Electronic Supplementary Information

Bite-Angle Bending as a Key for Understanding Group-10 Metal Reactivity of d¹⁰-[M(NHC)₂] Complexes with Sterically Modest NHC Ligands

Florian Hering^a, Jörn Nitsch^a, Ursula Paul^a, Andreas Steffen^a, F. Matthias Bickelhaupt^{b*}, and Udo Radius^{a*}

^a F. Hering, U. Paul, H. Schneider, J. Nitsch, Dr. A. Steffen, Prof. Dr. U. Radius, Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

* Author for correspondence. E-mail: <u>u.radius@uni-wuerzburg.de</u>

^b Prof. Dr.- F. M. Bickelhaupt, Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands. E-mail: F.M.Bickelhaupt@vu.nl ^{*} Author for correspondence. E-mail: F.M.Bickelhaupt@vu.nl

The Supporting Information contents:

- 1. Additional Figures and Tables
- 2. Experimental details
- 3. Crystallographic details
- 4. Computational details
- 5. References

1. Additional Figures and Tables

Table S1. Energy decomposition analysis [kJ/mol] of the metal–ethylene bond in $[M(H_2Im)_2(\eta^2 - C_2H_4)]$ complexes.

М	ΔE_{disp}	ΔV_{elstat}	ΔE_{pauli}	ΔE_{steric}	ΔE_{oi}^{σ}	ΔE_{oi}^{π}	ΔE_{oi}^{δ}	ΔE_{oi}	ΔE_{int}	ΔE_{strain}	ΔE
Ni	-26.3	-543.5	+741.8	+198.4	-98.8	-317.4	-0.8	-417.1	-245.0	+140.8	-104.2
Pd	-24.1	-521.3	+695.7	+174.4	-84.1	-249.6	-0.8	-334.5	-184.2	+159.2	-25.0
Pt	-25.8	-773.2	+1038.2	+265.0	-152.1	-369.0	-2.2	-523.4	-284.1	+263.6	-20.5

Table S2. Energy decomposition analysis [kJ/mol] of the metal–carbene bond in $[M(H_2Im)_3]$ complexes between $[M(H_2Im)_2]$ and H_2Im .

М	ΔE_{disp}	ΔV_{elstat}	ΔE_{pauli}	$\Delta E_{ m steric}$	$\Delta E_{ m oi}$	$\Delta E_{\rm int}$	ΔE_{strain}	ΔE
Ni	-26.2	-634.0	+757.4	+123.4	-278.5	-181.3	+73.4	-107.9
Pd	-24.9	-596.5	+729.0	+132.4	-224.7	-117.1	+91.5	-25.6
Pt	-27.3	-877.4	+1103.2	+225.8	-357.3	-158.8	+132.3	-26.5

Table S3. Calculated M-L bond energies [kJ/mol] of the complexes $[M(iPr_2Im)_2(L)]$ (M = Ni, Pd, Pt) (TURBOMOLE, RI-DFT, BP86, def2-TZVPP level) for the ligands iPr_2Im , ethylene (C₂H₄), and 2-butyne (Me₂C₂). For comparison, the calculated bond dissociation energies for the dissociation of iPr_2Im from linear $[M(iPr_2Im)_2]$ (D_{2d}) are -222.7 (Ni), -198.7 (Pd), and -243.1 kJ/mol (Pt).

	<i>i</i> Pr₂lm	C_2H_4	Me ₂ C ₂
[Ni(<i>i</i> Pr ₂ Im) ₂]	-55.3	-66.4	-66.2
[Pd(<i>i</i> Pr ₂ Im) ₂]	+4.4	-8.3	+6.7
[Pt(<i>i</i> Pr ₂ Im) ₂]	+13.1	-2.8	+4.2

Figure S1. Schematic Walsh diagram for the bending of the L–M–L angle of a fourteenelectron dicoordinate group 10 metal complexes d^{10} -ML₂

As the L–M–L angle decreases, the anti-bonding a_1 ' orbital at the linear geometry is stabilized to the bonding $2a_1$ orbitals, whereas the d_{zx} orbital is remarkably destabilized to an anti-bonding b_2 orbital. The linear geometry is usually favored, because the latter destabilization at the bent geometry is larger in energy compared to the stabilization of the a_1 ' orbital.

Moreover, bending of the ligands leads to destabilization of the σ -type orbital 1a', which contains metal s and d_{z²} contributions. The s-d mixing for the [M(H₂Im)₂] fragment increases in the row Ni to Pd to Pt due to the relative energies of the metal n d_{z²} and (n+1) s orbitals, as does the barrier for bending.

Figure S5. ¹³C NMR spectrum of [Pt(*i*Pr₂Im)₃Cl]Cl 2 in dmso-*d*₆

Figure S4. ¹H NMR spectrum of [Pt(*i*Pr₂Im)₃Cl]Cl 2 in dmso-*d*₆

As mentioned in the text, samples of $[M(iPr_2Im)_3CI]CI$ (M = Pd **1**, Pt **2**) prepared from the reaction of pure iPr_2Im and MCl₂ may contain the imidazolium salt $[iPr_2Im-H]CI$ as impurity: ¹H **NMR** (500 MHz, dmso- d_6): δ = 1.48 (d, 12 H, CH₃, ³J_{HH} = 6.6 Hz), 4.63 (sept, 2 H, CHMe₂, ³J_{HH} = 6.6 Hz), 7.95 (d, 2 H, CHCH, ⁴J_{HH} = 1.6 Hz). 9.46 (t, 1 H, NCHN, ⁴J_{HH} = 1.6 Hz). ¹³C **NMR** (126 MHz, dmso- d_6): δ = 22.3 (CH₃), 52.2 (CHMe₂), 120.6 (CHCH), 133.8 (NCHN).

Figure S10. ¹³C NMR spectrum of [Pt(*i*Pr₂Im)₂] 4 in C₆D₆

Figure S12. ¹⁹⁵Pt NMR spectrum of [Pt(*i*Pr₂Im)₂] 4 in C₆D₆

Figure S14. Reaction of $[Pd(iPr_2Im)_2]$ with ethylene in C₆D₆ after removal of ethylene. Only $[Pd(iPr_2Im)_2]$ is detected.

Figure S16. ¹³C NMR spectrum of $[Pt(iPr_2Im)_2(\eta^2-C_2H_4)]$ 6 in C_6D_6

Figure S18. ¹³C NMR spectrum of $[Pt(iPr_2Im)_2(\eta^2-H\underline{CC}Ph)]$ 7 in C₆D₆

Figure S21. ¹H NMR spectrum of $[Pt(iPr_2Im)_2(\eta^2-Me\underline{CC}Me)]$ **9** in C₆D₆ in a mixture with $[Pt(iPr_2Im)_2]$ **2**.

Figure S22. ¹³C NMR spectrum of $[Pt(iPr_2Im)_2(\eta^2-Me\underline{CC}Me)]$ **9** in C₆D₆ in a mixture with $[Pt(iPr_2Im)_2]$ **2**.

allene-CH

2.2

NiP

ppm 1.05

2.4

6.45

6.1

ppm

ppm 2.6

1.00 ppm

 CH_3

C(H)(CH₃)

Figure S23. ¹H NMR spectrum of $[Pt(iPr_2Im)_2(\eta^2-H^2CCCHMe)]$ **10** in C₆D₆ in a mixture with $[Pt(iPr_2Im)_2(\eta^2-Me\underline{CC}Me)]$ **9** and $[Pt(iPr_2Im)_2]$ **2**.

Figure S24. ¹H NMR spectrum of $[Pt(iPr_2Im)_2(\eta^2-H^2CCCHMe)]$ **10** in C₆D₆ in a mixture with $[Pt(iPr_2Im)_2(\eta^2-MeCCMe)]$ **9** and $[Pt(iPr_2Im)_2]$ **4**.

Figure S25. ¹H-¹H COSY experiment of $[Pt(iPr_2Im)_2(\eta^2-H_2CCCHMe)]$ **10**. Shown are the resonances of the allene ligand.

Figure S26. ¹H NMR spectrum of $[Pt(iPr_2Im)_2(H)(-\underline{C}H_2-C\{O\}Ph)]$ 11 in C_6D_6

Figure S28. IR spectrum (ATR) of $[Pt(iPr_2Im)_2(H)(-\underline{C}H_2-C\{O\}Ph)]$ 11.

Figure S29. ¹H NMR spectra showing the decomposition of a sample of $[Pt(iPr_2Im)_2(\underline{C}H_2C(O)Ph)H]$ (**11**) at room temperature in C₆D₆ (see also Figure S 4).

2. Experimental Details

General Considerations

All reactions and subsequent manipulations involving organometallic reagents were performed under nitrogen or argon atmosphere using standard Schlenk techniques, as reported previousely. [S1] NMR spectra were recorded, if not noted otherwise, on Bruker DRX-300, Bruker Avance 200, Bruker Avance 400, or Bruker Avance 500 spectrometers at 298 K. NMR experiments at variable temperature were conducted on Bruker Avance 200 or Bruker Avance 500 spectrometers and the temperatures were calibrated using a Bruker calibration sample. ¹³C NMR spectra were broad-band proton-decoupled (¹³C{¹H}). NMR data are listed in parts per million (ppm) and are reported relative to Tetramethylsilane. Coupling constants are quoted in hertz (Hz). Spectra are referenced internally to residual protio-solvent resonances (1H: C₆D₅H, 7.15 ppm, CDHCl₂ 5.32 ppm thf-d₇ 3.58, 1.72 ppm, dmso-d₅ 2.50 ppm) or naturalabundance carbon resonances (¹³C: C₆D₆, 128.1 ppm, CD₂Cl₂ 53.8 ppm, thf-*d*₈ 67.2, 25.3 ppm, dmso-*d*₆ 39.5 ppm) and external H₂[PtCl₆] 1 M in D₂O (¹⁹⁵Pt: 0 ppm) respectively. Elemental analyses were performed in the microanalytical laboratory of the University Würzburg with an Elementar vario micro cube. Infrared spectra were recorded on a Nicolet 380 FT-IR or a Bruker alpha spectrometer as solids by using an ATR unit, or in solution using a cell for measurement and are reported in cm⁻¹. The NHC *i*Pr₂Im was prepared according to a literature procedure. [S2] All other reagents have been obtained from commercial sources and have been used as received.

¹⁹⁵Pt satellites of the NHC carbene carbon atoms have usually not been detected in ¹³C NMR spectra due to line broadening caused by the chemical shift anisotropy (CSA). Intensities of carbene carbon atoms are intrinsically low as they are quaternary carbon atoms bound to two quadrupole cores (¹⁴N). ¹⁹⁵Pt holds a large anisotropy of its chemical shift and thus induces rapid relaxation of the surrounding nuclei. This effect correlates with B_0^2 causing significant line broadening at high frequencies. [S3, S4]

Synthesis of [Pd(*i*Pr₂Im)₃Cl]Cl (1)

6.88 g (45.2 mmol, 4.00 eq) of pure iPr_2Im were added dropwise to a suspension of 2.00 g (11.3 mmol) PdCl₂ in 40 mL thf. The resulting mixture was stirred overnight at room temperature. During this time a greyish solid precipitated, which was filtered off, washed twice with 20 mL diethyl ether and dried *in vacuo*. To remove colloidal palladium, the crude product was dissolved in methylene chloride and filtered over a pad of Celite. After removal of the solvent [Pd(*i*Pr₂Im)₃CI]CI was obtained as a light greyish solid.

Yield: 5.36 g (8.45 mmol, 75 %) of a light greyish solid.

Crystals suitable for x-ray diffraction were grown at room temperature by slow evaporation of the solvent from a solution in dichloromethane.

C₂₇H₄₈Cl₂N₆Pd [634.04 gmol⁻¹] calcd. (found): C, 51.15 (51.27); H, 7.63 (7.64); N, 13.25 (12.94). **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 704 (m), 740 (m), 779 (w), 817 (m), 1131 (m), 1180 (w), 1213 (vs), 1282 (w), 1300 (m), 1372 (s), 1398 (s), 1428 (), 1457 (m), 1635 (w), 1653 (w), 1684 (w), 1699 (w), 1717 (w), 1734 (w), 1792 (vw), 1844 (vw), 1928 (m), 2037 (m), 2877 (m), 2936 (m), 2976 (vs), 3054 (s), 3730 (w). ¹H **NMR** (500 MHz, CD₂Cl₂): δ = 1.04 (d, 12 H, *trans*-CH₃, ³J_{HH} = 6.7 Hz), 1.18 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 1.54 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 4.93 (sept, 2 H, *trans*-CHMe₂, ³J_{HH} = 6.7 Hz), 5.17 (sept, 4 H, *cis*-CHMe₂, ³J_{HH} = 6.7 Hz), 7.12 (s, 4 H, *cis*-CHCH), 7.42 (s, 2 H, *trans*-CHCH). ¹H **NMR** (500 MHz, dmso-*d*₆): δ = 0.97 (d, 12 H, *trans*-CH₃, ³J_{HH} = 6.7 Hz), 1.13 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 1.48 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 7.65 (s, 4 H, *cis*-CHCH), 7.81 (s, 2 H, *trans*-CHCH). ¹³C **NMR** (126 MHz, dmso-*d*₆): δ = 21.5 (*cis*-CH₃), 21.9 (*trans*-CH₃), 24.2 (*cis*-CH₃), 52.5 (*cis*-CHMe₂), 52.9 (*trans*-CHMe₂), 119.1 (*cis*-CHCH), 120.2 (*trans*-CHCH), 155.4 (*trans*-NCN), 165.6 (*cis*-NCN). [S5]

Synthesis of [Pt(*i*Pr₂Im)₃Cl]Cl (2)

1.14 g (7.48 mmol, 1.14 mL) of pure *i*Pr₂Im were added dropwise to a suspension of 500 mg (1.87 mmol) PtCl₂ in 50 mL thf and the resulting mixture was stirred overnight at room temperature. During this time, a colorless solid precipitated, which was filtered off, washed twice with 20 mL diethyl ether and dried in vacuo. Yield: 876 mg (1.21 mmol, 65 %) of a colorless solid. C₂₇H₄₈Cl₂N₆Pt [722.71 gmol⁻¹] calcd. (found): C, 44.68 (44.18); H, 7.08 (7.53); N, 11.58 (11.23). **IR** (ATR): \tilde{v} [cm⁻¹] = 3164 (vw), 3127 (w), 3094 (w), 3054 (vw), 2975 (s), 2936 (w), 2875 (w), 2160 (w), 1658 (vw), 1565 (vw), 1473 (w), 1457 (w), 1434 (m), 1415 (m), 1395 (m), 1372 (m), 1305 (w), 1282 (w), 1215 (vs), 1179 (w), 1136 (w), 744 (w), 713 (m). ¹H NMR (500 MHz, CD₂Cl₂): δ = 1.04 (d, 12 H, *trans*-CH₃, ³J_{HH} = 6.7 Hz), 1.17 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 1.54 (d, 12 H, *cis*-CH₃, ${}^{3}J_{HH}$ = 6.7 Hz), 4.93 (sept, 2 H, *trans*-CHMe₂, ${}^{3}J_{HH}$ = 6.7 Hz), 5.17 (sept, 4 H, *cis*-CHMe₂, ³J_{HH} = 6.7 Hz), 7.12 (s, 4 H, *cis*-CHCH), 7.42 (s, 2 H, *trans*-CHCH). ¹**H NMR** (500 MHz, dmso-*d*₆): δ = 0.96 (d, 12 H, *trans*-CH₃, ³*J*_{HH} = 6.5 Hz), 1.12 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 1.45 (d, 12 H, *cis*-CH₃, ³J_{HH} = 6.7 Hz), 4.81 (sept, 2 H, *trans*-CHMe₂, ³J_{HH} = 6.5 Hz), 5.04 (sept, 4 H, *cis*-CHMe₂, ${}^{3}J_{HH}$ = 6.5 Hz), 7.65 (s, 4 H, *cis*-CHCH), 7.74 (s, 2 H, *trans*-CHCH). ¹³C NMR (126 MHz, dmso- d_6): δ = 21.4 (*cis*-CH₃), 21.7 (*trans*-CH₃), 24.2 (*cis*-CH₃), 51.8 (cis- CHMe₂), 52.0 (trans-CHMe₂), 118.8 (cis-CHCH), 119.3 (trans-CHCH), 141.3 (trans-NCN), 161.6 (cis-NCN). [S5]

Synthesis of [Pd(*i*Pr₂Im)₂] (3)

A suspension of 720 mg (1.13 mmol) [Pd(*i*Pr₂Im)₃CI]CI (**1**) and 458 mg (3.39 mmol, 3.00 eq) potassium graphite in 40 mL thf was stirred for 4 d at room temperature resulting in a yellow solution and black graphite. All solid components were removed by filtration over a pad of Celite and the residue was washed with 5 mL portions thf until the eluate is colorless. All volatile material was removed *in vacuo* and the remaining orange colored solid was suspended in a small amount (5 mL) of hexane, filtered off, washed twice with 5 mL hexane and dried *in vacuo*. Yield: 281 mg (0.68 mmol, 54 %) of an orange powder. Single crystals suitable for X-ray diffraction have been obtained by slow diffusion of the solvent from a solution in diethyl ether. C₁₈H₃₂N₄Pd [410.90 g/mol] calcd. (found): C 52.62 (52.80), H 7.85 (7.93), N 13.64 (13.45). **IR** (ATR): \tilde{v} [cm⁻¹] = 719 (m), 828 (w), 1014 (m), 1107 (w), 1130 (m), 1220 (vs), 1269 (m), 1301 (w), 1367 (m), 1393 (m), 1422 (m), 1467 (w), 1591 (w), 1659 (w), 2040 (w), 2934 (s), 2972 (vs). ¹**H NMR** (500 MHz, C₆D₆): δ = 1.34 (d, 24 H, CH₃, ³J_{HH} = 6.9 Hz), 6.03 (sept, 4 H, CH/Me₂, ³J_{HH} = 6.9 Hz), 5.62 (sept, 4 H, CHCH). ¹**H NMR** (200 MHz, thf-*d*₈): δ = 1.42 (d, 24 H, CH₃, ³J_{HH} = 6.9 Hz), 5.62 (sept, 4 H, CHMe₂, ³J_{HH} = 6.9 Hz), 6.83 (s, 4 H, CHCH). ¹³C NMR (126 MHz, C₆D₆): δ = 23.6 (CH₃), 52.8 (CHMe₂), 114.0 (CHCH), 196.4 (NCN).

