 -> 291 -0.18692 0.28232 283 -> 292 0.57617 HAT --> HAT Excited State 25: Singlet-A 2.9945 eV 414.04 nm f=0.0013 <S**2>=0.000 -0.11109 280 -> 292 281 -> 291 -0.14556 282 -> 292 0.38512 HAT --> HAT 282 -> 293 0.21983 283 -> 291 0.45813 HAT --> HAT 283 -> 294 -0.10921 284 -> 292 0.10673 Excited State 26: Singlet-A 3.0058 eV 412.49 nm f=0.0024 <S**2>=0.000 -0.14655 280 -> 291 0.50897 ZnP --> HAT 282 -> 291 283 -> 292 -0.21806

283 -> 293 284 -> 291 286 -> 293		0.27901 0.14694 -0.14255						
Excited State 285 -> 293 287 -> 293	27:	Single -0.36314 0.57582	et-A ZnP	3.0113 eV > HAT	411.73 nm	f=0.0057	<s**2>=0.0</s**2>	ð00
Excited State 282 -> 291 286 -> 292 286 -> 293	28:	Single 0.13523 0.10157 0.65532	et-A ZnP	3.0449 eV > HAT	407.18 nm	f=0.0015	<s**2>=0.(</s**2>	300
Excited State 283 -> 291 285 -> 293 286 -> 291 287 -> 293	29:	Single 0.15316 0.54254 0.11127 0.36343	et-A ZnP	3.0534 eV > HAT	406.06 nm	f=0.0041	<s**2>=0.(</s**2>	300
Excited State 279 -> 293 280 -> 292 281 -> 291 282 -> 292 283 -> 291 285 -> 293	30:	Single -0.24141 -0.14433 0.11940 0.44118 -0.35714 0.20571	et-A HAT	3.0749 eV > HAT	403.22 nm	f=0.0037	<s**2>=0.0</s**2>	300
SavETr: write	IOET	rn= 770	NScale=	10 NData=	16 NLR=1 L	ETran=	550.	

S16. B3LY1	Excitati P/6-31G(d	on l)//B3	energies LYP/6-31G(and d)	oscillato	or	strengths	s for	ZnP	by	TD-DFT
Excit 14 14 14 14	ed State 2 ->144 2 ->145 3 ->144 3 ->145	1:	Singlet- -0.30484 0.32326 0.39839 0.37567	A	2.2874 eV	V	542.04 nm	f=0.0113	<s**2></s**2>	-=0.000	
Excit 14 14 14 14	ed State 2 ->144 2 ->145 3 ->144 3 ->145	2:	Singlet- -0.32326 -0.30484 -0.37567 0.39839	Α	2.2874 eV	V	542.04 nm	f=0.0113	<s**2></s**2>	-=0.000	
Excit 14 14 14	ed State 1 ->144 2 ->144 3 ->145	3:	Singlet- 0.65560 0.20070 0.16202	A	3.2568 eV	V	380.69 nm	f=0.1258	<s**2></s**2>	-=0.000	
Excit 14 14 14 This	ed State 1 ->145 2 ->145 3 ->144 state for	4:	Singlet- 0.65560 0.20070 -0.16202	A d/or	3.2568 eV	V	380.69 nm	f=0.1258	<s**2></s**2>	-=0.000	
Соруі	ng the ex	cited	state dens	ity f	for this st	at	e as the 1	-particle	RhoCI	density	' .
Excit 14 14 14 14	ed State 1 ->144 2 ->144 3 ->145 3 <-145	5:	Singlet- -0.25900 0.50808 0.40917 -0.10285	A	3.3077 eV	V	374.84 nm	f=0.8884	<s**2></s**2>	-=0.000	
Excit 14 14 14 14	ed State 1 ->145 2 ->145 3 ->144 3 <-144	6:	Singlet- -0.25900 0.50808 -0.40917 0.10285	A	3.3077 eV	V	374.84 nm	f=0.8884	<s**2></s**2>	-=0.000	
Excit 13 13 14 14	ed State 9 ->144 9 ->145 0 ->144 0 ->145	7:	Singlet- 0.48271 0.11556 -0.11556 0.48271	A	3.6571 e ^v	V	339.03 nm	f=0.0000	<s**2></s**2>	-=0.000	
Excit 13 13 14 14	ed State 9 ->144 9 ->145 0 ->144 0 ->145	8:	Singlet- 0.46944 -0.15799 -0.15799 -0.46943	A	3.7173 eV	V	333.53 nm	f=0.0001	<s**2></s**2>	-=0.000	
Excit 14	ed State 3 ->146	9:	Singlet- 0.68753	A	3.7947 eV	V	326.73 nm	f=0.0000	<s**2></s**2>	-=0.000	
Excit 13 13	ed State 8 ->144 8 ->145	10:	Singlet- 0.65518 -0.23124	A	3.7965 e	V	326.57 nm	f=0.0384	<s**2></s**2>	>=0.000	
Excit 13 13	ed State 8 ->144 8 ->145	11:	Singlet- 0.23124 0.65518	A	3.7965 e	V	326.57 nm	f=0.0384	<s**2></s**2>	≥=0.000	
Excit 13	ed State 9 ->144	12:	Singlet- 0.15690	A	3.8374 e	V	323.09 nm	f=0.0000	<s**2></s**2>	≥=0.000	

