Supporting Information:

Synergistic Photocatalytic Aerobic Oxidation of Sulfides and Amines on TiO₂ under Visible Light Irradiation

Xianjun Lang¹, Wan Ru Leow¹, Jincai Zhao,^{2*} and Xiaodong Chen^{1*}

1. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore *E-mail: <u>chenxd@ntu.edu.sg</u>

 Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China *E-mail: jczhao@iccas.ac.cn

General:

The UV-visible absorption spectra of benzylamine, thioaniosole and the mixture of benzylamine and thioaniosole were recorded on a Shimadzu UV 2550 UV-vis Spectrophotometer. The detailed recording concentration: 2×10^{-3} M of benzylamine in MeOH; 2×10^{-4} M of thioanisole in CH₃OH; a mixture of 6.7×10^{-4} M of benzylamine and 2×10^{-4} M of thioanisole in CH₃OH.

The UV-visible absorption spectra of the solid samples were recorded on the same machine with a diffuse reflectance measurement accessory.

The phase composition of the Degussa P25 TiO₂ sample was identified by X-ray diffraction (XRD) using a Shimadzu 6000 X-ray diffractometer with Cu K_{α} radiation ($\lambda = 1.541$ 78 Å).

The TEM image of Degussa P25 TiO_2 sample was recorded on a JEOL JEM-2010 transmission electron microscope (TEM) operating at 200 kV to obtain the detailed nanostructures.

X-ray Photoelectron Spectroscopy (XPS) were measured by a ESCALAB250XI. The incident radiation was Mg K_{α} X-ray (1253.6 eV) at 400 W and a charge neutralizer was turned on for acquisition. The binding energy of N1s was corrected by C 1s peak (284.8 eV) from residual carbon.

Table S1: Control experiments for the photocatalytic oxidation of thioanisole on TiO_2 in organic solvent^[a]

S .	TiO ₂ , hv		(4)
+ O ₂ -	solvent		(1)
1		1'	

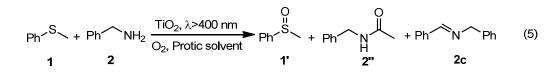
Entry	Solvent	Conditions	Conv. (mol%) ^[b]	Select. (mol%) ^[b]
1	CH ₃ CN	>350 nm	10	40
2	CH ₃ OH	>350 nm	5	95
3	CH ₃ CN	>400 nm	10	63
4	CH ₃ OH	>400 nm	6	93

Reaction conditions: 0.3 mmol of thioanisole, 0.1 MPa of O_2 , 40 mg of TiO₂ (Degussa P25), 300 W Xe lamp, 5 mL of solvent, 3 h. Longpass cutoff filters are used to control the irradiation wavelength. [b] Determined by GC using chlorobenzene as the internal standard, conversion of thioanisole **1**, selectivity of methyl phenyl sulfoxide **1**'.

Table S2: Control experiment for the photocatalytic oxidation of benzylamine on Degussa P25 TiO_2 in organic solvent^[a]

ĺ	2 NH ₂	TiO ₂ hv, CH ₃ OH	NHCHO + 22	+ H ₂ O (2)
 Entry	Solvent	Conditions	Conv. (mol%) ^[b]	Select. (mol%) ^[b]
 1	CH ₃ CN	>400 nm	100	85 (imine)
2	CH ₃ OH	>400 nm	100	38 (formamide)
3	CH ₃ OH	>350 nm	100	10 (formamide)

[a] Reaction conditions: 0.1 mmol of benzylamine, 0.1 MPa of O_2 , 40 mg of Degussa P25 Ti O_2 , 5 mL of solvent, 3 h.


[b] Determined by GC using chlorobenzene as the internal standard.