Synthesis of [Pt(*i*Pr₂Im)₂] (4)

A suspension of 651 mg (899 µmol) [Pt(*i*Pr₂Im)₃Cl]Cl (2) and 425 mg (3.15 mmol) potassium graphite in 40 mL thf was stirred for 4 d at room temperature resulting in a yellow solution and black graphite. All solid components were removed by filtration over a large pad of Celite and washed with 5 mL portions of thf until the eluate was colorless. Volatile components have been removed in vacuo. The crude product was suspended in small amounts of hexane (5 mL) and filtered off. The yellow solid obtained was washed twice with 5 mL hexane and dried in vacuo. Yield: Yield: 233 mg (467 µmol, 52 %) of a yellow solid. C₁₈H₃₂N₄Pt [499.57 g/mol] calcd. (found): C, 43.28 (43.68); H, 6.46 (6.39); N, 11.22 (11.05). **IR** (ATR): \tilde{v} [cm⁻¹] = 723 (m), 791 (m), 874 (w), 1020 (m), 1078 (w), 1109 (w), 1131 (m), 1169 (w), 1218 (vs), 1271 (s), 1271 (s), 1304 (m), 1369 (s), 1425 (s), 1457 (s), 1564 (w), 1658 (w), 1980 (w), 1997 (w), 2022 (w), 2932 (s), 2973 (vs), 3056 (m). ¹**H NMR** (500 MHz, C_6D_6): δ = 1.33 (d, 24 H, CH_3 , ³J_{HH} = 6.8 Hz), 6.26 (sept, 4 H, CHMe₂, ³J_{HH} = 6.8 Hz), 6.25 (s_{sat}, 4 H, CHCH, ⁴J_{PtH} = 19.0 Hz). ¹H NMR (200 MHz, thf- d_8): δ = 1.42 (d, 24 H, CH₃, ³J_{HH} = 6.8 Hz), 5.83 (sept, 4 H, CHMe₂, ³J_{HH} = 6.8 Hz), 6.81 (s_{sat}, 4 H, CHCH, ${}^{4}J_{PtH}$ = 19.3 Hz). ${}^{13}C$ NMR (126 MHz, C₆D₆): δ = 23.1 (CH₃), 52.2 (sat, CHMe₂, ³J_{PtC} = 108.5 Hz), 113.7 (sat, CHCH, ³J_{PtC} = 45.1 Hz), 197.7 (NCN). ¹⁹⁵Pt NMR (107 MHz, 23.0 °C, C₆D₆): δ = -5943.

Due to line broadening caused by the large chemical shift anisotropy (CSA) of the ¹⁹⁵platinum isotope satellites for the resonance of the backbone protons of **2** only appear as a shoulder.

[S3] Since CSA is proportional to squared frequency, [S4] ${}^{4}J_{PtH}$ coupling constant (19.0 Hz) can be determined by recording the spectra at 200 MHz.

Synthesis of $[Pd(iPr_2Im)_2(\eta^2-C_2H_4)]$ (5)

In an NMR tube, 10.0 mg (24.2 µmol) $[Pd(iPr_2Im)_2]$ (3) were dissolved in 0.60 mL of C₆D₆. The solution was degassed by three freeze-pump cycles and the NMR tube was pressurized with 3 bar ethylene. The yellow solution brightened up a little bit after addition of ethylene. The proton NMR spectrum (200 MHz, rt) reveals significantly broadened resonances in the region between 1.5 and 1.0 ppm, at 5.15 ppm and at 5.69 ppm in addition to a fairly sharp doublet at 1.21 ppm and a singlet at 6.49 ppm. This significant broadening of some of the resonances is attributed to an equilibrium between $[Pd(iPr_2Im)_2(\eta^2-C_2H_4)]$, ethylene and $[Pd(iPr_2Im)_2]$ and a low concentration of **6**. After degassing, pure **1** was detected as the sole component in the ¹H NMR spectrum: $\delta = 1.34$ (d, 24 H, CH_{3} , ${}^{3}J_{HH} = 6.9$ Hz), 6.03 (sept, 4 H, $CHMe_2$, ${}^{3}J_{HH} = 6.9$ Hz), 6.46 (s, 4 H, CHCH).

Synthesis of $[Pt(iPr_2Im)_2(\eta^2-C_2H_4)]$ (6)

In an NMR tube, 10.0 mg (20.0 µmol) [Pt(*i*Pr₂Im)₂] (**4**) were dissolved in 0.60 mL of C₆D₆. The solution was degassed by three freeze-pump cycles and the NMR tube was pressurized with 3 bar ethylene. The dark yellow solution brightened up a little bit after addition of ethylene. ¹H **NMR** (200 MHz, C₆D₆) δ = 1.04 (d, 24 H, CH₃, ³J_{HH} = 6.8 Hz,), 1.99 (s_{sat}, 4 H, C₂H₄, ²J_{PtH} = 54.7 Hz), 5.48 (sept, 4 H, C*H*Me₂, ³J_{HH} = 6.8 Hz), 6.47 (s_{sat}, 4 H, C*H*C*H*, ⁴J_{PtH} = 11.3 Hz). ¹³C **NMR** (50.3 MHz, C₆D₆) δ = 13.3 (sat, C₂H₄, ³J_{PtC} = 253.8 Hz,), 22.9 (CH₃), 50.72 (sat, CHMe₂, ⁴J_{PtC} = 46.4 Hz), 114.6 (sat, CHCH, ⁴J_{PtC} = 32.4 Hz), 192.4 (NCN).

To study the decomposition of the resulting complex, the solution was degassed in a freezepump circle and argon was added. Proton NMR spectra were measured 10 min and 5 h after exchanging the atmosphere. After that, the solvent was removed *in vacuo*, the remaining solid (starting material) was dried for 2 h *in vacuo* and dissolved in C_6D_6 again.

Synthesis of $[Pt(iPr_2Im)_2(\eta^2-H\underline{CC}Ph)]$ (7)

In an NMR tube, 20.0 mg (40.0 µmol) [Pt(*i*Pr₂Im)₂] (**4**) and 4.10 mg (40.0 µmol, 4.40 µL) phenylacetylene were dissolved in 0.60 mL of C₆D₆. Quantitative conversion to yellow [Pt(*i*Pr₂Im)₂(η^2 -H<u>CC</u>Ph)] (**7**) was detected via NMR spectroscopy. ¹H NMR (500 MHz, C₆D₆) δ = 0.97 (d, 12 H, CH₃, ³J_{HH} = 6.8 Hz), 1.01 (d, 12 H, CH₃, ³J_{HH} = 6.8 Hz), 5.53 (sept, 2 H, CHMe₂, ³J_{HH} = 6.8 Hz), 5.58 (sept, 2 H, CHMe₂, ³J_{HH} = 6.8 Hz), 6.48 (s_{sat}, 2 H, CHCH, ⁴J_{HPt} = 11.0 Hz), 6.50 (s_{sat}, 2 H, CHCH, ⁴J_{HPt} = 11.0 Hz), 7.06 (m, 1 H, *p*-CH_{Ph}), 7.24 (m, 2 H, *m*-CH_{Ph}), 7.87 (m, 2 H, *o*-CH_{Ph}), 8.02 (s_{sat}, 1 H, CCH, ²J_{PtH} = 16.4 Hz). ¹³C NMR (126 MHz, C₆D₆) δ = 22.8 (CH₃),

22.9 (CH₃), 51.05 (sat, CHMe₂, ³*J*_{PtC} = 42.6 Hz), 51.28 (s_{sat}, CHMe₂, ³*J*_{PtC} = 44.2 Hz), 114.7 (CCH), 114.8 (CHCH), 114.9 (CHCH), 124.4 (*p*-CH_{Ph}), 128.3 (*m*-CH_{Ph}), 131.3 (*o*-CH_{Ph}), 137.1 (*i*-CH_{Ph}), 132.4 (CCH), 184.8 (NCN), 184.9 (NCN).

Synthesis of $[Pt(iPr_2Im)_2(\eta^2-Ph\underline{CC}Ph)]$ (8)

In an NMR tube, 20.0 mg (40.0 µmol) $[Pt(iPr_2Im)_2]$ (4) and 7.14 mg (40.0 µmol) diphenyacetylene were dissolved in 0.60 mL of C₆D₆. Quantitative conversion to yellow $[Pt(iPr_2Im)_2(\eta^2-Ph\underline{CCPh})]$ (8) was detected via NMR spectroscopy. ¹H NMR (500 MHz, C₆D₆) $\delta = 0.97$ (d, 24 H, CH₃, ³J_{HH} = 6.8 Hz,), 5.52 (sept, 4 H, CHMe₂, ³J_{HH} = 6.8 Hz), 6.48 (s_{sat}, 4 H, CHCH, ⁴J_{PtH} = 11.3 Hz), 7.02 (m, 2 H, *p*-CH_{Ph}), 7.21 (m, 4 H, *m*-CH_{Ph}), 7.91 (m, 4 H, *o*-CH_{Ph}). ¹³C NMR (126 MHz, C₆D₆) $\delta = 22.9$ (CH₃), 51.3 (sat, CHMe₂, ⁴J_{PtC} = 42.0 Hz), 100.2 (PhCCPh), 114.9 (sat, CHCH, ⁴J_{PtC} = 31.3 Hz), 124.3 (*p*-CH_{Ph}), 128.4 (*m*-CH_{Ph}), 130.0 (*o*-CH_{Ph}), 138.5 (*i*-C_{Ph}), 185.0 (NCN).

Synthesis of $[Pt(iPr_2Im)_2(\eta^2-Me\underline{CC}Me)]$ (9) and $[Pt(iPr_2Im)_2(\eta^2-H_2\underline{CC}CHMe)]$ (10)

In an NMR tube, 10.0 mg (20.0 μ mol) [Pt(*i*Pr₂Im)₂] (4) were dissolved in 0.60 mL of C₆D₆ and 1.19 mg (22.0 µmol, 1.6 µl of 2-butyne were added. Within 2 h the solution brightened up slightly. An equilibrium between the starting material and $[Pt(iPr_2Im)_2(\eta^2-MeCCMe)]$ (9) in a ratio of 2/1 was detected. ¹**H NMR** (500 MHz, C_6D_6) δ = 1.01 (d, 24 H, CH_3 , ³ J_{HH} = 6.8 Hz), 2.96 (s_{sat}, 4 H, CH₃CCCH₃, ²J_{PtH} = 54.7 Hz), 5.66 (sept, 4 H, CHMe₂, ³J_{HH} = 6.8 Hz), 6.48 (s_{sat}, 4 H, CHCH, ${}^{4}J_{\text{PtH}}$ = 11.3 Hz). 13 C NMR (126 MHz, C₆D₆) δ = 14.2 (CH₃CCCH₃), 22.8 (CH₃), 50.9 (sat, CHMe₂, ⁴J_{PtC} = 43.2 Hz), 114.5 (sat, CHCH, ⁴J_{PtC} = 30.8 Hz), 115.6 (MeCCMe), 187.5 (NCN). After a few weeks the formation of $[Pt(iPr_2Im)_2(\eta^2-H_2CCCHMe)]$ (**10**) can be observed: ¹**H NMR** (500 MHz, C₆D₆) δ = 1.00 (d, 12 H, CH₃, ³J_{HH} = 6.8 Hz,), 1.02 (d, 12 H, CH₃, ³J_{HH} = 6.8 Hz,), 2.06 (m_{sat}, 2 H, =CH₂, ²J_{PtH} = 54.2 Hz), 2.57 (dt, 3 H, =CHCH₃, ³J_{HH} = 6.0 Hz, ⁵J_{HH} = 1.8 Hz), 5.41 (sept, 2 H, CHMe₂, ³J_{HH} = 6.8 Hz), 5.51 (sept, 2 H, CHMe₂, ³J_{HH} = 6.8 Hz), 6.02 (m_{sat}, 1 H, =CH, ³J_{PtH} = 47.0 Hz), 6.43 (s_{sat}, 2 H, CHCH, ⁴J_{PtH} = 9.7 Hz), 6.44 (s_{sat}, 2 H, CHCH, ⁴J_{PtH} = 11.0 Hz). ¹³**C NMR** (126 MHz, C_6D_6) δ = -4.3 (=CH₂), 22.9 (CH₃), 23.0 (CH₃), 24.3 (=CHCH₃), 51.0 (sat, CHMe₂, ⁴*J*_{PtC} = 45.4 Hz), 51.0 (sat, CHMe₂, ⁴*J*_{PtC} = 43.5 Hz), 104.5 (=CH), 114.9 (sat, CHCH, ⁴*J*_{PtC}= 32.0 Hz), 114.9 (sat, CHCH, ⁴*J*_{PtC}= 27.0 Hz), 158.4 (H₂C=C), 189.6 (NCN), 191.3 (NCN).

Synthesis of $[Pt(iPr_2Im)_2(H)(-CH_2-C{O}Ph)]$ (11)

In an NMR tube, 20.0 mg (40.0 μ mol) [Pt(*i*Pr₂Im)₂] (**4**) were dissolved in 0.60 mL of C₆D₆ and 6.00 mg (50.0 μ mol) acetophenone were added. The solution was heated to 80 °C for 4 d. Quantitative conversion to colorless [Pt(*i*Pr₂Im)₂(<u>C</u>H₂C(O)Ph)H] (**11**) was detected via NMR

spectroscopy. Pure samples of **11** slowly decompose at room temperature (see Figure S 28). **IR** (ATR): \tilde{v} [cm⁻¹] = 3083 (vw, *v*_{-C-H,str}), 2969 (s, *v*_{-C-H,str}), 2926 (m, *v*_{-C-H,str}), 2869 (m, *v*_{-C-H,str}), 1985 (m, *v*_{Pt-H,str}), 1680 (vw), 1605 (vs), 1568 (s), 1415 (s), 1301 (s), 1264 (vs), 1211 (vs, NHC- $\gamma_{=C-H,oop}$), 1170 (w), 1129 (w), 1072 (s), 1018 (vs), 946 (m), 879 (w), 793 (vs), 691 (vs), 601 (m). ¹H NMR (500 MHz, C₆D₆) δ = -10.11 (t_{sat}, 1 H, PtH, ¹*J*_{PtH} = 1133.3 Hz, ³*J*_{HH} = 3.1 Hz), 1.24 (d, 24 H, CH₃, ³*J*_{HH} = 7.0 Hz), 3.22 (d_{sat}, 2 H, PtCH₂, ²*J*_{PtH} = 70.6 Hz, ³*J*_{HH} = 3.1 Hz), 5.55 (sept, 2 H, CHMe₂, ³*J*_{HH} = 7.0 Hz), 6.40 (s_{sat}, 4 H, CHCH. ⁴*J*_{PtH} = 10.1 Hz), 7.13 (m, 3 H, *m*-CH_{Ph} + *p*-CH_{Ph}), 8.18 (m, 2 H, *o*-CH_{Ph}). ¹³C NMR (126 MHz, C₆D₆) δ = 23.0 (br, CH₃), 27.9 (sat, PtCH₂ ¹*J*_{PtC} = 245.4 Hz), 51.6 (sat, CHMe₂³*J*_{PtC} = 48.6 Hz), 115.1 (sat, CHCH, ³*J*_{PtC} = 29.4 Hz), 128.2 (*o*-CH_{Ph}), 129.0 (*m*-CH_{Ph} + *p*-CH_{Ph}), 142.2 (*i*-CH_{Ph}), 178.8 (sat, NCN, ¹*J*_{PtC} = 1036.7 Hz), 200.0 (sat, CO, ²*J*_{PtC} = 38.6 Hz).

3. Crystallographic Details

Crystal data collection and processing parameters are given in Table S4. Crystals were immersed in a film of perfluoropolyether oil on a glass fiber and transferred to a Bruker D8 Apex-1 diffractometer with CCD area detector and graphite-monochromated Mo-Kα radiation equipped with a non-commercial low temperature device or a Bruker D8 Apex-2 diffractometer with CCD area detector and graphite-monochromated Mo-Kα radiation equipped with a non-commercial low temperature device or a Bruker D8 Apex-2 diffractometer with CCD area detector and graphite-monochromated Mo-Kα radiation equipped with an Oxford Cryosystems low-temperature device. Data were collected at 168 K (Apex-1) and 100 K (Apex-2) respectively. The images were processed with the Bruker software packages and equivalent reflections were merged. Corrections for Lorentz-polarization effects and absorption were performed if necessary and the structures were solved by direct methods. Subsequent difference Fourier syntheses revealed the positions of all other non-hydrogen atoms. Extinction corrections were applied as required. Crystallographic calculations were performed using the SHELXTL software package. [S6] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factors calculations.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no.s CCDC 1025171 (1) and 1025170 (3). Copies of the data can be obtained free of charge on application to CCDC.

	3	1
Formula	$C_{18}H_{32}N_4Pd$	C ₂₇ H ₄₈ CIN ₆ Pd Cl x CH ₂ Cl ₂
Formula weight	410.88	634.01
Temperature [K]	168(2)	100(2)
Color, shape	yellow, block	colorless, block
Cryst. size [mm ³]	0.11x0.09x0.05	0.31x0.25x0.15
Crystal system	monoclinic	triclinic
Space group	<i>P</i> 2 ₁ /c	PĪ
<i>a</i> [Å]	9.5147(10)	9.5437(6)
b [Å]	8.7236(9)	19.9675(16)
c [Å]	12.2763(13)	14.7569(10)
α [°]		81.229(2)
β[°]	96.210(2)	83.044(2)
γ[°]		81.137(2)
Volume [ų]	1012.98(18)	1731.26(19)
Z	2	2
Density [g·cm ⁻³]	1.347	1.379
µ [mm ^{−1}]	0.921	0.871
F (000)	428	748
θ[°]	2.15 – 26.15	2.464 - 26.113
	-11 ≤ <i>h</i> ≤ 11,	-11 ≤ <i>h</i> ≤ 11,
Index	-10 ≤ <i>k</i> ≤ 10, -15 < / < 15	-15 ≤ <i>k</i> ≤ 15, -18 < <i>l</i> < 18
Reflections collected	18273	16737
Indep. Reflections	2018	6825
Observed Reflections [/>2σ(I)]	1775	5808
R _{int}	0.0283	0.0348
Restraints	0	0
Parameters	110	364
R1 / wR2	0.0211 /	0.0340 / 0.0732
[/>2ơ(l)] R1 /wR2 (all	0.0568	
data)	0.0598	0.0444 / 0.0777
Largest diff peak and hole [e [·] Å ⁻³]	0.397 / -0.215	0.540 / -0.658
GooF	1.074	1.042

Table S4. Crystallographic Data of complexes $[Pd(iPr_2Im)_2]$ (3) and $[Pd(iPr_2Im)_3CI]^+CI^-$ (1)

4. Computational Details

The calculations on model systems were carried out using the Amsterdam Density Functional (ADF) program developed by Baerends and co-workers. [S7] The integration was performed using a procedure developed by te Velde et al. [S8] The MOs were expanded in a large uncontracted set of Slater type orbitals (STOs, no Gaussian functions are involved). A TZ2P basis set [S9] was used and is of triple-ξ quality for all atoms. It has been augmented with two sets of polarization functions, that is, 2p and 3d on H, 3d and 4f on C and N, 4p and 4f on Ni, 5p and 4f on Pd and 6p and 5f on Pt. An auxiliary set of s, p, d, f and g STOs was used to fit the molecular density and to represent the Coulomb and exchange potentials accurately in each self-consistent field (SCF) cycle. All electrons are included in the variational treatment (no frozen-core approximation used). For all calculations, the generalized gradient approximation (GGA) at the BLYP level was used: exchange is described by Slater's Xa potential, [S10] with nonlocal corrections due to Becke [S11] added self-consistently, and correlation is treated using the gradient-corrected functional of Lee, Yang and Parr. [S12] Relativistic effects were included with the scalar-zeroth-order-regular-approximation (ZORA). [S13] This approach has been extensively tested and was shown to agree well with high-level coupled-cluster reference data. [S14] In addition the Grimme3 BJDAMP dispersion correction was used. [S15]

Energy Decomposition Analysis: The method of bond energy decomposition analysis (EDA) was developed by Ziegler and Rauk. [S16] Here the bond energy ΔE between the fragments were decomposed into the preparation energy ΔE_{strain} , which is associated with the geometrical deformation of the fragments as the bond formation takes place and the actual interaction energy ΔE_{int} (Equation 1).

$$\Delta E = \Delta E_{\text{strain}} + \Delta E_{\text{int}} \tag{1}$$

$$\Delta E_{\text{int}} = \Delta V_{\text{elstat}} + \Delta E_{\text{Pauli}} + \Delta E_{\text{oi}} + \Delta E_{\text{disp}}$$
(2)

$$\Delta E_{\text{steric}} = \Delta V_{\text{elstat}} + \Delta E_{\text{Pauli}} \tag{3}$$

The interaction energy ΔE_{int} of two fragments can be decomposed in ΔV_{elstat} , ΔE_{Pauli} , ΔE_{oi} and ΔE_{disp} (Equation 2). The term ΔV_{elstat} correspond to the classical electrostatic interaction between unperturbed charge distributions $\rho_A(r) + \rho_B(r)$ of the prepared or deformed fragments A and B. The Pauli repulsion term, ΔE_{Pauli} is caused by the destabilizing interactions between two occupied orbitals, i.e. by the fact that two electrons with the same spin cannot occupy the same space; therefore it is responsible for steric repulsion. Dispersive interactions are also included and they are responsible for the last term ΔE_{disp} in Equation 2. The orbital interaction term ΔE_{oi} emerges from charge transfer (interaction between occupied orbitals on one

fragment with unoccupied orbitals on the other fragment, including HOMO-LUMO interactions) and polarization (empty-occupied orbital mixing on one fragment due to the presence of the other fragment).