139 ->145 140 ->144 140 ->145		0.46622 0.46623 -0.15689				
Excited State 139 ->144 139 ->145 140 ->144 140 ->145	13:	Singlet-A -0.11593 0.48427 -0.48426 -0.11593	3.9156 eV	316.64 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 135 ->145 136 ->144 142 ->146	14:	Singlet-A -0.10175 0.10175 0.67294	4.0792 eV	303.94 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 137 ->144	15:	Singlet-A 0.69172	4.2851 eV	289.34 nm	f=0.1464	<s**2>=0.000</s**2>
Excited State 137 ->145	16:	Singlet-A 0.69172	4.2851 eV	289.34 nm	f=0.1464	<s**2>=0.000</s**2>
Excited State 135 ->144 135 ->145 136 ->144 136 ->145	17:	Singlet-A -0.36211 0.34040 0.34040 0.36211	4.4227 eV	280.34 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 135 ->144 135 ->145 136 ->144 136 ->145	18:	Singlet-A 0.34012 0.36181 0.36182 -0.34012	4.5347 eV	273.41 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 135 ->144 135 ->145 136 ->144 136 ->145 141 ->146 142 ->149	19:	Singlet-A -0.22842 0.29128 -0.29128 -0.22842 0.42452 0.12699 -0.10595	4.7782 eV	259.48 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 135 ->144 135 ->145 136 ->144 136 ->145 141 ->146 142 ->146	20:	Singlet-A 0.17853 -0.22728 0.22728 0.17852 0.53916 -0.10443	4.7851 eV	259.10 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 135 ->144 135 ->145 136 ->144 136 ->145 142 ->149 143 ->146	21:	Singlet-A 0.36989 0.29020 -0.29020 0.36989 0.13726 0.12807	4.9276 eV	251.61 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 143 ->147	22:	Singlet-A 0.70417	5.0929 eV	243.45 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 140 ->146	23:	Singlet-A 0.69995	5.2764 eV	234.98 nm	f=0.0701	<s**2>=0.000</s**2>
Excited State	24:	Singlet-A	5.2764 eV	234.98 nm	f=0.0701	<s**2>=0.000</s**2>

139	->146		0.69995									
Excited 138	State ->146	25:	Singl 0.69864	et-A	5.2	958	eV	234.12	nm	f=0.0000	<s**2>=0</s**2>	.000
Excited 142	State ->147	26:	Singl 0.70157	et-A	5.3	317	eV	232.54	nm	f=0.0000	<s**2>=0</s**2>	.000
Excited 143	State ->148	27:	Singl 0.70431	et-A	5.3	451	eV	231.96	nm	f=0.0070	<s**2>=0</s**2>	.000
Excited 134 134	State ->144 ->145	28:	Singl 0.66890 -0.19954	et-A	5.4	105	eV	229.16	nm	f=0.0478	<s**2>=0</s**2>	.000
Excited 134 134	State ->144 ->145	29:	Singl 0.19954 0.66890	et-A	5.4	105	eV	229.16	nm	f=0.0478	<s**2>=0</s**2>	.000
Excited 132 133	State ->144 ->145	30:	Singl -0.48765 0 48777	et-A	5.5	684	eV	222.65	nm	f=0.0000	<s**2>=0</s**2>	.000
SavETr:	write	I0ETr	n= 770	NScale=	10 N	IDato] =	16 NLR=	1 LE	Tran=	550.	