Entry	Solvent	Conv1.	Select1.	Conv2.	Select2.
		(mol%) ^[b]	$(\mathbf{mol}\%)^{[b]}$	(mol%) ^[b]	(mol%) ^[b]
1	CH ₃ CN	10	63		
1' ^[c]	CH ₃ CN	16	86	100	74
2	BTF	5	38		
2' ^[c]	BTF	5	66	100	58
3	EtOAc	6	42		
3' ^[c]	EtOAC	12	80	100	75
4	DCM	4	65		
4' ^[c]	DCM	8	90	100	58

Table S3: The aerobic oxidation of thioanisole and benzylamine in inert organic solvent on TiO_2 under visible light irradiation^[a]

[a] Reaction conditions: 0.3 mmol of thioanisole, 5 mL of solvent, 40 mg of Degussa P25 TiO₂, 300 W Xe lamp λ >400 nm, 0.1 MPa of O₂, 3 h, [b] Determined by GC using chlorobenzene as the internal standard. [c] 0.1 mmol of benzylamine was added. BTF, Benzotrifluoride; EtOAc, ethyl acetate; DCM, dichloromethane.

Table S4: The selective aerobic oxidation of thioanisole and benzylamine on TiO_2 in protic solvents under visible light irradiation^[a]

		Thioa	nisole	Benzylamine		
Entry	Solvent	Conv1. (mol%) ^[b]	Select1. (mol%) ^[b]	Conv2. (mol%) ^[c]	Select2. (mol%) ^[c]	
1	IPA	2	100			
1' ^[d]	IPA	28	85	100	$2c (64)^{[e]}$	
2	C_2H_5OH	1	100			
2 ^{'[d]}	C_2H_5OH	45	88	100	2c (35) ^[e]	
3	CH ₃ OH	6	93			
3' ^[d]	CH ₃ OH	77	93	100	2" (79) ^[e]	

[a] Reaction conditions: 0.3 mmol of 2, 0.1 MPa of O₂, 40 mg Degussa P25 TiO₂, 300 W Xe lamp, 5 mL of solvent, λ >400 nm, 3 h. [b] Determined by GC using chlorobenzene as the internal standard, conversion of 2, selectivity of 2b. [c] Determined by GC using chlorobenzene as the internal standard, conversion of benzylamine. [d] 0.1 mmol of 1 was added. [e] Data in the parentheses is the selectivity for the indicated product for the oxidation of 1, IPA, isopropanol.

Table S5: The scale-up for the synergistic photocatalytic oxidation of sulfide to amines ^[a]

o

0

	S + NH	^H 2	O ₂ <u> TiO₂, λ>400 nr</u> O ₂ , CH ₃ OH		2''	+ H ₂ O
Entry	Substrates (mmol)	Time (h)	Conv1. (mol%) ^[b]	Select1. (mol%) ^[b]	Conv2. (mol%) ^[c]	Select2. (mol%) ^[c]
1	0.05+0.15	2	85	92	100	77
2	0.1+0.3	4	83	92	100	78
3	0.2+0.6	8	88	89	100	82
4 ^[d]	0.3+0.9	12	83	91	100	42

[a] Reaction conditions: 5 mL of CH₃OH, 40 mg of TiO₂, 300 W Xe lamp, λ >400 nm, 0.1 MPa of O₂, [b] Determined by GC using chlorobenzene as the internal standard, conversion of thioanisole **1**, selectivity of sulfoxide **1'**; [c] Determined by GC using chlorobenzene as the internal standard, conversion of benzylamine **2**, selectivity of *N*benzylformamide **2''**. [d] 15% of benzaldehyde **2y** and 5% of imine **2z** were the other products detected.

Table S6: Control experiment for the synergistic photocatalytic oxidation of thioanisole on Degussa P25 TiO₂ in organic solvent^[a]

+ + CH ₃ OH + O ₂	$\frac{\text{TiO}_2, \lambda > 400 \text{ nm}}{\text{O}_2, \text{CH}_3\text{OH}} \rightarrow \text{C}$	0 + ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2	1'	2''

Entry	Conditions	Conv1. (mol%) ^[b]	Select1. (mol%) ^[b]	Conv2. (mol%) ^[c]	Select2. (mol%) ^[c]
1	>350 nm	30	92	100	10
2	>400 nm	83	92	100	78
3 ^[d]	>400 nm	0		0	
4 ^[e]	>400 nm	0		0	
4 ^[f]		0		0	
5	>420 nm	0		15	0