The orbital interaction can be further divided into contributions from each irreducible representation Γ of the interacting systems (Equation 4).

$$\Delta E_{\rm oi} = \sum_{\Gamma} \Delta E_{\rm oi}{}^{\Gamma} \tag{4}$$

For the EDA the $[M(H_2Im)_2(\eta^2-C_2H_4)]$ were optimized and analyzed in $C_{2\nu}$ symmetry, where a_1 corresponds to σ -, b_1 and b_2 to π - and a_2 to orbital interaction with δ -symmetry.

Calculations on the fully substituted systems were carried out with the DFT implementation of TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. [S17] For the DFT calculations we used the BP86 functional, [S11] TZVPP basis sets and the RI-J approximation. [S18, S19] Analytic second derivatives were calculated with the program AOFORCE using the RI-J approximation.

Calculated Compounds

*i*Pr₂lm

Def2-SV(P)/BP86				
Molecular formula: C ₉ H ₁₆ N ₂				
SC	F-energy + E	(vib0) [h]: -40	61.4750634	
E(v	ib0) [h]: 0.23	20883		
Ima	iginary freque	encies: none		
Def	2-TZVPP/BF	286		
SC	F-energy + E	(vib0) [h]: -40	62.0176462	
E(v	ib0) [h]: 0.23	20306		
Ima	iginary freque	encies: none		
Car	tesian coord	inates:		
С	1.013031	-0.015932	0.013714	
Ν	0.151211	1.057080	-0.021628	
С	-1.190525	0.675706	-0.057613	
С	-1.194414	-0.696227	-0.045150	
Ν	0.145133	-1.084501	-0.002177	
С	0.633422	2.448660	-0.019764	
С	0.248782	3.175754	-1.317783	
С	0.173616	3.198334	1.240421	
С	0.619434	-2.478529	0.025023	
С	0.155335	-3.202618	1.298519	
С	0.230709	-3.226844	-1.259656	
Н	-2.028098	1.383548	-0.089046	
Н	-2.036002	-1.399743	-0.063764	
Н	1.737295	2.335230	0.013662	
Н	0.706199	4.189196	-1.341709	
Н	0.607591	2.611192	-2.205596	
Н	-0.854049	3.301519	-1.408417	
Н	0.628272	4.212809	1.272622	
Н	0.480348	2.650272	2.157590	
Н	-0.932633	3.323968	1.264361	
Н	1.723933	-2.370790	0.056573	
Н	0.604630	-4.218752	1.349408	
Н	0.464646	-2.639524	2.205646	
Н	-0.951552	-3.322018	1.324342	
Н	0.681735	-4.243395	-1.264852	

H 0.593406 -2.680884 -2.157458 H -0.872856 -3.347314 -1.348468

Ethylene

Def2-SV(P)/BP86 Molecular formula: C₂H₄ SCF-energy + E(vib0) [h]: -78.4700988 E(vib0) [h]: 0.0492548 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -78.5707099 E(vib0) [h]: 0.0488093 Imaginary frequencies: none Cartesian coordinates: C -0.581594 -0.335707 0.000000 С 0.581594 0.335707 0.000000 H -0.614634 -1.440849 0.000000 H -1.555072 0.188593 0.000000 Н 0.614634 1.440849 0.000000

1.555072 -0.188593

0.000000

2-Butyne

Н

Def2-SV(P)/BP86 Molecular formula: C₄H₆ SCF-energy + E(vib0) [h]: -155.7710471 E(vib0) [h]: 0.0813944 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -155.9592105 E(vib0) [h]: 0.0812566 Imaginary frequencies: none Cartesian coordinates: С -0.399006 -0.533091 -0.000039 С 0.661425 0.078966 0.000035 С 1.928050 0.809650 0.000130

-1.665195	-1.264153	-0.000130
1.765503	1.911996	0.000095
2.542104	0.565963	0.897463
2.542259	0.565929	-0.897087
-2.538563	-0.571991	-0.000105
-1.761511	-1.917818	-0.897373
-1.761566	-1.917950	0.897011
	-1.665195 1.765503 2.542104 2.542259 -2.538563 -1.761511 -1.761566	-1.665195-1.2641531.7655031.9119962.5421040.5659632.5422590.565929-2.538563-0.571991-1.761511-1.917818-1.761566-1.917950

Acetophenone

Def2-SV(P)/BP86					
Molecular formula: C ₈ H ₈ O					
SC	F-energy + E	(vib0) [h]: -38	84.4824686		
E(v	ib0) [h]: 0.13	39238			
Ima	iginary freque	encies: none			
Def	2-TZVPP/BF	286			
SC	F-energy + E	(vib0) [h]: -38	84.9235726		
E(v	ib0) [h]: 0.13	27933			
Ima	iginary freque	encies: none			
Car	tesian coord	inates:			
С	0.970263	2.567022	-0.225209		
С	1.547037	1.218198	0.191104		
С	0.599041	0.067792	0.420886		
С	1.149105	-1.174418	0.812304		
С	0.321180	-2.280460	1.042361		
С	-1.072908	-2.160817	0.883480		
С	-1.632099	-0.931116	0.494296		
С	-0.801161	0.177634	0.264199		
0	2.756121	1.070228	0.337756		
Н	0.259999	2.955401	0.539178		
Н	1.803789	3.287253	-0.347550		
Н	0.410519	2.489087	-1.184412		
Н	2.243057	-1.237505	0.928298		
Н	0.760694	-3.244818	1.347639		
Н	-1.726443	-3.030814	1.063869		
Н	-2.723495	-0.834881	0.369323		
Н	-1.254301	1.134814	-0.039921		

{Ni(*i*Pr₂Im)}

Def2-SV(P)/BP86 Molecular formula: C₉H₁₆N₂Ni SCF-energy + E(vib0) [h]: -1969.8563103 E(vib0) [h]: 0.2328355 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1970.6451938 E(vib0) [h]: 0.2332327 Imaginary frequencies: none Cartesian coordinates: С 1.087685 -1.035143 0.229777 C -0.229459 -1.414388 0.141826 N -0.957696 -0.281865 -0.206586 C -0.126239 0.825845 -0.344960 Ν 1.141537 0.322945 -0.065822 С 2.334484 1.179664 -0.111141 С -2.408082 -0.184405 -0.420183 С 3.009150 1.279662 1.263414 С 3.294431 0.745443 -1.227106 C -2.859425 -1.040451 -1.611173 C -3.187367 -0.479843 0.868147 Ni -0.561946 2.440710 -0.764759 Н 1.976377 -1.626947 0.478316 Н -0.692399 -2.395268 0.300479 Н 1.891175 2.172281 -0.375547 Н -2.526968 0.897107 -0.680694 Н 3.853328 2.003358 1.226554 Н 2.283868 1.629317 2.029682 Н 3.420694 0.298937 1.594910 Н 4.145169 1.458043 -1.303317 Н 2.768483 0.725197 -2.206303 Н 3.718052 -0.267488 -1.037100 Н -3.941130 -0.878678 -1.814138 H -2.289580 -0.766841 -2.525658 H -2.710578 -2.127834 -1.419692 Н -4.275656 -0.315239 0.706949

Н	-2.852083	0.190793	1.688923
Н	-3.051223	-1.534312	1.201001

{Pd(*i*Pr₂lm)}

Def2-SV(P)/BP86 Molecular formula: C₉H₁₆N₂Pd SCF-energy + E(vib0) [h]: -590.1012507 E(vib0) [h]: 0.2333576 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -590.1012507 E(vib0) [h]: 0.2332444 Imaginary frequencies: Cartesian coordinates: С 1.076983 -0.998557 0.214871 С -0.237738 -1.378007 0.123396 Ν -0.962240 -0.243327 -0.223867 С -0.134047 0.855797 -0.356399 Ν 1.126358 0.359658 -0.078651 С 2.345699 1.188189 -0.102419 С -2.420611 -0.187355 -0.432424 С 2.992350 1.262041 1.287900 С 3.312830 0.716051 -1.197039 С -2.842947 -1.061921 -1.621244 С -3.177648 -0.516025 0.861671 Pd -0.621609 2.659072 -0.820554 1.967617 -1.587009 Н 0.463336 Н -0.703582 -2.357970 0.277390 1.950378 2.195936 Н -0.374992 Н -2.588721 0.885320 -0.691094 Н 3.855566 1.963068 1.269258 Н 2.262124 1.630582 2.040354 Н 3.372006 0.270139 1.623716 Н 4.181695 1.407121 -1.260905 Н 2.806921 0.702258 -2.186664 Н 3.709101 -0.304560 -0.990645 Н -3.929070 -0.932293 -1.821966

Н	-2.284493	-0.772493	-2.537728
Н	-2.662875	-2.144044	-1.427375
Н	-4.270774	-0.381581	0.707583
Н	-2.858102	0.159192	1.684763
н	-3.010572	-1.568682	1.185528

{Pt(*i*Pr₂Im)}

Def2-SV(P)/BP86 Molecular formula: C₉H₁₆N₂Pt SCF-energy + E(vib0) [h]: -581.0272712 E(vib0) [h]: 0.2337680 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -581.5768619 E(vib0) [h]: 0.2336403 Imaginary frequencies: none Cartesian coordinates: С 1.074383 -0.988984 0.212100 C -0.239246 -1.369113 0.118260 N -0.970611 -0.239174 -0.229060 C -0.134922 0.858125 -0.357491 Ν 1.131099 0.369221 -0.078942 С 2.353666 1.196120 -0.099058 C -2.430736 -0.188111 -0.438559 C 2.995035 1.264652 1.293978 C 3.321316 0.719052 -1.190968 C -2.846747 -1.068221 -1.625428 C -3.184144 -0.518774 0.857061

Pt	-0.610797	2.614212	-0.808221
Н	1.965334	-1.575896	0.461194
Н	-0.705383	-2.348751	0.270391
Н	1.963661	2.204912	-0.371716
Н	-2.604358	0.882309	-0.699180
Н	3.861124	1.961981	1.278201
Н	2.264948	1.636441	2.044712
Н	3.369787	0.270809	1.629674
Н	4.192863	1.406819	-1.251401

Н	2.819712	0.708070	-2.182638
Н	3.713152	-0.303042	-0.983210
Н	-3.933352	-0.944065	-1.826259
Н	-2.290685	-0.778331	-2.543019
Н	-2.661973	-2.149052	-1.428592
Н	-4.277809	-0.390494	0.702520
Н	-2.869298	0.159945	1.678860
Н	-3.011417	-1.570061	1.182590

[Ni(*i*Pr₂Im)₂]

Molecular formula: $C_{18}H_{32}N_4Ni$ SCF-energy + E(vib0) [h]: -2431.4366156 E(vib0) [h]: 0.4661435 Imaginary frequencies: none Cartesian coordinates: N -0.976521 -0.475559 2.709670

	0.070021	0.170000	2.100010
С	-0.617770	-0.301064	4.041574
С	0.617764	0.301238	4.041553
Ν	0.976539	0.475591	2.709637
С	0.000005	-0.000007	1.846836
Ni	-0.000014	-0.000029	-0.000012
С	-0.000018	0.000004	-1.846859
Ν	0.976525	-0.475519	-2.709686
С	0.617768	-0.301057	-4.041588
С	-0.617783	0.301212	-4.041578
Ν	-0.976560	0.475579	-2.709664
С	-2.223044	-1.058140	2.192060
С	2.223100	1.058057	2.191986
С	-2.223121	1.058051	-2.192012
С	2.223064	-1.058050	-2.192060
Н	-2.072964	-0.967338	1.086272
С	-2.348940	-2.541200	2.565448
С	-3.444237	-0.225196	2.604069
Н	2.073033	0.967151	1.086205
С	2.349062	2.541150	2.565226
С	3.444248	0.225096	2.604093
Н	-2.073038	0.967146	-1.086232

С	-2.349079	2.541147	-2.565242	
С	-3.444274	0.225091	-2.604102	
Н	2.072976	-0.967206	-1.086278	
С	2.348994	-2.541127	-2.565371	
С	3.444243	-0.225097	-2.604085	
Н	-4.364048	-0.625954	2.123438	
Н	-3.605565	-0.241811	3.706395	
Н	-3.317071	0.832791	2.286910	
Н	-3.250196	-2.984268	2.086800	
Н	-1.457479	-3.107330	2.217874	
Н	-2.446545	-2.684042	3.666257	
Н	3.250339	2.984131	2.086537	
Н	1.457627	3.107285	2.217592	
Н	2.446670	2.684099	3.666022	
Н	4.364085	0.625772	2.123447	
Н	3.605555	0.241798	3.706421	
Н	3.317042	-0.832913	2.287022	
Н	-3.250355	2.984128	-2.086549	
Н	-1.457641	3.107273	-2.217604	
Н	-2.446687	2.684100	-3.666037	
Н	-4.364105	0.625763	-2.123438	
Н	-3.605598	0.241800	-3.706427	
Н	-3.317061	-0.832919	-2.287039	
Н	4.364057	-0.625819	-2.123432	
Н	3.605584	-0.241747	-3.706407	
Н	3.317055	0.832898	-2.286965	
Н	3.250255	-2.984153	-2.086695	
Н	1.457542	-3.107254	-2.217774	
Н	2.446608	-2.684020	-3.666171	
Н	-1.251544	0.611438	-4.880719	
Н	1.251534	-0.611231	-4.880742	
Н	1.251513	0.611497	4.880691	
Н	-1.251532	-0.611236	4.880733	
[Ni(<i>i</i> Pr ₂ Im) ₂] (D _{2d})				
---	--------------------------	--	-----------------------------------	--
Def	2-SV(P)/BP8	6		
Mol	ecular formu	la: C ₁₈ H ₃₂ N ₄ N	Ni	
SCF	⁼ -energy + E	(vib0) [h]: -24	431.4338319	
E(vi	b0) [h]: 0.46	48941		
Ima	ginary freque	encies: i55.66	6, i35.16, i35.16, i28.82, i17.22	
Def	2-TZVPP/BP	86		
SCF	-energy + E	(vib0) [h]: -24	432.7476707	
E(vi	b0) [h]: 0.46	61012		
Ima	ginary freque	encies: none		
Car	tesian coordi	inates:		
Ν	0.768515	-0.768515	-2.710211	
С	0.485612	-0.485612	-4.042466	
С	-0.485612	0.485612	-4.042466	
Ν	-0.768515	0.768515	-2.710211	
С	0.000000	0.000000	-1.844944	
Ni	0.000000	0.000000	0.000000	
С	0.000000	0.000000	1.844944	
Ν	0.768515	0.768515	2.710211	
С	0.485612	0.485612	4.042466	
С	-0.485612	-0.485612	4.042466	
Ν	-0.768515	-0.768515	2.710211	
С	-1.744504	-1.744504	2.206266	
С	1.744504	1.744504	2.206266	
С	-1.744504	1.744504	-2.206266	
С	1.744504	-1.744504	-2.206266	
Н	-1.636064	-1.636064	1.098592	
С	-1.364483	-3.176845	2.608091	
С	-3.176845	-1.364483	2.608091	
Н	1.636064	1.636064	1.098592	
С	1.364483	3.176845	2.608091	
С	3.176845	1.364483	2.608091	
н	-3.906235	-2.064407	2.143625	
H	-3.323318	-1.407266	3.711786	
H	-3.415718	-0.334554	2.264552	
H 	-2.064407	-3.906235	2.143625	
Н	-0.334554	-3.415718	2.264552	

Н	-1.407266	-3.323318	3.711786
Н	3.906235	2.064407	2.143625
Н	3.323318	1.407266	3.711786
н	3.415718	0.334554	2.264552
н	2.064407	3.906235	2.143625
Н	0.334554	3.415718	2.264552
н	1.407266	3.323318	3.711786
н	-1.636064	1.636064	-1.098592
С	-1.364483	3.176845	-2.608091
С	-3.176845	1.364483	-2.608091
Н	1.636064	-1.636064	-1.098592
С	1.364483	-3.176845	-2.608091
С	3.176845	-1.364483	-2.608091
Н	2.064407	-3.906235	-2.143625
Н	0.334554	-3.415718	-2.264552
Н	1.407266	-3.323318	-3.711786
Н	3.906235	-2.064407	-2.143625
Н	3.323318	-1.407266	-3.711786
Н	3.415718	-0.334554	-2.264552
Н	-2.064407	3.906235	-2.143625
Н	-0.334554	3.415718	-2.264552
Н	-1.407266	3.323318	-3.711786
Н	-3.906235	2.064407	-2.143625
Н	-3.323318	1.407266	-3.711786
Н	-3.415718	0.334554	-2.264552
Н	-0.984340	-0.984340	4.881970
Н	0.984340	0.984340	4.881970
Н	-0.984340	0.984340	-4.881970
Н	0.984340	-0.984340	-4.881970

[Ni(*i*Pr₂Im)₂] (D_{2h}) Def2-SV(P)/BP86 Molecular formula: C₁₈H₃₂N₄Ni SCF-energy + E(vib0) [h]: -2431.4310710 E(vib0) [h]: 0.4649214 Imaginary frequencies: i76.58, i63.94, i13.58, i11.66 Def2-TZVPP/BP86

SCF-energy + E(vib0) [h]: -2432.7440324 E(vib0) [h]: 0.4660560 Imaginary frequencies: i15.89 Cartesian coordinates:

Ν	-1.084625	0.000000	2.730534
С	-0.686523	0.000000	4.061197
С	0.686523	0.000000	4.061197
Ν	1.084625	0.000000	2.730534
С	0.000000	0.000000	1.858938
Ni	0.000000	0.000000	0.000000
С	0.000000	0.000000	-1.858938
Ν	1.084625	0.000000	-2.730534
С	0.686523	0.000000	-4.061197
С	-0.686523	0.000000	-4.061197
Ν	-1.084625	0.000000	-2.730534
С	-2.469600	0.000000	2.244238
С	2.469600	0.000000	2.244238
С	-2.469600	0.000000	-2.244238
С	2.469600	0.000000	-2.244238
Н	-2.325571	0.000000	1.136338
С	-3.208239	-1.281785	2.653123
С	-3.208239	1.281785	2.653123
Н	2.325571	0.000000	1.136338
С	3.208239	1.281785	2.653123
С	3.208239	-1.281785	2.653123
Н	-2.325571	0.000000	-1.136338
С	-3.208239	1.281785	-2.653123
С	-3.208239	-1.281785	-2.653123
Н	2.325571	0.000000	-1.136338
С	3.208239	-1.281785	-2.653123
С	3.208239	1.281785	-2.653123
Н	-4.224149	1.302712	2.200378
Н	-3.330554	1.355455	3.758113
Н	-2.652470	2.179116	2.303687
Н	-4.224149	-1.302712	2.200378
Н	-2.652470	-2.179116	2.303687
Н	-3.330554	-1.355455	3.758113