S17. B3L	Excitatio YP/6-31G(d	on e 1)//B3	nergies LYP/6-31	and G(d)	oscillator	S	strengths	ſ	For C ₃ H	IAT-TIm	by	TD-DFT
Excit	ted State 146 ->148 147 ->149	1:	Single 0.48047 0.48875	et-A	2.9667	eV	417.92	nm	f=0.0000	<\$**2>=	0.000	
Exci	ted State 146 ->148 146 ->151 147 ->149 147 ->150	2:	Singl 0.44127 0.11108 -0.43132 0.28949	et-A	2.9739	eV	416.91	nm	f=0.000	0 <s**2></s**2>	=0.000	
Exci	ted State 146 ->149 146 ->150 147 ->148 147 ->151	3:	Singl 0.43512 0.29013 0.43712 -0.11091	et-A	2.9740	eV	416.89	nm	f=0.000	0 <s**2></s**2>	=0.000	
Exci	ted State 143 ->150 145 ->150 146 ->149 147 ->148	4:	Singl -0.16801 0.20449 0.44776 -0.44571	.et-A	3.0393	eV	407.94	nm	f=0.004	7 <s**2></s**2>	=0.000	
This Copy	s state for ving the ex	opti cited	mization state d	and/o ensity	r second-o for this	orde sta	er corre ite as tl	ctic he 1	on. L-particl	e RhoCI d	lensity	1.
Exci	ted State 143 ->148 145 ->148 146 ->148 146 ->151 147 ->149 147 ->150	5:	Singl 0.29784 -0.37550 -0.12059 -0.11717 0.11994 0.43908	.et-A	3.1325	eV	395.80	nm	f=0.000	1 <s**2></s**2>	=0.000	
Exci	ted State 143 ->149 145 ->149 146 ->149 146 ->150 147 ->148 147 ->151	6:	Singl -0.29599 0.37704 -0.11974 0.43900 -0.11939 0.11746	.et-A	3.1329	eV	395.75	nm	f=0.000	0 <s**2></s**2>	=0.000	
Exci	.ted State 140 ->148 140 ->152 141 ->148 141 ->151 142 ->149	7:	Singl 0.44957 -0.11006 0.31218 0.20853 0.31054	et-A	3.4277	eV	361.71	nm	f=0.000	0 <s**2></s**2>	=0.000	
Exci	ted State 140 ->149 140 ->153 141 ->149 142 ->148 142 ->151 145 ->148	8:	Singl 0.44868 -0.10988 -0.31218 0.31308 -0.20861 0.10255	.et-A	3.4278	eV	361.70	nm	f=0.000	0 <s**2></s**2>	=0.000	
Exci	ted State 140 ->151 141 ->148 141 ->152 142 ->149 142 ->153	9:	Singl -0.21262 -0.45367 0.11060 0.45483 -0.11114	.et-A	3.4460	eV	359.80	nm	f=0.000	0 <s**2></s**2>	=0.000	

Excited State 140 ->148 143 ->149 145 ->149 146 ->149 146 ->150 147 ->148	10:	Singlet-A -0.10212 0.22457 -0.41067 -0.17335 0.44052 -0.17410	3.5022	eV	354.02 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 140 ->149 143 ->148 145 ->148 146 ->148 147 ->149 147 ->150	11:	Singlet-A -0.10620 -0.21949 0.41480 -0.16898 0.16831 0.44125	3.5030	eV	353.94 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 143 ->148 144 ->149 145 ->148	12:	Singlet-A -0.42701 0.48627 -0.23891	3.5345	eV	350.79 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 137 ->148 138 ->149 143 ->149 144 ->148 145 ->149	13:	Singlet-A -0.14932 0.14829 0.41058 0.46810 0.23135	3.5658	eV	347.71 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 140 ->150 141 ->149 142 ->148	14:	Singlet-A 0.36845 0.40265 0.40096	3.6010	eV	344.30 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 143 ->150 145 ->150 146 ->149 147 ->148	15:	Singlet-A -0.37085 0.50566 -0.20744 0.20586	3.6202	eV	342.47 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 140 ->148 141 ->148 142 ->149 142 ->150	16:	Singlet-A 0.38203 -0.29273 -0.28939 0.37813	3.6260	eV	341.93 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 140 ->149 141 ->149 141 ->150 142 ->148	17:	Singlet-A 0.38459 0.28775 0.37866 -0.29154	3.6260	eV	341.93 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 139 ->149 143 ->149 144 ->148 145 ->149	18:	Singlet-A 0.15222 -0.36477 0.46396 -0.28886	3.7769	eV	328.27 nm	f=0.0950	<s**2>=0.000</s**2>
Excited State 139 ->148 143 ->148 144 ->149 145 ->148	19:	Singlet-A 0.15014 0.37043 0.46272 0.28193	3.7771	eV	328.25 nm	f=0.0940	<s**2>=0.000</s**2>
Excited State	20:	Singlet-A	3.8638	eV	320.89 nm	f=0.2075	<s**2>=0.000</s**2>