[a] Reaction conditions: 5 mL of methanol, 40 mg of Degussa P25 TiO₂, 300 W Xe lamp λ >400 nm, 0.1 MPa of O₂, 4 h. [b] Determined by GC using chlorobenzene as the internal standard, conversion of thioanisole, selectivity of sulfoxide; [c] Determined by GC using chlorobenzene as the internal standard, conversion of benzylamine, selectivity of *N*-benzylformamide. [d] Without O₂ with 0.1 MPa of N₂ as the atmosphere. [e] Without TiO₂. [f] Without λ >400 nm visible light irradiation.

Table S7: Adsorption difference of benzylamine on Degussa P25 TiO2 in CH3OH and CH3CN

Entry	Solvent	Adsorption amounts
1	CH ₃ OH	3 µmol
2	CH ₃ CN	10 µmol

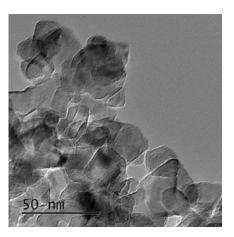


Figure S1: Transmission electron microscopy (TEM) images of Degussa P25 TiO₂

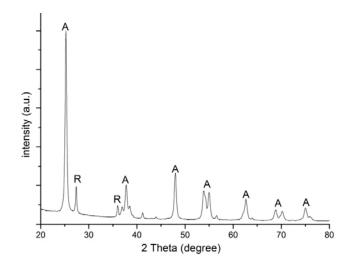


Figure S2: X-ray diffraction spectroscopy (XRD) of Degussa P25 TiO₂

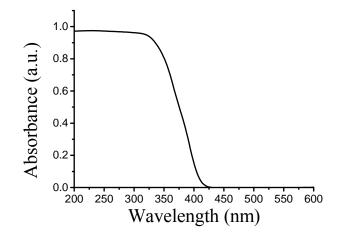


Figure S3: UV-visible absorbance spectroscopy of Degussa P25 TiO₂

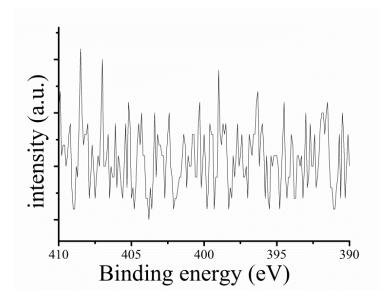
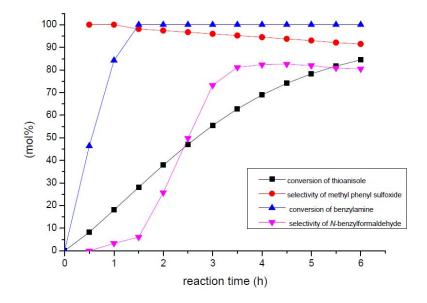
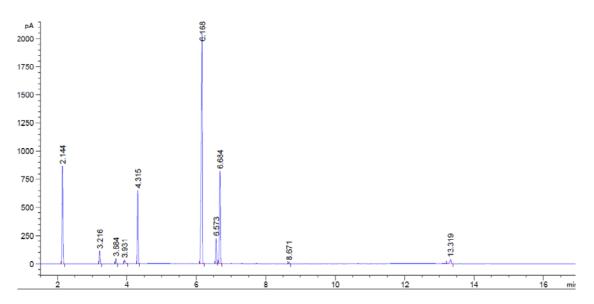




Figure S4: XPS spectroscopy of Degussa P25 TiO₂

Figure S5: Products formation processes for the synergetic photocatalytic aerobic oxidation of sulfides and amines on TiO_2 under visible light irradiation