Н	4.224149	1.302712	2.200378
Н	2.652470	2.179116	2.303687
Н	3.330554	1.355455	3.758113
Н	4.224149	-1.302712	2.200378
Н	3.330554	-1.355455	3.758113
Н	2.652470	-2.179116	2.303687
Н	-4.224149	1.302712	-2.200378
Н	-2.652470	2.179116	-2.303687
Н	-3.330554	1.355455	-3.758113
Н	-4.224149	-1.302712	-2.200378
Н	-3.330554	-1.355455	-3.758113
Н	-2.652470	-2.179116	-2.303687
Н	4.224149	1.302712	-2.200378
Н	3.330554	1.355455	-3.758113
Н	2.652470	2.179116	-2.303687
Н	4.224149	-1.302712	-2.200378
Н	2.652470	-2.179116	-2.303687
Н	3.330554	-1.355455	-3.758113
Н	-1.392645	0.000000	-4.899786
Н	1.392645	0.000000	-4.899786
Н	1.392645	0.000000	4.899786
Н	-1.392645	0.000000	4.899786

[Pd(*i*Pr₂lm)₂]

Molecular formula: C₁₈H₃₂N₄Pd SCF-energy + E(vib0) [h]: -1051.0791044 E(vib0) [h]: 0.4669416 Imaginary frequencies: none Cartesian coordinates: N -0.837536 -0.681470 2.882947 C -0.524254 -0.433785 4.215256 C 0.543966 0.427312 4.213211

N 0.849054 0.678845 2.879728

C 0.003204 -0.000181 2.023454

Pd -0.001655 0.001098 0.000008

C -0.005457 0.001334 -2.023446

N 0.837280 -0.677679 -2.882795

С	0.525557	-0.428362	-4.215160
С	-0.543709	0.431434	-4.213311
Ν	-0.851054	0.680468	-2.879872
С	-1.923938	-1.553160	2.403875
С	1.932764	1.551600	2.396480
С	-1.935734	1.552120	-2.396842
С	1.924030	-1.548827	-2.403508
Н	-1.825258	-1.480107	1.294074
С	-1.697071	-3.009851	2.832671
С	-3.297120	-1.007653	2.821336
Н	1.825190	1.484327	1.287149
С	1.711502	3.006283	2.834754
С	3.308458	1.001965	2.799947
Н	-1.832856	1.479274	-1.287417
С	-1.710489	3.008762	-2.826684
С	-3.310453	1.006546	-2.809065
Н	1.823358	-1.477957	-1.293739
С	1.699896	-3.004999	-2.835448
С	3.297179	-1.000669	-2.817536
Н	-4.105899	-1.628020	2.376160
Н	-3.432054	-1.020794	3.927212
Н	-3.426106	0.037806	2.466035
Н	-2.475299	-3.665564	2.383704
Н	-0.702403	-3.366803	2.488075
Н	-1.750063	-3.132709	3.938926
Н	2.486756	3.663285	2.382562
Н	0.714415	3.366422	2.500611
Н	1.774218	3.123437	3.941139
Н	4.114599	1.623737	2.351931
Н	3.452044	1.008575	3.904778
Н	3.433091	-0.041616	2.437626
Н	-2.487212	3.664518	-2.375186
Н	-0.714667	3.365807	-2.485534
Н	-1.767239	3.131371	-3.932784
Н	-4.117540	1.626836	-2.360722
Н	-3.449695	1.019806	-3.914401
Н	-3.438058	-0.038956	-2.453385

Η	4.106045	-1.620853	-2.372252
Н	3.433990	-1.011380	-3.923203
Н	3.424147	0.044236	-2.459883
Н	2.478124	-3.660520	-2.386208
Н	0.705043	-3.363922	-2.493434
Н	1.755185	-3.125763	-3.941828
Н	-1.096510	0.874769	-5.049667
Н	1.075516	-0.871648	-5.053412
Н	1.097351	0.870111	5.049460
Н	-1.072634	-0.878835	5.053610

$[Pd(\textit{i}Pr_2Im)_2] (D_{2d})$

Def	Def2-SV(P)/BP86			
Mol	ecular formu	la: C ₁₈ H ₃₂ N ₄ F	Pd	
SCI	F-energy + E	(vib0) [h]: -1(051.0795223	
E(v	ib0) [h]: 0.46	65872		
Ima	iginary freque	encies: i3.98		
Def	2-TZVPP/BP	86		
SCI	F-energy + E	(vib0) [h]: -1()52.1945794	
E(v	ib0) [h]: 0.460	66658		
Ima	iginary freque	encies: none		
Car	tesian coordi	inates:		
Ν	0.766145	0.766145	2.881156	
С	0.485114	0.485114	4.214117	
С	-0.485114	-0.485114	4.214117	
Ν	-0.766145	-0.766145	2.881156	
С	0.000000	0.000000	2.023399	
Pd	0.000000	0.000000	0.000000	
С	0.000000	0.000000	-2.023399	
Ν	0.766145	-0.766145	-2.881156	
С	0.485114	-0.485114	-4.214117	
С	-0.485114	0.485114	-4.214117	
Ν	-0.766145	0.766145	-2.881156	
С	-1.750539	1.750539	-2.399910	
С	1.750539	-1.750539	-2.399910	

С	-1.750539	-1.750539	2.399910
С	1.750539	1.750539	2.399910
Н	-1.662620	1.662620	-1.290243
С	-1.362797	3.175150	-2.822207
С	-3.175150	1.362797	-2.822207
Н	1.662620	-1.662620	-1.290243
С	1.362797	-3.175150	-2.822207
С	3.175150	-1.362797	-2.822207
Н	-3.910957	2.065818	-2.373327
Н	-3.306422	1.398355	-3.928122
Н	-3.419358	0.335914	-2.473806
Н	-2.065818	3.910957	-2.373327
Н	-0.335914	3.419358	-2.473806
Н	-1.398355	3.306422	-3.928122
Н	3.910957	-2.065818	-2.373327
Н	3.306422	-1.398355	-3.928122
Н	3.419358	-0.335914	-2.473806
Н	2.065818	-3.910957	-2.373327
Н	0.335914	-3.419358	-2.473806
Н	1.398355	-3.306422	-3.928122
Н	-1.662620	-1.662620	1.290243
С	-1.362797	-3.175150	2.822207
С	-3.175150	-1.362797	2.822207
Н	1.662620	1.662620	1.290243
С	1.362797	3.175150	2.822207
С	3.175150	1.362797	2.822207
Н	2.065818	3.910957	2.373327
Н	0.335914	3.419358	2.473806
Н	1.398355	3.306422	3.928122
Н	3.910957	2.065818	2.373327
Η	3.306422	1.398355	3.928122
Η	3.419358	0.335914	2.473806
Н	-2.065818	-3.910957	2.373327

Н	-0.335914	-3.419358	2.473806
Н	-1.398355	-3.306422	3.928122
Н	-3.910957	-2.065818	2.373327
Н	-3.306422	-1.398355	3.928122
Н	-3.419358	-0.335914	2.473806
Н	-0.985334	0.985334	-5.051562
Н	0.985334	-0.985334	-5.051562
Н	-0.985334	-0.985334	5.051562
Н	0.985334	0.985334	5.051562

[Pd(*i*Pr₂Im)₂] (D_{2h})

Def2-SV(P)/BP86 Molecular formula: C₁₈H₃₂N₄Pd SCF-energy + E(vib0) [h]: -1051.0778229 E(vib0) [h]: 0.4666572 Imaginary frequencies: i11.47 Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1052.1928543 E(vib0) [h]: 0.4664808 Imaginary frequencies: i15.24 Cartesian coordinates: N -1.082822 0.000000 2.886254 С -0.685951 0.000000 4.218454 4.218454 С 0.685951 0.000000 Ν 1.082822 0.000000 2.886254 С 0.000000 0.000000 2.025822 Pd 0.000000 0.000000 0.000000 С 0.000000 0.000000 -2.025822 Ν 1.082822 0.000000 -2.886254 С 0.685951 0.000000 -4.218454 С -0.685951 0.000000 -4.218454 Ν -1.082822 0.000000 -2.886254 С -2.476659 0.000000 2.412347 С 2.476659 0.000000 2.412347 С -2.476659 0.000000 -2.412347 С 2.476659 0.000000 -2.412347

Н	-2.355596	0.000000	1.302770
С	-3.207214	-1.281729	2.837343
С	-3.207214	1.281729	2.837343
Н	2.355596	0.000000	1.302770
С	3.207214	1.281729	2.837343
С	3.207214	-1.281729	2.837343
Н	-2.355596	0.000000	-1.302770
С	-3.207214	1.281729	-2.837343
С	-3.207214	-1.281729	-2.837343
Н	2.355596	0.000000	-1.302770
С	3.207214	-1.281729	-2.837343
С	3.207214	1.281729	-2.837343
Н	-4.228009	1.304283	2.396239
Н	-3.317622	1.350427	3.943862
Н	-2.656338	2.180501	2.484318
Н	-4.228009	-1.304283	2.396239
Н	-2.656338	-2.180501	2.484318
Н	-3.317622	-1.350427	3.943862
Н	4.228009	1.304283	2.396239
Н	2.656338	2.180501	2.484318
Н	3.317622	1.350427	3.943862
Н	4.228009	-1.304283	2.396239
Н	3.317622	-1.350427	3.943862
Η	2.656338	-2.180501	2.484318
Н	-4.228009	1.304283	-2.396239
Н	-2.656338	2.180501	-2.484318
Η	-3.317622	1.350427	-3.943862
Н	-4.228009	-1.304283	-2.396239
Н	-3.317622	-1.350427	-3.943862
Н	-2.656338	-2.180501	-2.484318
Н	4.228009	1.304283	-2.396239
Н	3.317622	1.350427	-3.943862
Н	2.656338	2.180501	-2.484318
Н	4.228009	-1.304283	-2.396239
Н	2.656338	-2.180501	-2.484318
Н	3.317622	-1.350427	-3.943862
Н	-1.393359	0.000000	-5.055703

Н	1.393359	0.000000	-5.055703
Н	1.393359	0.000000	5.055703
Н	-1.393359	0.000000	5.055703

[Pt(*i*Pr₂Im)₂]

Molecular formula: $C_{18}H_{32}N_4Pt$ SCF-energy + E(vib0) [h]: -1042.5935797 E(vib0) [h]: 0.4673302 Imaginary frequencies: none Cartesian coordinates: N -0.849264 -0.677696 2.871781 C -0.537422 -0.427411 4.203745

С	0.533867	0.429408	4.204047
Ν	0.846897	0.679176	2.872279
С	-0.000792	0.000586	2.015142
Pt	0.000051	0.000116	0.000015
С	0.000783	-0.000500	-2.015113
Ν	0.849041	-0.679349	-2.871479
С	0.537079	-0.429750	-4.203527
С	-0.534087	0.427219	-4.204191
Ν	-0.846933	0.677750	-2.872514
С	-1.937544	-1.547077	2.391383
С	1.935652	1.548303	2.392535
С	-1.935465	1.547367	-2.393124
С	1.937228	-1.548654	-2.390772
Н	-1.834664	-1.476889	1.281980
С	-1.716708	-3.003048	2.825814
С	-3.309584	-0.995453	2.804548
Н	1.833718	1.477779	1.283069
С	1.714600	3.004437	2.826305
С	3.307298	0.996683	2.807014
Н	-1.833850	1.476908	-1.283622
С	-1.713638	3.003377	-2.826960
С	-3.307221	0.996310	-2.807976
Н	1.834297	-1.478158	-1.281398
С	1.716344	-3.004735	-2.824808
С	3.309331	-0.997228	-2.803985

Н	-4.119400	-1.613829	2.358524
Н	-3.447487	-1.006359	3.910169
Н	-3.434553	0.049611	2.447083
Н	-2.495830	-3.657342	2.376399
Н	-0.722521	-3.365151	2.485667
Н	-1.774110	-3.122280	3.932347
Н	2.494162	3.658502	2.377321
Н	0.720735	3.366530	2.485218
Н	1.771098	3.124021	3.932840
Н	4.117540	1.614812	2.361424
Н	3.444305	1.007968	3.912740
Н	3.432442	-0.048519	2.450023
Н	-2.493225	3.657797	-2.378531
Н	-0.719835	3.365134	-2.485329
Н	-1.769420	3.122805	-3.933551
Н	-4.117323	1.614839	-2.362692
Н	-3.443899	1.007570	-3.913745
Н	-3.432948	-0.048809	-2.450947
Н	4.119080	-1.615622	-2.357869
Н	3.447240	-1.008286	-3.909601
Н	3.434393	0.047869	-2.446657
Н	2.495358	-3.658953	-2.375100
Н	0.722088	-3.366674	-2.484695
Н	1.773892	-3.124303	-3.931293
Н	-1.086652	0.869310	-5.041104
Н	1.090166	-0.872441	-5.039778
Н	1.086377	0.871891	5.040787
Н	-1.090690	-0.869563	5.040164

[Pt(*i*Pr₂Im)₂] (D_{2d}) Def2-SV(P)/BP86 Molecular formula: C₁₈H₃₂N₄Pt SCF-energy + E(vib0) [h]: -1042.5939860 E(vib0) [h]: 0.4669817 Imaginary frequencies: i1.54 Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1043.6870846

E(vib0) [h]: 0.4670754

Imaginary frequencies: none

Cartesian coordinates:

Ν	0.768043	0.768043	2.871856
С	0.485015	0.485015	4.203796
С	-0.485015	-0.485015	4.203796
Ν	-0.768043	-0.768043	2.871856
С	0.000000	0.000000	2.015153
Pt	0.000000	0.000000	0.000000
С	0.000000	0.000000	-2.015153
Ν	0.768043	-0.768043	-2.871856
С	0.485015	-0.485015	-4.203796
С	-0.485015	0.485015	-4.203796
Ν	-0.768043	0.768043	-2.871856
С	-1.753060	1.753060	-2.391662
С	1.753060	-1.753060	-2.391662
С	-1.753060	-1.753060	2.391662
С	1.753060	1.753060	2.391662
Н	-1.665429	1.665429	-1.282160
С	-1.364988	3.177044	-2.815890
С	-3.177044	1.364988	-2.815890
Н	1.665429	-1.665429	-1.282160
С	1.364988	-3.177044	-2.815890
С	3.177044	-1.364988	-2.815890
Н	-3.913058	2.068576	-2.368276
Н	-3.306992	1.400579	-3.922060
Н	-3.422726	0.338631	-2.467472
Н	-2.068576	3.913058	-2.368276
Η	-0.338631	3.422726	-2.467472
Н	-1.400579	3.306992	-3.922060
Н	3.913058	-2.068576	-2.368276
Η	3.306992	-1.400579	-3.922060
Н	3.422726	-0.338631	-2.467472
Н	2.068576	-3.913058	-2.368276
Н	0.338631	-3.422726	-2.467472
Н	1.400579	-3.306992	-3.922060
Н	-1.665429	-1.665429	1.282160

С	-1.364988	-3.177044	2.815890
С	-3.177044	-1.364988	2.815890
Н	1.665429	1.665429	1.282160
С	1.364988	3.177044	2.815890
С	3.177044	1.364988	2.815890
Н	2.068576	3.913058	2.368276
Н	0.338631	3.422726	2.467472
Н	1.400579	3.306992	3.922060
Н	3.913058	2.068576	2.368276
Н	3.306992	1.400579	3.922060
Н	3.422726	0.338631	2.467472
Н	-2.068576	-3.913058	2.368276
Н	-0.338631	-3.422726	2.467472
Н	-1.400579	-3.306992	3.922060
Н	-3.913058	-2.068576	2.368276
Н	-3.306992	-1.400579	3.922060
Н	-3.422726	-0.338631	2.467472
Н	-0.985619	0.985619	-5.040534
Н	0.985619	-0.985619	-5.040534
Н	-0.985619	-0.985619	5.040534
н	0.985619	0.985619	5.040534

[Pt(*i*Pr₂Im)₂] (D_{2h})

Def2-SV(P)/BP86 Molecular formula: C₁₈H₃₂N₄Pt SCF-energy + E(vib0) [h]: -1042.5924292 E(vib0) [h]: 0.4671047 Imaginary frequencies: i9.76 Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1043.6854082 E(vib0) [h]: 0.4669638 Imaginary frequencies: i13.98 Cartesian coordinates: N -1.085577 0.000000 2.875761 C -0.685913 0.000000 4.206562 С 0.685913 0.000000 4.206562 Ν 1.085577 0.000000 2.875761

С	0.000000	0.000000	2.015877
Pt	0.000000	0.000000	0.000000
С	0.000000	0.000000	-2.015877
Ν	1.085577	0.000000	-2.875761
С	0.685913	0.000000	-4.206562
С	-0.685913	0.000000	-4.206562
Ν	-1.085577	0.000000	-2.875761
С	-2.480318	0.000000	2.403181
С	2.480318	0.000000	2.403181
С	-2.480318	0.000000	-2.403181
С	2.480318	0.000000	-2.403181
Н	-2.359984	0.000000	1.293852
С	-3.209830	-1.281658	2.830379
С	-3.209830	1.281658	2.830379
Н	2.359984	0.000000	1.293852
С	3.209830	1.281658	2.830379
С	3.209830	-1.281658	2.830379
Н	-2.359984	0.000000	-1.293852
С	-3.209830	1.281658	-2.830379
С	-3.209830	-1.281658	-2.830379
Н	2.359984	0.000000	-1.293852
С	3.209830	-1.281658	-2.830379
С	3.209830	1.281658	-2.830379
Н	-4.231047	1.304640	2.390319
Н	-3.319526	1.349034	3.937134
Η	-2.659780	2.180938	2.477804
Н	-4.231047	-1.304640	2.390319
Η	-2.659780	-2.180938	2.477804
Н	-3.319526	-1.349034	3.937134
Н	4.231047	1.304640	2.390319
Н	2.659780	2.180938	2.477804
Н	3.319526	1.349034	3.937134
Н	4.231047	-1.304640	2.390319
Н	3.319526	-1.349034	3.937134
Н	2.659780	-2.180938	2.477804
Н	-4.231047	1.304640	-2.390319
Н	-2.659780	2.180938	-2.477804

Н	-3.319526	1.349034	-3.937134
Н	-4.231047	-1.304640	-2.390319
Н	-3.319526	-1.349034	-3.937134
Н	-2.659780	-2.180938	-2.477804
Н	4.231047	1.304640	-2.390319
Н	3.319526	1.349034	-3.937134
Н	2.659780	2.180938	-2.477804
Н	4.231047	-1.304640	-2.390319
Н	2.659780	-2.180938	-2.477804
Н	3.319526	-1.349034	-3.937134
Н	-1.393677	0.000000	-5.043269
Н	1.393677	0.000000	-5.043269
Н	1.393677	0.000000	5.043269
Н	-1.393677	0.000000	5.043269

