Electronic Supplementary Information

Organic/Inorganic Double-Layered Shells for Multiple Cytoprotection of Individual Living Cells

Daewha Hong,^a Hojae Lee,^a Eun Hyea Ko,^a Juno Lee,^a Hyeoncheol Cho,^a Matthew Park,^a Sung Ho Yang^b and Insung S. Choi^{*a}

 ^a Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center Department of Chemistry, KAIST, Daejeon 305-701, Korea
^b Department of Chemistry Education, Chungbuk 363-791, Korea

> * To whom correspondence should be addressed Email: ischoi@kaist.ac.kr

Contents

- Figure S1. Viability and SEM images of poly(norepinephrine)-coated and poly(dopamine)coated yeast.
- Figure S2. TEM images of the microtome-sliced yeast^{ECP} cells with various magnifications.
- Figure S3. Pore size analyses of the shell in yeast^{ECP}.
- Figure S4. UV-Visible spectra of PN and PN/silica films coated on quartz.
- Figure S5. Viability of PN-coated yeast under UV-C irradiation.
- Figure S6. Full data set for the cellular process or metabolic process.
- Figure S7. Comparative analysis between yeast^{ECP} and yeast^{WT} before UV-C irradiation.

Figure S1. a) Viability of poly(norepinephrine) (PN)-coated and poly(dopamine) (PD)-coated yeast cells. The coating was done for 3 h. The viability was much higher for yeast@PN (94%) than yeast@PD (66%). Cells in green after FDA treatment were considered alive. b) SEM images of PN-coated and PD-coated yeast cells. PN-coated yeast cells showed uniform shells, while irregular particles were observed for PD-coated yeast cells.

Figure S2. TEM images of the microtome-sliced yeast^{ECP} cells with various magnifications.

Figure S3. Pore size analyses of the shell in yeast^{ECP}. a) Isotherm linear plot and b) BJH poresize distribution.

Figure S4. UV-Visible spectra of PN and PN/silica films coated on quartz.

Figure S5. Viability of PN-coated yeast under UV-C irradiation. The FDA assay showed that \sim 80% of the PN-coated yeast cells were dead after 500-sec UV-C irradiation. Cells in green after FDA treatment were considered alive.

Figure S6. Full data set for a) cellular process or b) metabolic process.

Figure S7. Comparative analysis between yeast^{ECP} and yeast^{WT} before UV-C irradiation. Left bar graph: the number of the changed proteins for each sub-categories in metabolic process. All the proteins involved in translation and rRNA processing were down-regulated (blue). Right bar graph: quantitative analysis of the proteins in glucose metabolism, protein folding, and oxidation-reduction. * indicates that the denominator of Fc is zero.