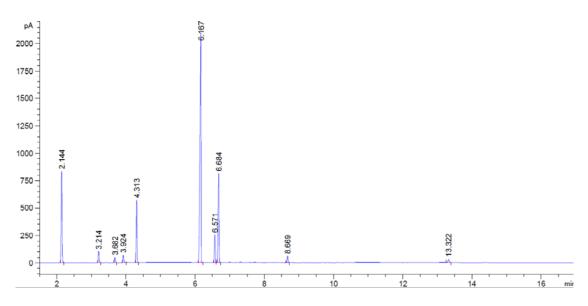
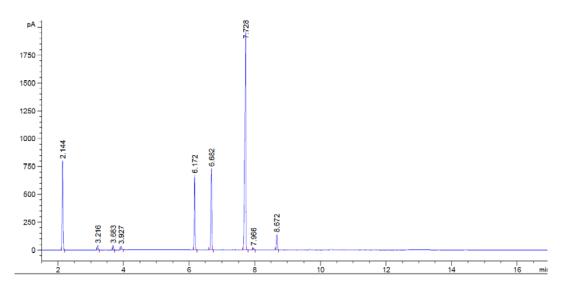
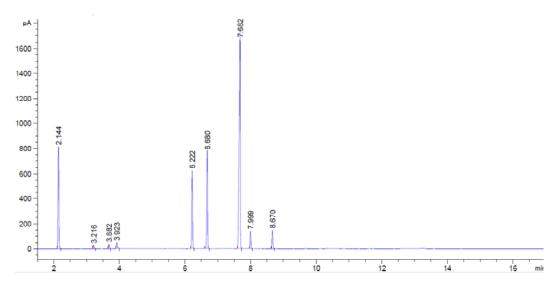


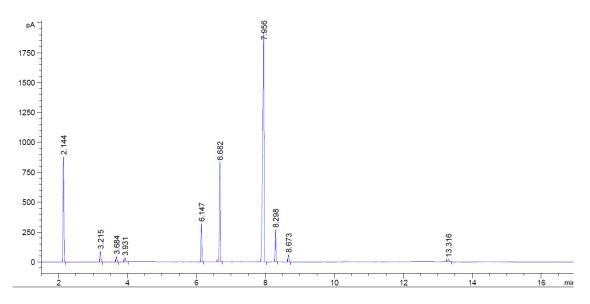
Figure S6: Reaction kinetic plot for the synergetic photocatalytic aerobic oxidation of sulfides and amines on TiO₂ under visible light irradiation. Reaction conditions: 0.3 mmol of thioanisole, 0.1 mmol of benzylamine, 40 mg of Degussa P25 TiO₂, 300 W Xe lamp, 5 mL of CH₃OH, λ >400 nm, 0.1 MPa of air


The GC-FID of Table 2 entry 1:

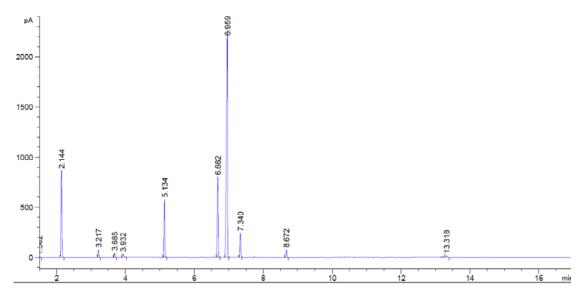
Retention time (min)	2.144	3.216	4.315	6.168	6.573	6.684	8.669
Chemical	CI		S S	0=0		NHCHO	


The GC-FID of Table 2 entry 2:

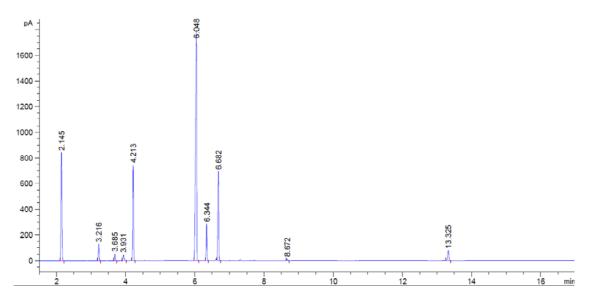
Retention time (min)	2.144	3.216	4.315	6.168	6.573	6.684	8.669
Chemical		\bigcirc°	₿	o=∞́		NHCHO	