[Ni(*i*Pr₂Im)₃]

Def2-SV(P)/BP86 Molecular formula: C₂₇H₄₈N₆Ni SCF-energy + E(vib0) [h]: -2892.9590237 E(vib0) [h]: 0.6982237 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -2894.7863913 E(vib0) [h]: 0.6952634 Imaginary frequencies: none Cartesian coordinates: 0.318033 0.123593 0.043341 Ni С -1.408599 0.434008 -0.683397 С 1.587255 1.534729 0.101577 С 0.773380 -1.594254 0.713395 Ν 1.130914 -1.968924 2.012251 С 1.395084 -3.332462 2.117810 С 1.212595 -3.866487 0.869261 Ν 0.837695 -2.815476 0.035624 0.359576 Ν -2.654884 -0.053367 С -3.704992 0.667009 -0.915305

С	-3.144731	0.945943	-2.134238
Ν	-1.767227	0.804528	-1.983045
Ν	1.523042	2.752934	0.784949
С	2.656890	3.536405	0.581465
С	3.481810	2.825960	-0.250564
Ν	2.830897	1.626545	-0.530505
С	-2.796518	-0.058901	1.343870
С	-3.571596	-1.380985	1.458874
С	-3.397246	1.056249	2.213251
С	-0.767247	1.059337	-3.023368
С	-0.799565	2.523949	-3.487340
С	-0.894844	0.066189	-4.188556
С	0.349345	3.143263	1.570750
С	-0.337036	4.383911	0.978610
С	0.692092	3.310760	3.058823
С	3.372702	0.533641	-1.342546
С	4.655731	-0.043894	-0.724483
С	3.559350	0.953980	-2.808439
С	1.254253	-0.992277	3.097869
С	2.696856	-0.911849	3.621082
С	0.233787	-1.254468	4.215984
С	0.490878	-2.936931	-1.382930
С	-0.724411	-3.854455	-1.589809
С	1.701738	-3.360117	-2.228131
Н	1.686430	-3.817737	3.057182
Н	1.322351	-4.900329	0.520928
Н	-4.756809	0.668707	-0.605188
Н	-3.619895	1.228492	-3.081336
Н	2.793840	4.524700	1.036208
Н	4.466707	3.085288	-0.657297
Η	-1.738636	-0.236462	1.649390
Η	-3.087858	-2.167452	0.839828
Н	-3.586607	-1.731678	2.514694

Η	-4.627931	-1.271167	1.123708
Н	-2.803923	1.991565	2.119127
Н	-3.404501	0.754361	3.284190
Н	-4.447999	1.284763	1.921213
Н	0.192024	0.875505	-2.484525
Н	-0.676643	3.207256	-2.619257
Н	0.027610	2.722287	-4.204355
Н	-1.756862	2.775405	-3.998436
Н	-0.847827	-0.981485	-3.819356
Н	-0.069746	0.216032	-4.919789
Н	-1.856755	0.194942	-4.735779
Н	-0.327666	2.265878	1.444230
Н	-0.594963	4.210980	-0.088625
Н	-1.277082	4.608297	1.530291
Н	0.313642	5.285814	1.040364
Н	1.170309	2.390207	3.458286
Н	-0.228766	3.509932	3.651119
Н	1.390846	4.162136	3.226884
Н	2.566927	-0.235690	-1.278261
Н	4.470203	-0.361649	0.324281
Н	4.999238	-0.931721	-1.300467
Н	5.485728	0.699171	-0.723600
Н	2.608798	1.349273	-3.227861
Н	3.878870	0.085020	-3.426037
Н	4.337255	1.745014	-2.914405
Н	1.004388	-0.032752	2.587121
Н	3.399590	-0.694738	2.787718
Н	2.791565	-0.098478	4.374547
Н	3.014663	-1.861752	4.108423
Н	-0.799001	-1.287433	3.805968
Н	0.278985	-0.448646	4.982284
Η	0.429578	-2.221550	4.733711
н	0.201651	-1.893193	-1.649212

Н	-1.584737	-3.500565	-0.981309
Н	-1.032752	-3.853508	-2.658741
Н	-0.502782	-4.907838	-1.303294
Н	2.554125	-2.664317	-2.069468
н	1.444098	-3.354044	-3.310615
Н	2.044092	-4.388170	-1.968947

[Pd(*i*Pr₂Im)₃]

Def2-SV(P)/BP86

Mol	Molecular formula: C ₂₇ H ₄₈ N ₆ Pd				
SCI	F-energy + E	(vib0) [h]: -18	512.5617837		
E(v	ib0) [h]: 0.69 [.]	78200			
Ima	ginary freque	encies: none			
Def	2-TZVPP/BP	86			
SCI	F-energy + E	(vib0) [h]: -18	514.2105427		
E(v	ib0) [h]: 0.69	51811			
Ima	ginary freque	encies: none			
Car	tesian coordi	nates:			
Pd	0.323606	0.123363	0.042990		
С	-1.572456	0.460379	-0.753588		
С	1.712904	1.673921	0.099139		
С	0.816190	-1.761423	0.782312		
Ν	1.152198	-2.128845	2.081203		
С	1.414033	-3.492870	2.192293		
С	1.249448	-4.026469	0.941184		
Ν	0.887404	-2.973447	0.103629		
Ν	-2.809544	0.379004	-0.122354		
С	-3.861741	0.686143	-0.982332		
С	-3.302012	0.969150	-2.200515		
Ν	-1.923983	0.831718	-2.047137		
Ν	1.643711	2.883013	0.783682		
С	2.773150	3.672281	0.575912		
С	3.594875	2.966831	-0.263307		
Ν	2.944980	1.765713	-0.540221		
С	-2.955731	-0.025311	1.281106		
С	-3.778886	-1.316859	1.408067		

С	-3.511417	1.120156	2.141075
С	-0.927890	1.078952	-3.096493
С	-0.999845	2.527181	-3.605055
С	-1.036061	0.045415	-4.227912
С	0.481441	3.266777	1.593620
С	-0.190024	4.534246	1.043016
С	0.847711	3.386613	3.080751
С	3.486926	0.683078	-1.370086
С	4.795646	0.131289	-0.783452
С	3.629380	1.116649	-2.837116
С	1.252106	-1.156707	3.176558
С	2.679145	-1.099070	3.743499
С	0.193105	-1.417816	4.258442
С	0.573965	-3.098067	-1.324912
С	-0.617826	-4.040089	-1.556338
С	1.813994	-3.497809	-2.138495
Н	1.691985	-3.977827	3.135850
Н	1.362666	-5.060240	0.593791
Н	-4.913406	0.683835	-0.671856
Н	-3.777262	1.252546	-3.147331
Н	2.908711	4.660235	1.031732
Н	4.576187	3.229895	-0.676203
Н	-1.904536	-0.238729	1.586064
Η	-3.330941	-2.124770	0.789700
Η	-3.795699	-1.659961	2.466144
Η	-4.834598	-1.171444	1.084135
Η	-2.881638	2.030185	2.036542
Η	-3.525703	0.828157	3.214663
Н	-4.553581	1.386075	1.849999
Н	0.037906	0.935870	-2.557471
Н	-0.896716	3.241351	-2.759437
Н	-0.175676	2.723104	-4.326033
Н	-1.960624	2.738553	-4.127751
Н	-0.960753	-0.987390	-3.823744
Н	-0.216688	0.191578	-4.966252
Н	-2.002699	0.132715	-4.775068
Н	-0.212012	2.404667	1.453133

Н	-0.460371	4.397176	-0.026392
Н	-1.121685	4.754121	1.610198
Н	0.472339	5.425925	1.126065
Н	1.314858	2.446527	3.446283
Н	-0.062316	3.582762	3.690329
Н	1.562503	4.221575	3.263515
Н	2.700339	-0.104034	-1.292594
Н	4.642631	-0.191563	0.269011
Н	5.140323	-0.749097	-1.369798
Н	5.612527	0.888643	-0.802606
Н	2.660304	1.493135	-3.230503
Н	3.951160	0.257333	-3.466690
Н	4.387952	1.924247	-2.957272
Н	1.029319	-0.189367	2.668263
Н	3.410240	-0.886594	2.933755
Н	2.759536	-0.290389	4.503577
Н	2.970407	-2.054384	4.237033
Н	-0.825550	-1.435043	3.813850
Н	0.222179	-0.617924	5.031605
Н	0.361509	-2.390820	4.774732
Н	0.270264	-2.061423	-1.601447
Н	-1.497960	-3.704648	-0.966033
Н	-0.902909	-4.042688	-2.631562
Н	-0.381879	-5.089966	-1.268016
Н	2.647058	-2.783924	-1.959199
Н	1.582568	-3.496493	-3.226888
Н	2.170429	-4.518883	-1.870691

[Pt(*i*Pr₂Im)₃]

Def2-SV(P)/BP86 Molecular formula: $C_{27}H_{48}N_6Pt$ SCF-energy + E(vib0) [h]: -1504.0702015 E(vib0) [h]: 0.6979245 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1505.6997547 E(vib0) [h]: 0.6952903

Imaginary frequencies: none

Cartesian coordinates:

Pt	0.327162	0.122609	0.049078
С	-1.553561	0.459648	-0.737394
С	1.703175	1.660318	0.094861
С	0.810479	-1.747291	0.777467
Ν	1.081265	-2.131084	2.090971
С	1.363894	-3.492084	2.189353
С	1.280491	-4.005964	0.923246
Ν	0.944818	-2.948042	0.080666
Ν	-2.788190	0.436397	-0.088928
С	-3.839559	0.722238	-0.957449
С	-3.286702	0.930951	-2.192437
Ν	-1.909735	0.773052	-2.048804
Ν	1.660680	2.849555	0.822443
С	2.780338	3.645484	0.588157
С	3.564907	2.970363	-0.307966
Ν	2.908908	1.775401	-0.597128
С	-2.937385	0.091711	1.329198
С	-3.783558	-1.178835	1.509424
С	-3.469555	1.280842	2.143776
С	-0.923875	0.964601	-3.118227
С	-0.977743	2.395271	-3.677453
С	-1.064367	-0.106374	-4.210587
С	0.530013	3.217652	1.681308
С	-0.155841	4.499583	1.183442
С	0.949109	3.301832	3.157057
С	3.429670	0.719084	-1.471591
С	4.761578	0.163018	-0.943400
С	3.519292	1.190312	-2.931371
С	1.118226	-1.179879	3.207432
С	2.520954	-1.106393	3.831294
С	0.022866	-1.483500	4.241380
С	0.697787	-3.064286	-1.360676
С	-0.475113	-4.014195	-1.651555
С	1.976417	-3.448064	-2.120716
Н	1.599718	-3.987692	3.138586

Н	1.431905	-5.031072	0.565519
Н	-4.887693	0.756322	-0.637873
Н	-3.764954	1.176860	-3.147968
Н	2.933211	4.619022	1.068376
Н	4.526881	3.248753	-0.754413
Н	-1.890291	-0.129696	1.641114
Н	-3.352913	-2.018467	0.921971
Н	-3.802999	-1.479595	2.580389
Н	-4.837742	-1.026835	1.183479
Н	-2.823713	2.174398	2.002125
Н	-3.488018	1.032574	3.228292
Н	-4.507053	1.554184	1.843147
Н	0.046718	0.824964	-2.587780
Н	-0.851282	3.137102	-2.859425
Н	-0.160093	2.551012	-4.415645
Н	-1.941685	2.604435	-4.195132
Н	-1.002568	-1.125657	-3.771490
Н	-0.252642	-0.001054	-4.964366
Н	-2.036334	-0.020860	-4.748565
Н	-0.172181	2.362176	1.546243
Н	-0.463287	4.388232	0.121106
Н	-1.066383	4.708975	1.787777
Н	0.512050	5.387370	1.264119
Н	1.425220	2.352193	3.484543
Н	0.062659	3.488214	3.803283
Н	1.673991	4.129649	3.332733
Н	2.653183	-0.076784	-1.387847
Н	4.646936	-0.186758	0.105256
Н	5.092278	-0.699760	-1.563267
Н	5.572115	0.926850	-0.971689
Н	2.534836	1.567860	-3.283561
Н	3.827883	0.350542	-3.593022
Н	4.266285	2.008043	-3.055464
Н	0.897470	-0.206330	2.711096
Н	3.277985	-0.862044	3.055412
Н	2.555164	-0.313843	4.611849
Н	2.812034	-2.066750	4.314961

Н	-0.977178	-1.512151	3.757035
Н	0.005492	-0.700062	5.031547
Н	0.191051	-2.463688	4.744080
Н	0.397143	-2.029183	-1.644773
Н	-1.383284	-3.689357	-1.099217
Н	-0.711696	-4.012833	-2.738658
Н	-0.243454	-5.063855	-1.358973
Н	2.794799	-2.728883	-1.900233
Н	1.793580	-3.443031	-3.218284
Н	2.329215	-4.467723	-1.842962

[Ni(*i*Pr₂Im)₂(η²-C₂H₄)]

Def2-SV(P)/BP86			
Мо	lecular formu	la: C₂₀H₃₀N₄N	Ni
SC	F-energy + E	(vib0) [h]: -2	509.9528002
E(v	ib0) [h]: 0.51	83527	
Ima	iginary freque	encies: none	
Def	2-TZVPP/BP	86	
SC	F-energy + E	(vib0) [h]: -2	511.3436523
E(v	ib0) [h]: 0.51	63969	
Ima	iginary freque	encies: none	
Car	tesian coord	inates:	
Ni	-1.101719	0.238040	-0.393959
С	0.175276	1.586862	0.006041
С	-2.909007	-0.114901	-1.120094
С	-2.593057	1.283237	-1.167406
С	-0.490957	-1.502030	0.064419
Ν	-0.231914	-2.587843	-0.763797
С	0.127639	-3.723641	-0.042078
С	0.103899	-3.372052	1.281379
Ν	-0.264912	-2.029733	1.328870
С	2.032277	2.954819	-0.102855
С	1.205992	3.466905	0.861935
Ν	0.091544	2.632846	0.917756

Ν	1.400355	1.819409	-0.604837
С	-0.395215	-2.538172	-2.223724
С	-1.540964	-3.450943	-2.687493
С	0.925255	-2.835344	-2.949924
С	-0.461523	-1.247313	2.555461
С	0.804944	-1.230364	3.423308
С	-1.707037	-1.719473	3.321287
С	-1.076574	2.851632	1.782383
С	-1.807743	4.151844	1.413871
С	-0.696112	2.792649	3.269668
С	1.910140	0.976472	-1.693461
С	3.299187	0.410054	-1.365041
С	1.868201	1.720649	-3.037277
Η	-2.932052	-0.701470	-2.061517
Η	-3.627217	-0.490599	-0.362378
Η	-3.092639	1.979876	-0.462999
Η	-2.347803	1.759095	-2.139516
Η	0.373307	-4.681331	-0.515311
Η	0.320103	-3.967318	2.175977
Η	3.005806	3.308419	-0.461209
Η	1.328758	4.346339	1.504381
Η	-0.687387	-1.480336	-2.407052
Η	-2.478544	-3.203412	-2.145776
Η	-1.722608	-3.317541	-3.776846
Η	-1.307938	-4.526041	-2.512036
Η	1.733236	-2.156253	-2.601248
Η	0.801400	-2.695663	-4.046355
Η	1.260891	-3.883963	-2.781630
н	-0.649546	-0.221526	2.163931

Н	1.677636	-0.865458	2.839591
Н	0.663995	-0.554868	4.295663
Н	1.050136	-2.240751	3.822770
Н	-2.602581	-1.685835	2.663612
Н	-1.894873	-1.064001	4.200466
Н	-1.587580	-2.762345	3.694523
Н	-1.735376	1.990041	1.535449
Н	-2.074767	4.156827	0.335721
Н	-2.744796	4.246367	2.005445
Н	-1.181994	5.049040	1.624204
Н	-0.172169	1.842016	3.508995
Н	-1.608039	2.857326	3.902819
Н	-0.026935	3.635049	3.557413
Н	1.172700	0.142488	-1.722703
Н	3.282518	-0.138217	-0.398395
Н	3.622640	-0.297341	-2.160038
Η	4.071128	1.210637	-1.298696
Η	0.839590	2.086794	-3.245305
Η	2.172129	1.044012	-3.866374
Η	2.557398	2.595936	-3.042712

$[Pd(iPr_2Im)_2(\eta^2-C_2H_4)]$

Def2-SV(P)/BP86 Molecular formula: $C_{20}H_{36}N_4Pd$ SCF-energy + E(vib0) [h]: -1129.5575838 E(vib0) [h]: 0.5181743 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1130.7684613 E(vib0) [h]: 0.5163374 Imaginary frequencies: none

Cartesian coordinates:

Pd	-1.183018	0.252403	-0.434381
С	0.235977	1.712732	0.011745
С	-3.136986	-0.073043	-1.245994
С	-2.836262	1.328715	-1.264066
С	-0.487044	-1.641765	0.086557
Ν	-0.230128	-2.723352	-0.737188
С	0.120614	-3.859321	-0.011526
С	0.092078	-3.502719	1.311028
Ν	-0.271598	-2.158597	1.350978
С	2.079075	3.085679	-0.111527
С	1.254117	3.595713	0.856297
Ν	0.146311	2.753450	0.919005
Ν	1.450759	1.944971	-0.606490
С	-0.381324	-2.671473	-2.200581
С	-1.535333	-3.570992	-2.668932
С	0.942956	-2.985733	-2.912267
С	-0.463709	-1.368680	2.576661
С	0.800701	-1.367085	3.447781
С	-1.716798	-1.827619	3.337817
С	-1.019897	2.959645	1.793029
С	-1.769538	4.247743	1.420375
С	-0.623128	2.912426	3.276317
С	1.964903	1.096805	-1.692640
С	3.368039	0.562040	-1.370964
С	1.895668	1.827754	-3.042335
Η	-3.127847	-0.645822	-2.193947
Η	-3.845927	-0.472112	-0.494783
Η	-3.328861	2.002352	-0.535524
Η	-2.582894	1.823330	-2.221983
Η	0.362844	-4.820081	-0.480361
Η	0.301891	-4.095519	2.208807
Н	3.048995	3.443778	-0.475252
Н	1.373867	4.478430	1.494861
Н	-0.659191	-1.609904	-2.388779
Η	-2.474752	-3.303478	-2.139725
Н	-1.703175	-3.442236	-3.760954

Н	-1.321113	-4.648397	-2.483646
Н	1.754891	-2.314082	-2.557819
Н	0.830418	-2.845881	-4.009816
Н	1.265634	-4.037845	-2.740236
Н	-0.638496	-0.340776	2.184912
Н	1.682215	-1.023700	2.864251
Н	0.667678	-0.679159	4.311500
Н	1.026538	-2.376914	3.859843
Н	-2.609871	-1.779619	2.677949
Н	-1.897618	-1.170605	4.217147
Н	-1.611418	-2.872303	3.710301
Н	-1.670283	2.087766	1.556688
Н	-2.051331	4.236593	0.345874
Н	-2.699962	4.336900	2.022947
Н	-1.152341	5.154834	1.613112
Н	-0.086887	1.968236	3.514921
Н	-1.530242	2.968987	3.916976
Н	0.038396	3.763926	3.555190
Н	1.244549	0.247672	-1.707098
Н	3.375533	0.034923	-0.392441
Н	3.689574	-0.158168	-2.155069
Н	4.128697	1.375356	-1.335424
Н	0.857066	2.167101	-3.245291
Н	2.207612	1.148962	-3.866551
Н	2.565875	2.717357	-3.061978