144 ->150		0.67738				
Excited State 143 ->150 145 ->150	21:	Singlet-A 0.54030 0.40990	3.8645 eV	/ 320.83 nm	f=0.2078	<s**2>=0.000</s**2>
Excited State 138 ->150 139 ->149	22:	Singlet-A -0.11816 0.66977	3.9396 eV	/ 314.72 nm	f=0.0823	<s**2>=0.000</s**2>
Excited State 137 ->150 139 ->148	23:	Singlet-A 0.11801 0.67126	3.9398 eV	/ 314.70 nm	f=0.0819	<s**2>=0.000</s**2>
Excited State 140 ->148 141 ->148 142 ->149 142 ->150	24:	Singlet-A -0.29961 0.19469 0.19235 0.56311	3.9863 eV	/ 311.02 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 140 ->149 141 ->149 141 ->150 142 ->148	25:	Singlet-A -0.30020 -0.19464 0.56286 0.19325	3.9864 e∖	/ 311.02 nm	f=0.0003	<s**2>=0.000</s**2>
Excited State 140 ->150 141 ->149 142 ->148	26:	Singlet-A 0.58341 -0.27766 -0.27831	3.9940 eV	/ 310.42 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 137 ->148 138 ->149 139 ->150 144 ->148	27:	Singlet-A 0.38632 -0.38682 0.40455 0.11720	4.0657 eV	/ 304.95 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 136 ->149 142 ->150 143 ->153 145 ->149 145 ->153 146 ->153 147 ->151 147 ->152	28:	Singlet-A 0.13227 0.12598 0.10177 -0.11405 -0.13572 0.18092 0.55942 0.18155	4.1354 eV	/ 299.81 nm	f=0.0002	<s**2>=0.000</s**2>
Excited State 136 ->148 141 ->150 143 ->152 145 ->148 145 ->152 146 ->151 146 ->152 147 ->153	29:	Singlet-A 0.13362 -0.12656 0.10410 -0.10998 -0.13336 0.55859 -0.18263 0.18145	4.1355 eV	/ 299.80 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 133 ->150 134 ->148 135 ->149 143 ->151 145 ->151 146 ->152 147 ->153	30:	Singlet-A 0.15294 -0.13284 -0.13394 0.21948 -0.29127 0.36212 0.36263	4.1786 eV	/ 296.71 nm	f=0.0002	<s**2>=0.000</s**2>

SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 LETran= 550.

Fig. S18 Femtosecond laser-induced transient absorption spectra and corresponding time profiles of H_2P-C_6HAT -TIm recorded at 1.0 ps (black), 100 ps (red) and 3000 ps (blue) after laser excitation in toluene. The concentrations of H_2P and $C_{12}HAT$ -TIm are 10 μ M and 8.0 mM, respectively. Excitation wavelength is 430 nm.

Fig. S19 Femtosecond laser-induced transient absorption spectra and corresponding time profiles of (A) ZnP and (B) ZnP–C₃HAT-TIm recorded at 1.0 ps (black), 100 ps (red) and 3000 ps (blue) after laser excitation in toluene. The concentrations of ZnP and C₃HAT-TIm are 10 μ M and 8.0 mM, respectively. Excitation wavelength is 430 nm.

Table S20

Total energies of H₂P, ZnP and HAT-TIm calculated at the B3LYP/6-31G(d) level of theory and stabilization energies (E_{stab})

	Porphyrin	HAT-TIm	Por-HAT-TIm	E_{stab} , ^{<i>a</i>}
	E _D , hartree	E _A , hartree	$E_{\rm DA}$, hartree	kcal mol ⁻¹
ZnP–C ₃ HAT-TIm	-4497.37835886	-1985.7111643	-6483.0997842	-6.44
ZnP–C ₆ HAT-TIm	-4497.37835886	-2339.5348369	-6836.9235661	-6.51
ZnP–C ₁₂ HAT-TIm	-4497.37835886	-3047.1818926	-7544.5707800	-6.61
H ₂ P–C ₃ HAT-TIm	-2719.3439945	-1985.7111643	-4705.0659022	-6.74
H ₂ P–C ₆ HAT-TIm	-2719.3439945	-2339.5348369	-5058.8896375	-6.78
H2P-C12HAT-TIm	-2719.3439945	-3047.1818926	-5766.5368438	-6.88
<i>a</i>				

^{*a*} $E_{\text{stab}} = E_{\text{DA}} - (E_{\text{A}} + E_{\text{D}}).$