The GC-FID of Table 2 entry 3:

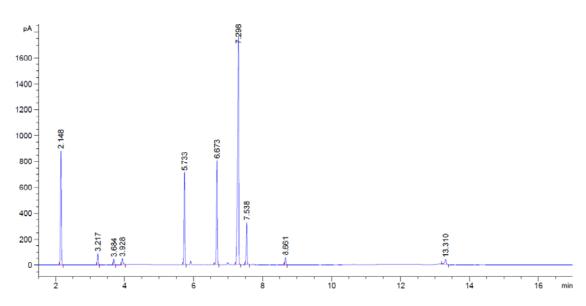
Retention time (min)	2.144	3.216	6.172	6.684	7.728	7.966	8.672
Chemical	CI	$\langle \rangle$	OMe S	NHCHO	OMe O=S	O=v Me	


The GC-FID of Table 2 entry 4:

Retention time (min)	2.144	3.216	6.172	6.680	7.682	7.999	8.670
Chemical	C		MeO	МНСНО	MeO S	MeO S	


The GC-FID of Table 2 entry 5:

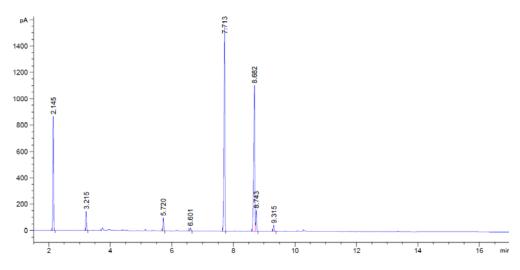
Retention time (min)	2.144	3.216	6.147	6.682	7.956	8.298	8.673
Chemical	CI	$\langle \rangle$	MeO	МНСНО	MeO	MeO MeO	


The GC-FID of Table 2 entry 5:

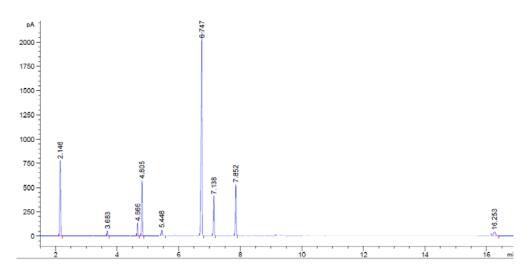
Retention time (min)	2.144	3.216	5.134	6.682	6.959	7.340	8.672
Chemical		$\bigcirc \bigcirc \bigcirc \bigcirc$	Me	NHCHO	O=S Me	Me Ne	


The GC-FID of Table 2 entry 6:

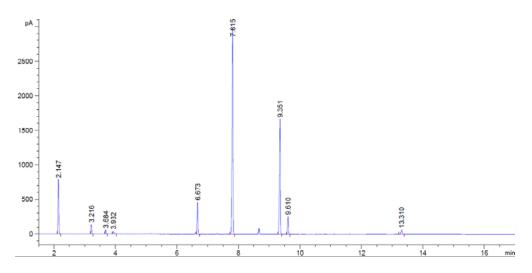
Retention time (min)	2.145	3.216	4.213	6.048	6.344	6.682	8.672
Chemical	C	$\bigcirc \bigcirc \bigcirc \bigcirc$	F	F F	F C C C C C C C C C C C C C C C C C C C	МНСНО	


The GC-FID of Table 2 entry 7:

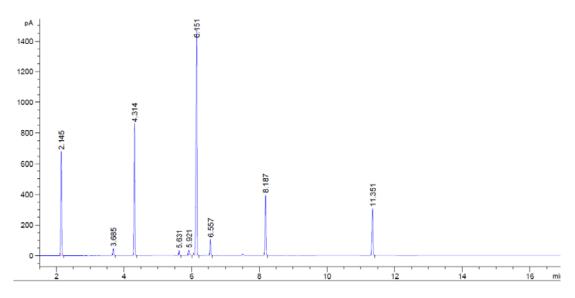
Retention time (min)	2.148	3.217	5.733	6.673	7.298	7.538	8.661
Chemical	C	$\bigcirc \bigcirc \bigcirc$	CI S	NHCHO			