$[Pt(iPr_2Im)_2(\eta^2-C_2H_4)]$

Def2-SV(P)/BP86 Molecular formula: $C_{20}H_{36}N_4Pt$ SCF-energy + E(vib0) [h]: -1121.0661366 E(vib0) [h]: 0.5188833 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1122.2588437 E(vib0) [h]: 0.5168294 Imaginary frequencies: none Cartesian coordinates:

Pt	-1.200379	0.256486	-0.436493
С	0.403199	1.570003	-0.393462
С	-3.225043	-0.039610	-1.049029
С	-2.773445	1.288253	-1.448851
С	-0.631551	-1.499491	0.505772
Ν	0.245083	-2.475292	0.063084
С	0.266465	-3.576793	0.915486
С	-0.606051	-3.301111	1.934508
Ν	-1.139700	-2.041101	1.675222
С	2.043732	3.034102	-1.066120
С	1.925103	3.151611	0.293266
Ν	0.933778	2.255174	0.686189
Ν	1.119361	2.072945	-1.467398
С	0.999413	-2.365513	-1.195197
С	0.422090	-3.304428	-2.265575
С	2.504512	-2.567412	-0.966958
С	-2.181595	-1.385876	2.483788
С	-1.703768	-1.143404	3.923143
С	-3.502324	-2.168227	2.418568
С	0.447421	2.084384	2.063877
С	-0.363334	3.308175	2.516457
С	1.594161	1.734973	3.023827
С	0.864101	1.683661	-2.864184
С	2.119535	1.085071	-3.516498
С	0.280308	2.857520	-3.665560
Н	-3.365691	-0.814469	-1.829233
Н	-3.966200	-0.125870	-0.227991
Н	-3.169419	2.172786	-0.910684
Н	-2.598267	1.489959	-2.525428
Н	0.892261	-4.458671	0.737553
Η	-0.879757	-3.896740	2.812882
Η	2.708461	3.552635	-1.766383
Н	2.465348	3.793164	0.998595
Н	0.813231	-1.313208	-1.507167
Н	-0.659012	-3.097462	-2.418274
Н	0.946247	-3.154493	-3.235327
Н	0.538516	-4.374364	-1.978048

Н	2.885628	-1.869099	-0.190639
Н	3.060693	-2.374265	-1.910454
Н	2.744673	-3.607636	-0.649412
Н	-2.323324	-0.408166	1.969842
Н	-0.750776	-0.571249	3.936449
Н	-2.466469	-0.561711	4.486039
Н	-1.540680	-2.098677	4.472367
Н	-3.819445	-2.304308	1.362812
Н	-4.303443	-1.612024	2.953299
Н	-3.411458	-3.171963	2.893046
Н	-0.239664	1.212803	1.980231
Н	-1.199108	3.500649	1.810034
Н	-0.794064	3.134881	3.527604
Н	0.270336	4.222947	2.569346
Н	2.153293	0.843103	2.666629
Н	1.187774	1.507737	4.033761
Н	2.315605	2.575796	3.139884
Н	0.083180	0.895476	-2.769018
Н	2.515223	0.236023	-2.917573
Н	1.878270	0.709849	-4.535160
Н	2.931993	1.839910	-3.622751
Н	-0.633991	3.247911	-3.170288
Н	0.004235	2.522090	-4.689435
Н	1.011235	3.692153	-3.767669

$[Ni(iPr_2Im)_2(\eta^2 MeCCMe)]$

Def2-SV(P)/BP86 Molecular formula: $C_{22}H_{38}N_4Ni$ SCF-energy + E(vib0) [h]: -2587.2562652 E(vib0) [h]: 0.5499715 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -2588.7320955 E(vib0) [h]: 0.5484550 Imaginary frequencies: none Cartesian coordinates: N 0.008193 -0.285420 0.240843

С	-0.070014	-0.025246	1.601847
Ν	1.268205	0.100984	1.959984
С	2.119260	-0.077015	0.871997
С	1.323247	-0.317320	-0.215879
Ni	-1.620682	0.193937	2.690274
С	-2.603194	-1.439112	2.750382
Ν	-3.907577	-1.685783	2.334393
С	-4.299943	-2.996541	2.594094
С	-3.236732	-3.614359	3.196329
Ν	-2.222522	-2.664047	3.280942
С	-4.771085	-0.667301	1.716678
С	-5.076883	-1.005704	0.248967
С	-0.915438	-2.880122	3.914164
С	-1.059495	-3.072062	5.431692
С	1.719967	0.414768	3.324463
С	2.488902	-0.761576	3.946396
С	-1.182407	-0.428524	-0.606407
С	-1.333049	0.770477	-1.555635
С	-2.583580	1.395801	3.817196
С	-3.727054	1.564696	4.760261
С	-1.586467	2.017810	3.250229
С	-0.897883	3.336407	3.139134
С	-6.053291	-0.450931	2.534871
С	-0.142912	-4.019622	3.234745
С	-1.194576	-1.778949	-1.336930
С	2.538763	1.714973	3.356778
Η	-5.290802	-3.386744	2.334806
Н	-3.130535	-4.640406	3.566953
Н	3.210877	-0.021796	0.951575
Η	1.591074	-0.502409	-1.262410
Η	-3.550198	2.389557	5.493007
Η	-4.669089	1.819730	4.216981
Η	-3.941328	0.639442	5.342825
Н	-1.585115	4.190517	3.355521
Н	-0.052756	3.417398	3.864979
Н	-0.459905	3.505994	2.128921
Н	-4.148676	0.254742	1.762902

Н	-5.813933	-0.233987	3.596886
Н	-6.626249	0.410288	2.126014
Н	-6.719754	-1.342799	2.500945
Н	-4.139762	-1.154393	-0.328733
Н	-5.649546	-0.178879	-0.225964
Н	-5.686918	-1.933494	0.161013
Н	-0.393294	-1.915672	3.724280
Н	-0.042524	-3.831159	2.143967
Н	0.878458	-4.102940	3.667173
Н	-0.644738	-5.004339	3.374096
Н	-1.594936	-2.208717	5.882162
Н	-0.057732	-3.147181	5.909700
Н	-1.622998	-4.001108	5.677491
Н	-2.011969	-0.402535	0.135948
Н	-1.107023	-2.618295	-0.613416
Н	-2.146203	-1.903284	-1.899043
Н	-0.361370	-1.863773	-2.071682
Н	-1.352604	1.720477	-0.978925
Н	-2.282454	0.692757	-2.130271
Н	-0.496165	0.823572	-2.289383
Н	0.766174	0.569984	3.878069
Н	1.979230	2.546725	2.879956
Н	2.757350	2.001365	4.408997
Н	3.514427	1.603092	2.830773
Н	1.882491	-1.691944	3.922805
Н	2.742329	-0.538995	5.006350
Н	3.442993	-0.959104	3.405902

[Pd(*i*Pr₂Im)₂(η²-Me<u>CC</u>Me)]

Def2-SV(P)/BP86 Molecular formula: $C_{22}H_{38}N_4Pd$ SCF-energy + E(vib0) [h]: -1206.8535287 E(vib0) [h]: 0.5498141 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1208.1512566 E(vib0) [h]: 0.5480415

Imaginary frequencies: none

Cartesian coordinates:

Ν	-1.350858	0.368064	-1.936397
С	-0.303673	0.735339	-1.111532
Ν	0.577747	1.347398	-1.985690
С	0.092906	1.358726	-3.291412
С	-1.130003	0.742760	-3.259863
Pd	-0.165951	0.611631	0.964417
С	0.283836	-1.337840	1.548259
Ν	-0.550897	-2.257967	2.158311
С	0.133471	-3.409808	2.539468
С	1.439673	-3.229235	2.169079
Ν	1.511167	-1.974380	1.567810
С	-1.983533	-2.017804	2.395479
С	-2.850719	-3.009895	1.605354
С	2.747057	-1.345982	1.076084
С	3.658463	-0.937370	2.243472
С	1.859027	1.936027	-1.563682
С	3.045977	1.181925	-2.182715
С	-2.576731	-0.272682	-1.436669
С	-3.750787	0.718141	-1.427572
С	-0.291952	1.741792	2.711742
С	-0.139579	1.666147	4.190502
С	-0.557633	2.520827	1.706113
С	-0.933648	3.901986	1.297879
С	-2.309846	-2.019104	3.896536
С	3.455488	-2.236004	0.044485
С	-2.887833	-1.563934	-2.206511
С	1.903959	3.443678	-1.854660
Н	-0.350987	-4.258547	3.035769
Н	2.306846	-3.889102	2.286883
Н	0.645499	1.793198	-4.132365
Н	-1.844665	0.545798	-4.067099

Н	-0.313136	2.653097	4.686423
Н	-0.851285	0.937445	4.645035
Н	0.879374	1.319863	4.482091
Н	-1.070198	4.581723	2.175065
Н	-0.161438	4.364272	0.638847
Н	-1.882379	3.914954	0.712527
Н	-2.136754	-0.988500	1.998209
Н	-1.671028	-1.288737	4.437147
Н	-3.372749	-1.733275	4.055933
Н	-2.159144	-3.023925	4.353417
Н	-2.592133	-2.990074	0.524949
Н	-3.926958	-2.749993	1.712340
Н	-2.719789	-4.053603	1.972172
Н	2.376186	-0.423010	0.576699
Н	2.767207	-2.505488	-0.785785
Н	4.328635	-1.699189	-0.386499
Н	3.838696	-3.178527	0.498201
Н	3.112185	-0.267596	2.941651
Н	4.550939	-0.392059	1.864330
Н	4.017947	-1.824600	2.812937
Н	-2.316798	-0.522720	-0.383918
Н	-2.019134	-2.257426	-2.186643
Н	-3.757343	-2.081497	-1.745766
Н	-3.149055	-1.364713	-3.271050
Н	-3.490613	1.617472	-0.828827
Н	-4.651353	0.247511	-0.974777
Н	-4.019455	1.045144	-2.458135
Н	1.856159	1.785066	-0.459977
Н	1.033896	3.957611	-1.393646
Н	2.831884	3.885648	-1.430000
Н	1.899536	3.656181	-2.948023
Н	2.991349	0.096547	-1.949569
Н	4.005141	1.577457	-1.781955

H 3.072323 1.295370 -3.290756

$[Pt(iPr_2Im)_2(\eta^2-Me\underline{CC}Me)]$

Def2-SV(P)/BP86 Molecular formula: $C_{22}H_{38}N_4Pt$ SCF-energy + E(vib0) [h]: -1198.3638609 E(vib0) [h]: 0.5501489 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1199.6447138 E(vib0) [h]: 0.5484328 Imaginary frequencies: none Cartesian coordinates: Pt -0.197025 0.743825 1.069936

С	-0.128568	0.764440	-1.004017
С	-0.416253	1.840558	2.828305
С	-0.546208	2.661784	1.808434
С	0.106067	-1.263209	1.499171
Ν	-0.727385	-2.110175	2.215069
С	-0.162756	-3.372200	2.378187
С	1.058612	-3.341633	1.760217
Ν	1.205742	-2.062066	1.230855
Ν	0.732971	1.489284	-1.814225
С	0.435429	1.320784	-3.163696
С	-0.639291	0.475092	-3.229030
Ν	-0.967510	0.145552	-1.916367
С	-0.421716	1.816995	4.319636
С	-0.811393	4.093252	1.484601
С	-2.028838	-1.703134	2.773669
С	-2.032551	-1.824931	4.305014
С	-3.184410	-2.478403	2.122741

С	2.411963	-1.574188	0.543889
С	2.744423	-2.434115	-0.683440
С	3.587282	-1.446822	1.525117
С	-2.108904	-0.697244	-1.525733
С	-1.997511	-2.103896	-2.130785
С	-3.440373	-0.004772	-1.853410
С	1.797578	2.369032	-1.300824
С	1.557783	3.826698	-1.723557
С	3.188821	1.862593	-1.711500
Н	-0.665755	-4.185835	2.913011
Н	1.822082	-4.121449	1.659835
Н	1.002529	1.808089	-3.964960
Н	-1.187282	0.090525	-4.096665
Η	-0.511448	2.841073	4.758310
Η	-1.269352	1.212014	4.720458
Η	0.507749	1.356400	4.728603
Η	-1.024616	4.700686	2.398255
Η	0.056514	4.568395	0.968713
Η	-1.680336	4.205767	0.795095
Η	-2.101180	-0.627551	2.495312
Η	-1.180793	-1.265054	4.745761
Н	-2.975170	-1.403379	4.717700
Η	-1.965368	-2.886082	4.638270
Η	-3.166791	-2.367190	1.016906
Η	-4.159629	-2.092635	2.492452
Η	-3.139233	-3.565652	2.361323
Н	2.113551	-0.555644	0.211210
Н	1.873763	-2.496990	-1.372035
Н	3.594602	-1.985855	-1.243229

Н	3.042282	-3.470042	-0.402153
Н	3.308844	-0.791641	2.378488
Н	4.468134	-0.997175	1.015908
Н	3.897849	-2.438096	1.928127
Н	-2.002597	-0.762227	-0.420184
Н	-1.026937	-2.574556	-1.861663
Н	-2.813951	-2.752057	-1.743013
Н	-2.082863	-2.089670	-3.241314
Н	-3.485648	0.995296	-1.371435
Н	-4.292800	-0.611239	-1.475330
Н	-3.578917	0.126108	-2.951046
Н	1.685124	2.288462	-0.196008
Η	0.541840	4.159371	-1.423288
Н	2.299660	4.492226	-1.230557
Н	1.662201	3.963743	-2.824446
Н	3.344882	0.812263	-1.383410
Н	3.977260	2.491125	-1.242587
Н	3.335426	1.905074	-2.815068

$[Pt(iPr_2Im)_2(\eta^2-H_2\underline{CC}CHMe)]]$

Def2-SV(P)/BP86 Molecular formula: $C_{22}H_{38}N_4Pt$ SCF-energy + E(vib0) [h]: -1198.3706547 E(vib0) [h]: 0.5505885 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1199.6516101 E(vib0) [h]: 0.5485398 Imaginary frequencies: none Cartesian coordinates: C 1.117431 -2.607294 -0.736071

Ν	-1.629502	1.425947	-1.222438
С	-1.721308	2.771931	-1.568918
С	-0.544382	3.358752	-1.187531
Ν	0.234217	2.356255	-0.613631
С	-0.413646	1.134868	-0.628288
Ν	-0.860769	-1.165738	2.802071
С	-0.471576	-1.378581	4.122744
С	0.888236	-1.222703	4.159982
С	0.220622	-0.887336	1.987776
Ν	1.292532	-0.924333	2.861474
Pt	0.321062	-0.726787	-0.098677
Н	2.149419	-2.865740	-0.414489
Н	0.415733	-3.462792	-0.633807
С	1.187572	-1.535416	-3.134439
С	0.941006	-0.307439	-3.973115
С	1.606490	2.536287	-0.113388
С	1.667614	3.624930	0.967742
С	2.586407	2.780080	-1.270871
С	-2.668073	0.416252	-1.495096
С	-2.885779	0.231808	-3.003926
С	-3.968533	0.745994	-0.747332
С	2.693812	-0.752266	2.439409
С	3.486506	-2.055696	2.619057
С	3.346000	0.444711	3.146904
С	-2.236714	-1.305236	2.299654
С	-3.213339	-0.421544	3.089151
С	-2.658574	-2.782432	2.262229
Н	-2.604543	3.204503	-2.052254
Н	-0.207970	4.397342	-1.279804
Н	-1.179402	-1.618002	4.924041
Н	1.586941	-1.297845	5.000902
Η	1.634397	-2.400343	-3.673180
Н	0.509492	0.511330	-3.356972
Н	1.884609	0.073757	-4.435301
Н	0.244345	-0.509241	-4.823654
Н	1.839226	1.549345	0.343873
Н	0.953666	3.407669	1.791599

Н	2.691572	3.676581	1.398053
Н	1.429879	4.633283	0.558607
Н	2.526875	1.950853	-2.008030
Н	3.629454	2.831543	-0.888140
Н	2.369321	3.737302	-1.797693
Н	-2.226152	-0.520103	-1.086174
Н	-1.930721	-0.027446	-3.506612
Н	-3.607599	-0.594567	-3.184883
Н	-3.299391	1.151931	-3.476299
Н	-3.783514	0.882105	0.340141
Н	-4.703274	-0.078830	-0.876264
Н	-4.441151	1.677250	-1.134681
Н	2.607435	-0.539348	1.349760
Н	2.990013	-2.889069	2.077984
Н	4.513037	-1.937508	2.207960
Н	3.581314	-2.337538	3.692494
Н	2.753183	1.371669	2.990528
Н	4.369751	0.613703	2.746505
Н	3.440354	0.276303	4.244009
Н	-2.165286	-0.932829	1.254604
Н	-2.880717	0.639095	3.089033
Н	-4.224646	-0.469484	2.630132
Н	-3.315551	-0.753969	4.147204
Н	-1.939306	-3.373636	1.655887
Н	-3.667328	-2.884554	1.804457
Н	-2.702185	-3.221632	3.284978

$[Pt(iPr_2Im)_2(\eta^2-H_2C\underline{CC}HMe)]$

Def2-SV(P)/BP86 Molecular formula: $C_{22}H_{38}N_4Pt$ SCF-energy + E(vib0) [h]: -1198.3676969 E(vib0) [h]: 0.5500311 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1199.6480111 E(vib0) [h]: 0.5480542 Imaginary frequencies: none

С	0.826415	1.250712	-0.527333
С	-0.418555	-1.843278	0.188663
Ν	-0.068627	-3.044871	-0.402359
С	-0.021544	-4.082267	0.525875
С	-0.351370	-3.539881	1.738829
Ν	-0.584792	-2.184139	1.519168
Ν	1.947459	1.358161	-1.328270
С	2.700765	2.485854	-1.009463
С	2.055891	3.108720	0.025495
Ν	0.923518	2.349013	0.307454
С	-2.107437	1.140823	-1.816633
С	-2.814544	-0.087793	-1.537751
С	-2.241668	2.299138	-2.490893
Н	-3.179278	2.560222	-3.026206
Pt	-0.808831	-0.008710	-0.743459
С	0.199280	-3.198721	-1.841982
С	-0.772243	-4.197360	-2.487995
С	1.671474	-3.561129	-2.093334
С	-0.098652	2.707131	1.307124
С	-0.844876	3.986107	0.900812
С	0.505495	2.784185	2.717231
С	2.221175	0.451438	-2.455686
С	3.675397	-0.040498	-2.441378
С	1.816579	1.101441	-3.787685
С	-1.023563	-1.230774	2.550943
С	-0.030401	-1.178601	3.721263
С	-2.463695	-1.526264	2.996649
Н	0.238989	-5.112399	0.257822
Н	-0.437566	-4.009658	2.725191
Н	3.626368	2.753314	-1.531195
Н	2.315767	4.018583	0.578033
Н	-3.568225	-0.034555	-0.720911
С	-3.230704	-1.035873	-2.656836
Н	-1.422828	3.042890	-2.548304
Н	-0.008252	-2.183306	-2.249666
Н	-1.825222	-3.901479	-2.296098

