Supplementary Information for:

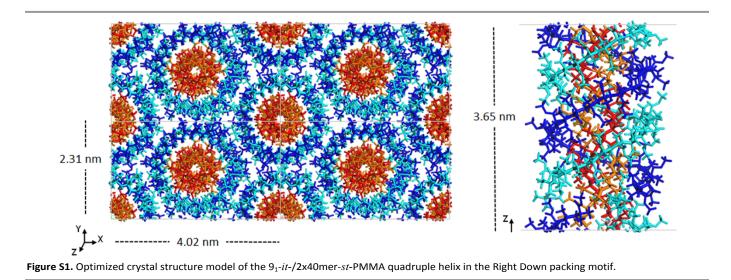
Molecular Mapping of Poly(methyl methacrylate) Super-helix Stereocomplexes

Andrew Joseph Christofferson,^{a†} George Yiapanis,^{a†¥} Jing Ming Ren,^b Greg Guanghua Qiao,^b Kotaro Satoh,^c Masami Kamigaito^c and Irene Yarovsky^{a*}

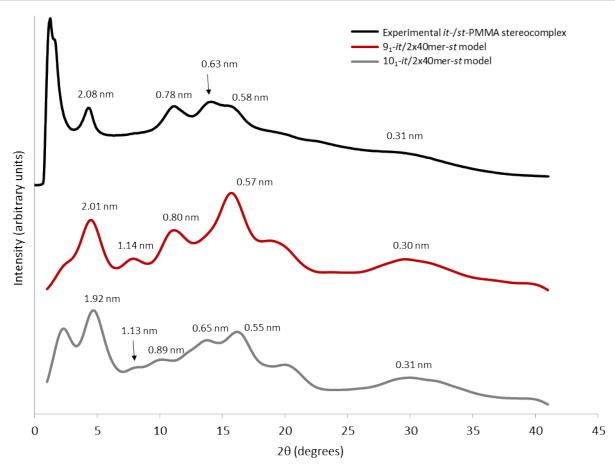
^a School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, GPO Box 2476, VIC 3001, Australia.

^b Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC 3010, Australia

^c Department of Applied Chemistry, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan


* Current address: IBM Research Australia, 5/204 Lygon St, Melbourne, Victoria 3001, Australia

* Corresponding author: irene.yarovsky@rmit.edu.au


[†] A.C. and G.Y. contributed equally.

Quadruple helix model of the *it-/st-PMMA* stereocomplex

The quadruple helix model of the *it-/st-PMMA* stereocomplex was proposed by Yashima and colleagues¹ in 2007 as an alternative to the triple helix model that still satisfied the atomic force microscopy results and maintained the *it:st* stoichiometry of 1:2 (Figure S1).

Quadruple helix *it-/st*-PMMA stereocomplex models were constructed in a manner similar to the triple helix models, with each unit cell containing two *it*-PMMA double helices surrounded by two 40-unit *st*-PMMA helices of the same sense and direction in a hexagonal packing arrangement with initial cell dimensions of 3.98 and 2.36 nm in the *x*- and *y*-directions. The length along the *z*-direction depended on the helical pitch of the *it*-PMMA double helix; 4.2 and 3.68 nm for the 10_1 -*it*/2x40mer-*st* and 9_1 -*it*/2x40mer-*st* models respectively.

Figure S2. Wide angle X-ray scattering data obtained from powder diffraction experiments and molecular dynamic simulation for the quadruple helix *it-/st*-PMMA stereocomplex in the Right Down packing motif.

Table S1 Simulated and exr	perimental structural and thermod	lynamic nro	perties of <i>it_/st_</i> PMMA	stereocomplex cr	vstals of Right Down	(RD) nacking motif
Table SL. Simulated and exp		rynamic pro	μ	surcocomplex or	ystais of Right Down	(KD) packing moun.

Description	Density (g/cm ³)	Helical Pitch <i>st</i> -PMMA (nm)	Cohesive Energy Density (J/cm ³)	Chain Width (nm)	Sum of Differences ^a (nm)
Experiment	1.215 ²	0.92 ± 0.02^{1}	361 ^b		
9 ₁ - <i>it</i> /2x40mer- <i>st</i>	1.189	0.90	436	1.86	0.11*
10 ₁ - <i>it</i> /2x40mer- <i>st</i>	1.168	0.99	427	1.83	0.33*

^a Sum of Differences refers to the sum of the numerical value differences between the peak positions of the simulated structures and the experimental X-ray diffraction. Thus, a smaller value indicates a better agreement with experiment. ^b Experimental cohesive energy density of PMMA with unspecified tacticity.³ * In addition to the sum of differences, both models exhibited a peak at ~ 1.1 nm not found in the experimental X-ray diffraction profile, and the 9₁*it/*2x40mer-*st* model did not exhibit the experimental peak at 0.63 nm.

References

- 1 J. Kumaki, T. Kawauchi, K. Okoshi, H. Kusanagi and E. Yashima, Angew. Chem. Int. Ed., 2007, 46, 5348-5351.
- 2 K. E. Min and D. R. Paul, J. Polym. Sci. Pol. Phys., 1988, 26, 1021-1033.
- 3 H. J. Vandenburg, A. A. Clifford, K. D. Bartle, R. E. Carlson, J. Carroll and I. D. Newton, Analyst, 1999, 124, 1707-1710.