The GC-FID of Table 2 entry 8:

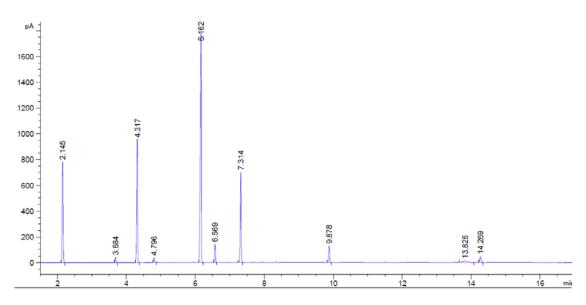
Retention time (min)	2.148	3.216	6.399	6.682	7.901	7.538	8.661
Chemical	C	C → C → C → C → C → C → C → C → C → C →	Br	МНСНО	Br	Br Store	


The GC-FID of Table 2 entry 9:

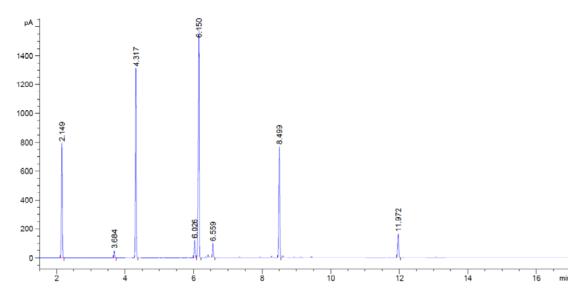
Retention time (min)	2.148	3.216	7.713	8.682	8.743
Chemical	CI	$\langle \rangle$	O ₂ N S	O=o/ O2N	


The GC-FID of Table 2 entry 10:

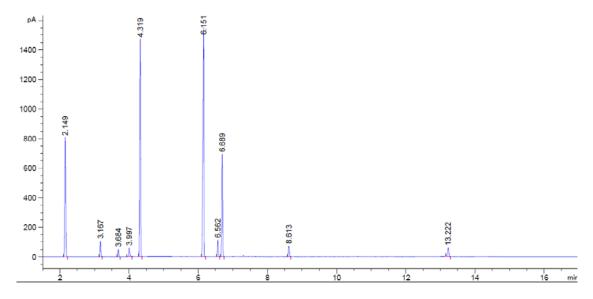
Retention time (min)	2.148	3.216	4.805	6.747	7.138	7.852
Chemical	CI	CI CI CO	S.Et	o=s, Et		СІ


The GC-FID of Table 2 entry 11:

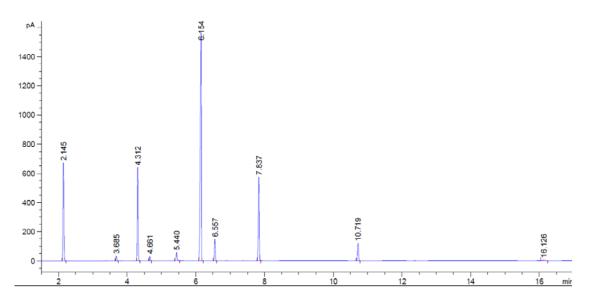
Retention time (min)	2.148	3.216	6.673	7.615	9.351	9.610
Chemical	CI		МНСНО	s S		


The GC-FID of Table 3 entry 1:

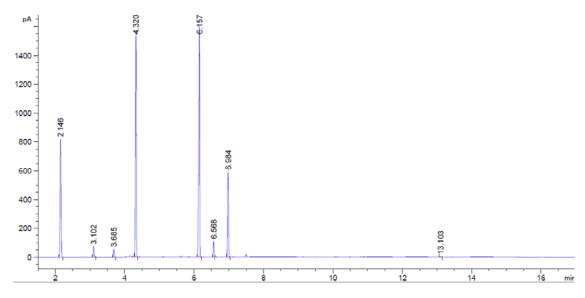
Retention time (min)	2.145	4.314	5.563	6.151	6.557	8.187	11.351
Chemical		∑ ^s ∖	MeO	O=O'	0.s.0	Meo	Meo