Н	-0.616075	-4.220898	-3.588601
Н	-0.619778	-5.231957	-2.104588
Н	2.349807	-2.819618	-1.619129
Н	1.882034	-3.580366	-3.185076
Н	1.921157	-4.567262	-1.685632
Н	-0.815234	1.856817	1.253118
Н	-1.314434	3.857187	-0.098313
Н	-1.650426	4.205514	1.635604
Н	-0.164463	4.867672	0.869463
Н	1.033414	1.841330	2.978419
Н	-0.297811	2.953327	3.467324
Н	1.230482	3.624526	2.812796
Н	1.539291	-0.406118	-2.265486
Н	3.938580	-0.488804	-1.458492
Н	3.819734	-0.814564	-3.226366
Н	4.397800	0.780055	-2.654008
Н	0.745755	1.397737	-3.759678
Н	1.960411	0.384906	-4.626511
Н	2.432170	2.005100	-4.000982
Н	-1.012282	-0.255606	2.016171
Н	0.998179	-0.962137	3.359453
Н	-0.323996	-0.378436	4.435196
Н	-0.004722	-2.136671	4.288620
Н	-3.148297	-1.523093	2.121448
Н	-2.811883	-0.751047	3.714237
Н	-2.541646	-2.516045	3.501406
Н	-3.429115	-2.063733	-2.273921
Н	-2.447904	-1.109613	-3.443879
Н	-4.168848	-0.688479	-3.159309

trans-[Ni(*i*Pr₂Im)₂(CH₂C(O)Ph)H]

Def2-SV(P)/BP86 Molecular formula: C₂₆H₄₀N₄NiO SCF-energy + E(vib0) [h]: -2815.9372178 E(vib0) [h]: 0.5996325 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -2817.6697979 E(vib0) [h]: 0.5996325 Imaginary frequencies: none Cartesian coordinates: C -3.104425 -5.582933 2.595813 C -2.107746 -4.741830 2.052833 C -2.334970 -4.168782 0.781456 C -3.525012 -4.424635 0.078970 C -4.507678 -5.265196 0.632556 C -4.291216 -5.846001 1.895311 С -0.830650 -4.536690 2.863483 0 -0.830128 -4.918324 4.052284 С 0.320271 -3.901704 2.214343 Ni 0.300779 -1.892208 2.632270 С 0.211912 -2.088884 4.510711 Ν -0.880377 -1.925011 5.325524 С -0.536529 -2.053927 6.667771 С 0.808285 -2.309249 6.705560 N 1.246366 -2.322728 5.383912 С -2.238618 -1.667898 4.817131 С -2.673384 -0.227200 5.123690 С 2.602935 -2.683182 4.941640 С 3.652334 -1.704458 5.485327 С 0.416718 -1.285089 0.854450 Ν -0.463525 -0.436322 0.213283 С -0.046398 -0.149236 -1.082465 1.128629 -0.826541 С -1.276355 Ν 1.393734 -1.514127 -0.093905 С -1.627143 0.166978 0.888857 С -1.457473 1.688789 1.004913

С	2.619914	-2.287345	0.171707
С	2.814447	-3.410950	-0.855730
С	3.838060	-1.355766	0.275541
С	-2.947387	-0.246220	0.227630
С	-3.223886	-2.730618	5.321545
С	2.898946	-4.153760	5.276870
Н	0.401551	-0.420848	2.994941
Н	2.546309	-2.571152	3.836086
Н	1.782642	-0.874817	-2.154048
Н	-0.613731	0.496137	-1.762165
Н	-1.265715	-1.966467	7.480490
Н	1.473493	-2.492227	7.556400
Н	-2.127321	-1.782081	3.715936
Н	3.726714	-1.754902	6.595216
Н	3.404796	-0.659054	5.199252
Н	4.655331	-1.951622	5.072749
Н	2.431287	-2.736407	1.169562
Н	-1.562766	-0.269353	1.910793
Н	-2.765796	-0.055062	6.220051
Н	-3.664654	-0.017557	4.664333
Н	-1.934828	0.498257	4.718517
Н	-2.289556	2.119812	1.603520
Н	-1.465829	2.185879	0.008498
Н	-0.500293	1.934162	1.513884
Н	3.012328	-4.305378	6.374471
Н	3.844269	-4.481584	4.790535
Н	2.064547	-4.797569	4.923135
Н	3.666674	-0.571161	1.043855
Η	4.052991	-0.852678	-0.694547
Η	4.742394	-1.935935	0.563168
Η	1.919137	-4.067303	-0.902481
Н	3.686686	-4.038131	-0.569877
Н	3.011365	-3.012136	-1.876705
Н	-3.805453	0.171797	0.798551
Н	-3.055515	-1.351984	0.207779
Н	-3.022752	0.134815	-0.816488
Н	-4.204648	-2.612610	4.811299

Н	-3.401075	-2.641753	6.417757
Н	-2.823720	-3.743292	5.100129
Н	0.350580	-4.061206	1.117680
Н	1.261669	-4.254005	2.688725
Н	-1.575553	-3.504121	0.339818
Н	-3.686197	-3.966879	-0.912323
Н	-5.438868	-5.470245	0.077279
Н	-5.054515	-6.511389	2.334246
Н	-2.906675	-6.031301	3.583255

[Ni(*i*Pr₂Im)₂(Me<u>C(O</u>)Ph)]

Def2-SV(P)/BP86

Molecular formula: C₂₆H₄₀N₄NiO

SCF-energy + E(vib0) [h]: -2815.9644944

E(vib0) [h]: 0.6023964

Imaginary frequencies: none

Def2-TZVPP/BP86

SCF-energy + E(vib0) [h]: -2817.6929947

E(vib0) [h]: 0.5996385

Imaginary frequencies: none

С	0.594092	-2.200918	-1.011594
0	0.834741	-1.176114	-1.831700
Ν	-1.789667	-1.196835	1.992727
С	-3.058419	-1.380660	2.537274
С	-3.953881	-1.241130	1.510544
Ν	-3.209138	-0.972089	0.366923
С	-1.845027	-0.932671	0.630931
Ν	-0.740536	1.623741	-2.629854
С	-0.751369	3.009346	-2.750395
С	-0.712559	3.516805	-1.477899
С	-0.696626	1.224341	-1.306659
Ν	-0.681479	2.422741	-0.618147
Ni	-0.518006	-0.581059	-0.648792
С	-3.766635	-0.790827	-0.981717
С	-4.711379	0.417849	-1.040197
С	-4.415966	-2.085329	-1.493187

С	-0.535635	-1.323319	2.756315
С	-0.402680	-2.725298	3.368632
С	-0.409562	-0.218907	3.817492
С	-0.555938	2.504543	0.845083
С	-1.743074	3.249866	1.470962
С	0.804034	3.094698	1.248423
С	-0.712425	0.687153	-3.771621
С	0.604725	0.813123	-4.549802
С	-1.956601	0.853873	-4.656110
С	-0.182948	-3.391352	-1.574806
С	1.642496	-2.487813	0.019830
Н	-0.895338	-3.036311	-2.349145
Н	-0.765369	-3.931953	-0.796255
Н	0.501115	-4.133314	-2.058876
С	1.731830	-3.724037	0.709498
С	2.743604	-3.961031	1.656274
Н	-3.226081	-1.598628	3.598049
Н	-5.046979	-1.318501	1.508184
Н	-0.783931	3.524662	-3.717160
Н	-0.700989	4.555133	-1.127901
Н	-2.861461	-0.573985	-1.594226
Н	-4.195415	1.336948	-0.687230
Н	-5.048737	0.590721	-2.085853
Н	-5.621237	0.265661	-0.415900
Н	-3.691412	-2.927338	-1.457367
Н	-4.749770	-1.959188	-2.546620
Н	-5.307809	-2.366847	-0.887798
Н	0.257670	-1.189128	1.989967
Н	-0.517056	-3.506569	2.588784
Н	0.604590	-2.845670	3.821156
Н	-1.163060	-2.900817	4.163728
Н	-0.502794	0.790309	3.362090
Н	0.582038	-0.282620	4.316170
Н	-1.191261	-0.315395	4.605300
Н	-0.586295	1.436500	1.153714
Н	-2.706038	2.783885	1.169107
Н	-1.675298	3.214703	2.580419

Н	-1.765018	4.322306	1.171465
Н	1.632387	2.509475	0.794134
Н	0.923913	3.065711	2.353862
Н	0.906245	4.155652	0.925182
Н	-0.716146	-0.311942	-3.288577
Н	1.462360	0.629322	-3.869843
Н	0.640124	0.049658	-5.358007
Н	0.717695	1.815799	-5.022476
Н	-2.889253	0.753858	-4.058423
Н	-1.967915	0.071477	-5.446651
Н	-1.978394	1.843616	-5.166739
С	3.701189	-2.972468	1.940720
С	3.639132	-1.744529	1.251430
С	2.634019	-1.509773	0.304040
Н	1.004432	-4.523732	0.496010
Н	2.788371	-4.936834	2.170802
Н	4.497866	-3.161050	2.680045
Н	4.397045	-0.965827	1.447367
Н	2.597793	-0.563464	-0.258403

trans-[Pt(*i*Pr₂Im)₂(<u>C</u>H₂C(O)Ph)H]

Def2-SV(P)/BP86 Molecular formula: C₂₆H₄₀N₄PtO SCF-energy + E(vib0) [h]: -1427.0781461 E(vib0) [h]: 0.6003082 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1428.6110258 E(vib0) [h]: 0.5970411 Imaginary frequencies: none Cartesian coordinates: N -0.441492 -0.392521 -0.103135 С 0.466783 -1.146915 0.606407 Ν 1.501949 -1.344238 -0.280585 С 1.247350 -0.722699 -1.499625 С 0.021641 -0.121503 -1.387099 Pt 0.339085 -1.751921 2.549926

С	0.293332	-3.923611	1.954037
С	2.748851	-2.058201	0.057924
С	3.931812	-1.080565	0.125299
С	-1.688952	0.143884	0.478175
С	-2.905523	-0.191686	-0.394108
С	0.239258	-2.178609	4.549732
Ν	-0.833298	-1.995986	5.387476
С	-0.508629	-2.328311	6.698157
С	0.800767	-2.729452	6.688736
Ν	1.240919	-2.627458	5.374014
С	-2.156089	-1.522199	4.938959
С	-3.237850	-2.572741	5.224679
С	2.572234	-3.048916	4.897230
С	2.728502	-4.570315	5.042069
С	3.686953	-2.243105	5.578489
С	-2.472511	-0.141623	5.532695
С	2.994522	-3.236304	-0.894423
С	-1.546437	1.646650	0.761784
Н	0.485307	-0.173841	2.982543
Н	2.550268	-2.785388	3.816882
Н	1.944068	-0.761149	-2.344163
Н	-0.552036	0.461521	-2.115653
Н	-1.226552	-2.263821	7.522904
Н	1.441026	-3.086004	7.502489
Н	-2.029541	-1.420294	3.837844
Н	3.736710	-2.447643	6.672130
Н	3.536462	-1.151249	5.432635
Н	4.672591	-2.520613	5.144519
Н	2.551000	-2.448702	1.079452
Н	-1.769750	-0.394228	1.448702
Н	-2.570025	-0.183276	6.641384
Н	-3.435690	0.236457	5.124977
Н	-1.674095	0.588555	5.277336
Н	-2.460409	2.028904	1.267108
Н	-1.407842	2.228923	-0.177481
Н	-0.676968	1.832509	1.428222
Н	2.815584	-4.868648	6.112030

Н	3.649535	-4.914017	4.520894
Н	1.840914	-5.079898	4.604524
Н	3.720032	-0.258955	0.842781
Н	4.152554	-0.631169	-0.869729
Н	4.847401	-1.612243	0.465507
Н	2.123120	-3.925537	-0.906591
Н	3.884396	-3.812894	-0.559907
Н	3.189938	-2.896399	-1.936891
Н	-3.836172	0.132805	0.120130
Н	-2.979191	-1.285293	-0.576419
Н	-2.871854	0.328486	-1.377919
Н	-4.202633	-2.257749	4.770618
Н	-3.407154	-2.703907	6.317817
Н	-2.949988	-3.554361	4.791550
С	-0.713465	-4.665730	2.724039
Н	0.140340	-3.972948	0.857147
Н	1.307629	-4.290232	2.220501
0	-0.491034	-5.170288	3.843055
С	-2.115180	-4.829242	2.145166
С	-2.578714	-4.146570	0.998911
С	-3.878112	-4.363773	0.510088
С	-4.734587	-5.274174	1.154902
С	-4.283391	-5.961855	2.296313
С	-2.988552	-5.735244	2.786624
Н	-1.917475	-3.426621	0.490717
Н	-4.227028	-3.820225	-0.385100
Н	-5.752419	-5.449025	0.766464
Н	-4.947852	-6.681249	2.805342
Н	-2.607159	-6.257212	3.679451

$[Pt(iPr_2Im)_2(Me\underline{C(O)}Ph)]]$

Def2-SV(P)/BP86 Molecular formula: $C_{26}H_{40}N_4$ PtO SCF-energy + E(vib0) [h]: -1427.0621723 E(vib0) [h]: 0.6022814 Imaginary frequencies: none Def2-TZVPP/BP86

SCF-energy + E(vib0) [h]: -1428.5951603 E(vib0) [h]: 0.5991885

Imaginary frequencies: none

С	2.809255	-1.753983	0.294597
С	1.768741	-2.670882	-0.009026
С	1.750220	-3.896916	0.702456
С	2.710464	-4.182133	1.689138
С	3.721989	-3.253561	1.990844
С	3.764151	-2.036747	1.281132
С	0.767618	-2.329588	-1.080933
С	0.029262	-3.502326	-1.732762
0	1.106574	-1.309947	-1.898284
Pt	-0.462463	-0.605852	-0.652710
С	-0.704775	1.351252	-1.382691
Ν	-0.638346	1.709871	-2.713442
С	-0.749005	3.086394	-2.874008
С	-0.882329	3.622741	-1.620206
Ν	-0.856492	2.555320	-0.726912
С	-0.442098	0.753437	-3.826563
С	-1.697392	0.677731	-4.706702
С	-0.877965	2.694378	0.740546
С	0.446669	3.285796	1.247700
С	-1.866920	-0.847694	0.744548
Ν	-1.713230	-1.098734	2.100716
С	-2.945444	-1.190472	2.741859
С	-3.908439	-1.004734	1.786677
Ν	-3.245123	-0.792301	0.581061
С	-0.409646	-1.314823	2.758357
С	-0.063685	-0.159744	3.709979
С	-3.902104	-0.643391	-0.728276
С	-4.450620	-1.992443	-1.220030
С	-4.968993	0.459586	-0.702267
С	-0.365927	-2.681268	3.457246
С	-2.105096	3.486249	1.212839
С	0.829591	1.088790	-4.617867
Н	-0.656424	-3.114478	-2.515027

Н	-0.577665	-4.085683	-1.006514
Н	0.747923	-4.207168	-2.221148
Н	-3.041260	-1.380095	3.816643
Н	-5.000730	-1.009343	1.871917
Н	-0.722032	3.575797	-3.854168
Н	-0.987263	4.666068	-1.302522
Н	-3.068721	-0.333577	-1.397756
Н	-4.542260	1.419650	-0.339163
Н	-5.366210	0.624986	-1.727457
Н	-5.833267	0.193636	-0.052269
Н	-3.638662	-2.750151	-1.257619
Н	-4.874960	-1.887700	-2.242963
Н	-5.257420	-2.372885	-0.552699
Н	0.314217	-1.320701	1.914168
Н	-0.646198	-3.492253	2.752717
Н	0.667056	-2.885398	3.810484
Н	-1.046271	-2.722243	4.338813
Н	-0.056157	0.812351	3.171673
Н	0.947585	-0.317762	4.143865
Н	-0.789503	-0.088669	4.552336
Н	-0.959204	1.645362	1.096373
Н	-3.044335	3.035481	0.825130
Н	-2.153646	3.479503	2.323417
Н	-2.068154	4.550700	0.888483
Н	1.303436	2.662193	0.913821
Н	0.452275	3.319137	2.359182
Н	0.600746	4.324291	0.875958
Н	-0.274728	-0.221193	-3.319413
Н	1.710498	1.118282	-3.942131
Н	1.012805	0.297097	-5.376134
Н	0.753185	2.062117	-5.155242
Η	-2.590774	0.409468	-4.101731
Η	-1.564823	-0.101519	-5.488650
Η	-1.903949	1.643032	-5.223650
Н	0.974919	-4.647981	0.480756
Н	2.672037	-5.148529	2.221806
Н	4.478776	-3.480453	2.760772

Н	4.562997	-1.304520	1.492759
Н	2.846468	-0.815070	-0.279221

 $\begin{array}{l} \label{eq:spectral_states} \textbf{[Ni(H_2lm)_2(\eta^2-C_2H_4)] (C_{2v})} \\ \mbox{Molecular formula: $C_8H_{12}N_4Ni$} \\ \mbox{ZORA-BLYP/TZ2P DFTB-D3-BJ} \\ \mbox{TBE [h]: -5.35478555} \\ \mbox{Imaginary frequencies [cm^{-1}]: -1.88, -26.12, -36.25} \\ \mbox{Cartesian coordinates:} \\ \mbox{Ni} & 0.000000 & 0.000000 & 0.758188 \end{array}$

С	-1.575906	0.000000	-0.251421
С	1.575906	0.000000	-0.251421
Ν	-2.338384	-1.068249	-0.693472
Ν	-2.338384	1.068249	-0.693472
Ν	2.338384	-1.068249	-0.693472
Ν	2.338384	1.068249	-0.693472
С	3.505716	0.679695	-1.358255
Н	4.215033	1.383154	-1.765092
С	3.505716	-0.679695	-1.358255
Н	4.215033	-1.383154	-1.765092
С	-3.505716	-0.679695	-1.358255
Н	-4.215033	-1.383154	-1.765092
С	-3.505716	0.679695	-1.358255
Н	-4.215033	1.383154	-1.765092
Н	-2.064370	-2.022338	-0.511604
Н	-2.064370	2.022338	-0.511604
Н	2.064370	-2.022338	-0.511604
Н	2.064370	2.022338	-0.511604
С	-0.712836	0.000000	2.620217
С	0.712836	0.000000	2.620217
Н	1.262086	0.913888	2.854818
Н	1.262086	-0.913888	2.854818
Н	-1.262086	-0.913888	2.854818

 $[Pd(H_2Im)_2(\eta^2-C_2H_4)](C_{2v})$ Molecular formula: C₈H₁₂N₄Pd ZORA-BLYP/TZ2P DFTB-D3-BJ TBE [h]: -5.28451427 Imaginary frequencies: none Cartesian coordinates: Pd 0.000000 0.000000 0.849884 С -1.719408 0.000000 -0.313807 С 1.719408 0.000000 -0.313807 Ν -2.458135 -1.065463 -0.784258 Ν -2.458135 1.065463 -0.784258 Ν 2.458135 -1.065463 -0.784258 Ν 2.458135 1.065463 -0.784258 С 3.593409 0.680129 -1.504276 Н 4.283197 1.384300 -1.942619 С 3.593409 -0.680129 -1.504276 Н 4.283197 -1.384300 -1.942619 С -3.593409 -0.680129 -1.504276 Н -4.283197 -1.384300 -1.942619 С -3.593409 0.680129 -1.504276 Н -4.283197 1.384300 -1.942619 Н -2.185020 -2.018460 -0.593782

-2.185020 2.018460 -0.593782

2.185020 -2.018460 -0.593782

2.185020 2.018460 -0.593782

-0.709310 0.000000 2.918650

2.918650

3.138359

3.138359

3.138359

3.138359

0.709310 0.000000

1.255911 0.916849

1.255911 -0.916849

-1.255911 -0.916849

-1.255911 0.916849

Н

Н

Н

С

С

Н

Н

Н

Н

$[Pt(H_2Im)_2(\eta^2-C_2H_4)](C_{2v})$

Molecular formula: C₈H₁₂N₄Pt ZORA-BLYP/TZ2P DFTB-D3-BJ TBE [h]: -5.37312991 Imaginary frequencies: none Cartesian coordinates:

Pt 0.000000 0.000000 0.855882 С -1.651782 0.000000 -0.330590 С 1.651782 0.000000 -0.330590 Ν -2.388032 -1.068476 -0.801122 Ν -2.388032 1.068476 -0.801122 Ν 2.388032 -1.068476 -0.801122 Ν 2.388032 1.068476 -0.801122 С 3.525303 0.680040 -1.514263 Н 4.216586 1.383836 -1.950276 С 3.525303 -0.680040 -1.514263 Н 4.216586 -1.383836 -1.950276 С -3.525303 -0.680040 -1.514263 Н -4.216586 -1.383836 -1.950276 С -3.525303 0.680040 -1.514263 Н -4.216586 1.383836 -1.950276 Н -2.117532 -2.019973 -0.600073 Н -2.117532 2.019973 -0.600073 Н 2.117532 -2.019973 -0.600073 Н 2.117532 2.019973 -0.600073 С -0.727596 0.000000 2.867052С 0.727596 0.000000 2.867052 Н 1.257371 0.910426 3.152605 Н 1.257371 -0.910426 3.152605 Н -1.257371 -0.910426 3.152605 Н -1.257371 0.910426 3.152605

[Ni(H₂Im)₃]

Molecular formula: C₉H₁₂N₆Ni ZORA-BLYP/TZ2P DFTB-D3-BJ TBE [h]: -6.21054895 Imaginary frequencies : none

Ni	0.891389	-0.326492	-0.107637
С	0.765022	-1.052211	-1.824227
Ν	-0.092106	-0.720221	-2.874768
Ν	1.504452	-2.075163	-2.420223
С	0.112864	-1.484102	-4.027487
С	1.123949	-2.346979	-3.737688
Н	-0.461871	-1.357593	-4.932011
Н	1.591045	-3.107387	-4.344396
С	0.550707	-1.389156	1.390319
Ν	-0.624368	-2.032394	1.782632
Ν	1.398024	-1.759380	2.436044
С	-0.500740	-2.743691	2.979766
С	0.782216	-2.567162	3.396561
Н	-1.311727	-3.298658	3.425657
Н	1.292185	-2.941905	4.270621
С	1.359805	1.468010	0.110915
Ν	0.626000	2.524875	0.652443
Ν	2.542424	2.130998	-0.221533
С	1.313229	3.742331	0.651517
С	2.528384	3.493105	0.092977
Н	0.893385	4.659853	1.034085
Н	3.360082	4.153682	-0.097753
Н	2.181912	-2.602896	-1.890575
Н	-0.725415	0.061753	-2.801182
Н	-1.439862	-2.032278	1.188538
Н	2.333258	-1.386890	2.503584
Н	-0.277149	2.368139	1.073986
Н	3.281152	1.657588	-0.719638

$[Pd(H_2Im)_3]$

Molecular formula: C₉H₁₂N₆Pd ZORA-BLYP/TZ2P DFTB-D3-BJ TBE [h]: -6.13910722 Imaginary frequencies: none Cartesian coordinates:

0.892340 -0.322000 -0.107292 Pd С 0.753445 -1.128613 -2.002871 Ν -0.336710 -1.199849 -2.858137 Ν 1.724410 -1.749795 -2.775113 С -0.053010 -1.824760 -4.077308 С 1.259930 -2.175083 -4.024418 Н -0.786404 -1.963672 -4.856511 Н 1.883181 -2.675974 -4.748981 С 0.513132 -1.499383 1.545922 Ν -0.680666 -1.731470 2.213745 Ν 1.381254 -2.278330 2.297330 С -0.553421 -2.597478 3.305175 С 0.760032 -2.945824 3.358425 Н -1.382472 -2.884595 3.933327 1.288162 -3.592885 Н 4.041603 С 1.410386 1.661991 0.134601 Ν 0.601947 2.787778 0.198072 Ν 2.663639 2.239597 0.278569 С 1.313473 3.980069 0.369984 С 2.626771 3.630875 0.421245 Н 0.840486 4.947436 0.439319 Н 3.510762 4.237427 0.543545 2.666998 -1.866984 -2.435870 Н Н -1.235043 -0.825578 -2.593165 -1.541086 -1.299672 Н 1.912882 Н 2.362586 -2.334769 2.071295 Н -0.401380 2.716384 0.123731 Н 3.501828 1.678596 0.275862

[Pt(H₂Im)₃]

Molecular formula: C₉H₁₂N₆Pt ZORA-BLYP/TZ2P DFTB-D3-BJ TBE [h]: -6.22972385 Imaginary frequencies: none Cartesian coordinates:

Pt	0.891675	-0.325539	-0.114360
С	0.755931	-1.114334	-1.970646
Ν	-0.339148	-1.185217	-2.827768
Ν	1.732036	-1.735949	-2.745044
С	-0.049728	-1.809190	-4.045320
С	1.262896	-2.158207	-3.992890
Н	-0.781965	-1.948611	-4.825204
Н	1.885364	-2.657826	-4.718646
С	0.520509	-1.478163	1.504213
Ν	-0.678196	-1.709186	2.174069
Ν	1.392987	-2.260027	2.256835
С	-0.545368	-2.575265	3.263923
С	0.767245	-2.924353	3.316384
Н	-1.373256	-2.862460	3.893195
Н	1.294081	-3.571832	3.999814
С	1.399016	1.616935	0.121545
Ν	0.586415	2.745967	0.183680
Ν	2.657555	2.194973	0.265954
С	1.302609	3.934804	0.354729
С	2.615199	3.585610	0.406877
Н	0.831035	4.902667	0.423129
Н	3.498303	4.193091	0.529075
Н	2.674552	-1.852570	-2.406386
Н	-1.237630	-0.812306	-2.562647
Н	-1.538322	-1.276960	1.874100
Н	2.373840	-2.317399	2.030445
Н	-0.416579	2.674976	0.108933
Н	3.495520	1.634228	0.264276

trans-[Pt(*i*Pr₂Im)₂(<u>C</u>H₂C(O)Ph)H]

Def2-SV(P)/BP86 Molecular formula: $C_{26}H_{40}N_4$ PtO SCF-energy + E(vib0) [h]: -1427.0781461 E(vib0) [h]: 0.6003082 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1428.6110258 E(vib0) [h]: 0.5970411 Imaginary frequencies: none Cartesian coordinates:

Ν	-0.441492	-0.392521	-0.103135
С	0.466783	-1.146915	0.606407
Ν	1.501949	-1.344238	-0.280585
С	1.247350	-0.722699	-1.499625
С	0.021641	-0.121503	-1.387099
Pt	0.339085	-1.751921	2.549926
С	0.293332	-3.923611	1.954037
С	2.748851	-2.058201	0.057924
С	3.931812	-1.080565	0.125299
С	-1.688952	0.143884	0.478175
С	-2.905523	-0.191686	-0.394108
С	0.239258	-2.178609	4.549732
Ν	-0.833298	-1.995986	5.387476
С	-0.508629	-2.328311	6.698157
С	0.800767	-2.729452	6.688736
Ν	1.240919	-2.627458	5.374014
С	-2.156089	-1.522199	4.938959
С	-3.237850	-2.572741	5.224679
С	2.572234	-3.048916	4.897230

С	2.728502	-4.570315	5.042069
С	3.686953	-2.243105	5.578489
С	-2.472511	-0.141623	5.532695
С	2.994522	-3.236304	-0.894423
С	-1.546437	1.646650	0.761784
Η	0.485307	-0.173841	2.982543
Н	2.550268	-2.785388	3.816882
Н	1.944068	-0.761149	-2.344163
Н	-0.552036	0.461521	-2.115653
Н	-1.226552	-2.263821	7.522904
Н	1.441026	-3.086004	7.502489
Н	-2.029541	-1.420294	3.837844
Н	3.736710	-2.447643	6.672130
Η	3.536462	-1.151249	5.432635
Н	4.672591	-2.520613	5.144519
Η	2.551000	-2.448702	1.079452
Н	-1.769750	-0.394228	1.448702
Η	-2.570025	-0.183276	6.641384
Η	-3.435690	0.236457	5.124977
Η	-1.674095	0.588555	5.277336
Η	-2.460409	2.028904	1.267108
Η	-1.407842	2.228923	-0.177481
Η	-0.676968	1.832509	1.428222
Н	2.815584	-4.868648	6.112030
Н	3.649535	-4.914017	4.520894
Η	1.840914	-5.079898	4.604524
Н	3.720032	-0.258955	0.842781
Н	4.152554	-0.631169	-0.869729
н	4.847401	-1.612243	0.465507

Н	2.123120	-3.925537	-0.906591
Н	3.884396	-3.812894	-0.559907
Н	3.189938	-2.896399	-1.936891
Н	-3.836172	0.132805	0.120130
Н	-2.979191	-1.285293	-0.576419
Н	-2.871854	0.328486	-1.377919
Н	-4.202633	-2.257749	4.770618
Н	-3.407154	-2.703907	6.317817
Н	-2.949988	-3.554361	4.791550
С	-0.713465	-4.665730	2.724039
Н	0.140340	-3.972948	0.857147
Н	1.307629	-4.290232	2.220501
0	-0.491034	-5.170288	3.843055
С	-2.115180	-4.829242	2.145166
С	-2.578714	-4.146570	0.998911
С	-3.878112	-4.363773	0.510088
С	-4.734587	-5.274174	1.154902
С	-4.283391	-5.961855	2.296313
С	-2.988552	-5.735244	2.786624
Н	-1.917475	-3.426621	0.490717
Н	-4.227028	-3.820225	-0.385100
Η	-5.752419	-5.449025	0.766464
Н	-4.947852	-6.681249	2.805342
Н	-2.607159	-6.257212	3.679451

[Pt(*i*Pr₂Im)₂(Me<u>C(O)Ph)]]</u>

Def2-SV(P)/BP86 Molecular formula: C₂₆H₄₀N₄PtO SCF-energy + E(vib0) [h]: -1427.0621723 E(vib0) [h]: 0.6022814 Imaginary frequencies: none Def2-TZVPP/BP86 SCF-energy + E(vib0) [h]: -1428.5951603 E(vib0) [h]: 0.5991885 Imaginary frequencies: none Cartesian coordinates: С 0.294597 2.809255 -1.753983 С 1.768741 -2.670882 -0.009026 С 1.750220 -3.896916 0.702456 С 2.710464 -4.182133 1.689138 С 3.721989 -3.253561 1.990844 С 3.764151 -2.036747 1.281132 С 0.767618 -2.329588 -1.080933 С 0.029262 -3.502326 -1.732762 0 1.106574 -1.309947 -1.898284 Pt -0.462463 -0.605852 -0.652710 С -0.704775 1.351252 -1.382691 N -0.638346 1.709871 -2.713442 С -0.749005 3.086394 -2.874008 C -0.882329 3.622741 -1.620206 N -0.856492 2.555320 -0.726912 C -0.442098 0.753437 -3.826563 С -1.697392 0.677731 -4.706702 C -0.877965 2.694378 0.740546 С 0.446669 3.285796 1.247700 C -1.866920 -0.847694 0.744548 N -1.713230 -1.098734 2.100716 C -2.945444 -1.190472 2.741859 C -3.908439 -1.004734 1.786677 N -3.245123 -0.792301 0.581061 С -0.409646 -1.314823 2.758357 С -0.063685 -0.159744 3.709979

С	-3.902104	-0.643391	-0.728276
С	-4.450620	-1.992443	-1.220030
С	-4.968993	0.459586	-0.702267
С	-0.365927	-2.681268	3.457246
С	-2.105096	3.486249	1.212839
С	0.829591	1.088790	-4.617867
Н	-0.656424	-3.114478	-2.515027
Н	-0.577665	-4.085683	-1.006514
Н	0.747923	-4.207168	-2.221148
Н	-3.041260	-1.380095	3.816643
Н	-5.000730	-1.009343	1.871917
Н	-0.722032	3.575797	-3.854168
Н	-0.987263	4.666068	-1.302522
Н	-3.068721	-0.333577	-1.397756
Н	-4.542260	1.419650	-0.339163
Н	-5.366210	0.624986	-1.727457
Н	-5.833267	0.193636	-0.052269
Н	-3.638662	-2.750151	-1.257619
Н	-4.874960	-1.887700	-2.242963
Н	-5.257420	-2.372885	-0.552699
Н	0.314217	-1.320701	1.914168
Н	-0.646198	-3.492253	2.752717
Н	0.667056	-2.885398	3.810484
Н	-1.046271	-2.722243	4.338813
Н	-0.056157	0.812351	3.171673
Н	0.947585	-0.317762	4.143865
Н	-0.789503	-0.088669	4.552336
Н	-0.959204	1.645362	1.096373
Н	-3.044335	3.035481	0.825130
Н	-2.153646	3.479503	2.323417
Н	-2.068154	4.550700	0.888483
Н	1.303436	2.662193	0.913821
Н	0.452275	3.319137	2.359182
Н	0.600746	4.324291	0.875958
Н	-0.274728	-0.221193	-3.319413
Н	1.710498	1.118282	-3.942131
Н	1.012805	0.297097	-5.376134

Н	0.753185	2.062117	-5.155242
Н	-2.590774	0.409468	-4.101731
Н	-1.564823	-0.101519	-5.488650
Н	-1.903949	1.643032	-5.223650
Н	0.974919	-4.647981	0.480756
Н	2.672037	-5.148529	2.221806
Н	4.478776	-3.480453	2.760772
Н	4.562997	-1.304520	1.492759
Н	2.846468	-0.815070	-0.279221

5. References

[S1] J. Attner, U. Radius, Chem. Eur. J. 2001, 7, 783.

[S2] T. Schaub, U. Radius, A. Brucks, M. P. Choules, M. T. Olsen, T. B. Rauchfuss, *Inorg. Synth.* **2010**, *35*, 78–83.

[S3] (a) P. S. Pregosin, *NMR in Organometallic Chemistry, Vol. 1*, Wiley-VCH, Weinheim, **2012**, pp. 15; (b) P. S. Pregosin, *Group 10: Nickel to Platinum*, in: *Transition Metal Nuclear Magnetic Resonance*, Elsevier, Amsterdam, **1991**.

[S4] N. Juranic, J. Chem. Soc., Dalton Trans. 1984, 1537-1540.

[S5] The ¹³C NHC carbene carbon atom assignment and the unusual shift for a typical NHC coordinated to a transition metal is in accordance with work reported earlier, see for example:
(a) A. M. Voutchkova, M. Feliz, E. Clot, O. Eisenstein, R. H. Crabtree, *J. Am. Chem. Soc.* 2007, 129, 12834-12846 ([Pt(Me₂Im)₃Cl]Cl: 146.35 and 145.56 ppm); (b) S. Fantasia, A. Pasini, S. P. Nolan, *Dalton Trans.* 2009, 8107-8110 (*cis*-[Pt(Cy₂Im)₂Cl₂]: 145.79 ppm).

[S6] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.

[S7] (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comp. Chem. 2001, 22, 931-967; (b) T. Z. E. J. Baerends, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, ADF2010, SCM, Theoretical Chemistry; Vrije Universiteit, Amsterdam, The Netherlands; http://www.scm.com/; (c) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theoretical Chem. Acc. 1998, 99, 391-403.

[S8] (a) P. M. Boerrigter, G. Te Velde, E. J. Baerends, *Int. J. Quant. Chem.* **1988**, *33*, 87-113; (b) G. Te Velde, E. J. Baerends, *J. Comp. Phys.* **1992**, *99*, 84-98.

[S9] E. Van Lenthe, E. J. Baerends, J. Comp. Phys. 2003, 24, 1142-1156.

[S10] J. C. Slater, *Quantum Theory of Molecules and Solids, Vol. 4*, McGraw-Hill, New York, **1974**.

[S11] (a) A. D. Becke, J. Chem. Phys. 1986, 84, 4524; (b) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; (c) Perdew, J. P. Phys. Rev. B 1986, 33, 8822; erratum: Perdew, J. P. Phys. Rev. B 1986, 34, 7406.

[S12] (a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, *37*, 785-789; (b) B. G. Johnson,
P. M. W. Gill, J. A. Pople, *J. Chem. Phys.* 1993, *98*, 5612; (c) T. V. Russo, R. L. Martin, P. J.
Hay, *J. Chem. Phys.* 1994, *101*, 7729.

[S13] (a) E. van Lenthe, A. Ehlers, E.-J. Baerends, *J. Chem. Phys.* 1999, *110*, 8943; (b) E. v.
Lenthe, E. J. Baerends, J. G. Snijders, *J. Chem. Phys.* 1993, *99*, 4597; (c) E. van Lenthe, E.
J. Baerends, J. G. Snijders, *J. Chem. Phys.* 1994, *101*, 9783; (d) E. van Lenthe, J. G. Snijders, E. J. Baerends, *J. Chem. Phys.* 1996, *105*, 6505.

[S14] (a) G. T. de Jong, F. M. Bickelhaupt, *J. Chem. Theor. Comp.* 2006, *2*, 322-335; (b) G. T. de Jong, F. M. Bickelhaupt, *J. Phys. Chem. A* 2005, *109*, 9685-9699; (c) G. T. de Jong, D. P. Geerke, A. Diefenbach, F. Matthias Bickelhaupt, *Chem. Phys.* 2005, *313*, 261-270; (d) G. T. De Jong, D. P. Geerke, A. Diefenbach, M. Solà, F. M. Bickelhaupt, *J. Comp. Chem.* 2005, *26*, 1006-1020; (e) G. T. de Jong, M. Solà, L. Visscher, F. M. Bickelhaupt, *J. Chem. Phys.* 2004, *121*, 9982.

[S15] S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456-1465.

[S16] T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1755-1759.

[S17] (a) F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, *WIREs Comput. Mol. Sci.* 2014, *4*, 91-100; (b) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* 1989, *162*, 165-169.

[S18] (a) M. Häser, R. Ahlrichs, J. Comput. Chem. 1989, 10, 104-111; (b) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346-354; (c) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652-660 (d) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124; (e) M. von Arnim, R. Ahlrichs, J. Comput. Chem. 1998, 19, 1746-1757; (f) M. von Arnim, R. Ahlrichs, J. Chem. Phys. 1999, 111, 9183-9190; (g) F. Weigend, Phys. Chem. Chem. Phys. 2002, 4, 4285-4291; (h) P. Deglmann, K. May, F. Furche, R. Ahlrichs, Chem. Phys. Letters 2004, 384, 103-107; (i) R. Ahlrichs, Phys. Chem. Chem. Phys. 2004, 6, 5119-5121.

[S19] (a) A. Schäfer, H. Horn, R. Ahlrichs, *J. Chem. Phys.* **1992**, *97*, 2571-2577; (b) F.
Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.* **1998**, *294*, 143-152; (c) F.
Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305; (d) F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.