The GC-FID of Table 3 entry 2:

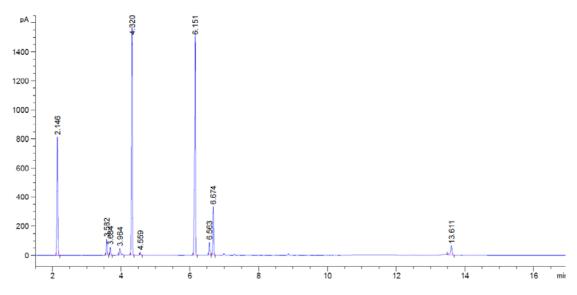
Retention time (min)	2.145	4.796	4.317	6.162	6.569	7.314	9.878
Chemical		$\left\langle \right\rangle$	∫ ^s ∖	O=0	0,5°/	Ме	Me


The GC-FID of Table 3 entry 3:

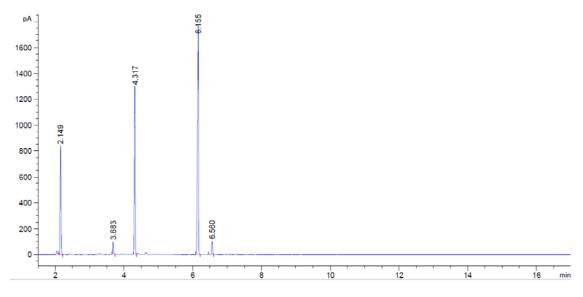
Retention time (min)	2.149	4.317	6.026	6.150	6.559	8.499	11.972
Chemical	C	\$ s	t-Bu O	O=vý	0;s:0	<i>t</i> -Bu	t-Bu t-Bu


The GC-FID of Table 3 entry 4:

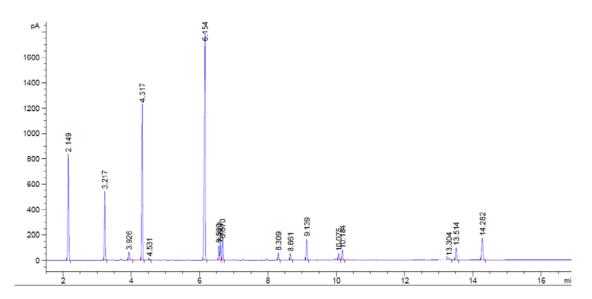
Retention time (min)	2.149	3.167	4.319	6.151	6.562	6.689	8.613
Chemical	C	F	₿ S S S S S S S S S S S S S	O=O	o,s`	F NHCHO	F N F


The GC-FID of Table 3 entry 5:

Retention time (min)	2.149	4.312	4.661	6.154	6.557	7.837	10.719
Chemical	C	∑ ^s ∖	a C O	0=0	0,5°/	СІ	


The GC-FID of Table 3 entry 6:

Retention time (min)	2.149	3.102	4.320	6.157	6.568	6.984
Chemical	C		s'	0=0		NHCHO


The GC-FID of Table 3 entry 7:

Retention time (min)	2.149	3.582	4.320	6.151	6.563	6.674
Chemical	C	s S O	s'	0=0	O.S.O	

The GC-FID of Table 3 entry 8:

Retention time (min)	2.149	3.683	4.317	6.155	6.560
Chemical	CI	Мнсно	S_S_	O=S	°,s°,⁰

The GC-FID of Table 3 entry 9:

Retention time (min)	2.145	3.217	4.317	6.154	6.560	8.661
Chemical	CI	$\langle \rangle$	S_S_	°=∞′		

The GC-FID of Table 3 entry 10:

Retention time (min)	2.145	3.217	4.317	5.401	6.152	6.559	8.661
Chemical	CI		\$ \$		0= <i>v</i>		