pH-controlled DNA- and RNA-templated assembly of short oligomers

Renaud Barbeyron, Jean-Jacques Vasseur* and Michael Smietana*

ELECTRONIC SUPPLEMENTARY INFORMATION

	Pages
List of Tables and Figures	S1
General	
Syntheses of 5' boronooligonucleotides	
Analyses of 5' boronooligonucleotides	S3
Denaturation experiments	
Melting curves and their derivatives	
Assembly along templates having alternative sections with cyanide anions	
Influence of mismatches on the assembly	
Native Polyacrylamide Gel Electrophoresis	

List of Tables and Figures

Pa	ages
Table S1. Coupling conditions for oligonucleotides syntheses	S2
Table S2. UV thermal denaturation data with templates having alternative sections at pH	7.5
with cyanide anions	S23
Table S3. UV thermal denaturation data with templates T_{α} mismatched on position 3	S25
Figure S1. Plausible bulge formation at pH 9.5	S25
Figure S2. Native PAGE with 5'-CC (TACACA) _n CC (T_n , $n=$ 2-6) as templates	and
5'-T ^{bn} GTGTrA (B) or 5'-TGTGTrA (C) as hexameric units	S29
Figure S3. PAGE with mismatched T_{α} templates	S29

<u>General</u>

All reagents were purchased from Aldrich or local suppliers and used without purification. All unmodified oligonucleotides used for this study were purchased from Eurogentec. Synthesized 5' borono-oligonucleotides were purified by RP-HPLC (Dionex Ultimate 3000) with a Nucleodur 100-7 C18 column (125 x 8 mm; Macherey-Nagel) and analyzed with a Nucleodur 100-3 C18 column (75 x 4.6 mm; Macherey-Nagel) and by MALDI-TOF MS (Voyager PerSeptive Biosystems) using trihydroxyacetophenone (THAP) as matrix and ammonium citrate as co-matrix. Thermal denaturation experiments were performed on a VARIAN Cary 300 UV spectrophotometer equipped with a Peltier temperature controller and a thermal analysis software. Native PAGE experiments were performed on a Hoefer SE600X apparatus and revealed by UV-shadowing. CD spectra were recorded using a JASCO J-815 CD Spectrometer, wavelengths were scanned in the 210-340 nm range with a scanning speed of 100 nm.min⁻¹.

Syntheses of 5' boronooligonucleotides

Syntheses were performed in 1µmol scale using an ABI 381A DNA synthesizer by phosphoramidite chemistry with conditions described in Table S1. dT^{bn}-phosphoramidite was synthesized and incorporated at the 5'-end of an oligonucleotide according to previous records.^[1,2]

Step	Reaction	Reagent	
1	Deblocking	3% TCA in DCM	35
2	Coupling	0.1M amidite in CH ₃ CN + 0.3M BMT in CH3CN	20
3	Capping	Ac ₂ O/THF/Pyridine + 10% NMI in THF	8
4	Oxidation	0.1M I ₂ in THF/H ₂ O/Pyridine	15

Table S1. Coupling conditions for oligonucleotides syntheses.

¹ D. Luvino, C. Baraguey, M. Smietana, J. J. Vasseur, Chem. Commun. 2008, 2352.

² A. R. Martin, I. Barvik, D. Luvino, M. Smietana, J. J. Vasseur, Angew. Chem. 2011, 50, 4193.

Analyses of 5' boronooligonucleotides

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 30min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 100 ns and an acceleration voltage of 24 kV.

HPLC and MALDI-TOF analysis of 5'-T^{bn}CATCA-3'

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 20min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 100 ns and an acceleration voltage of 24 kV.

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 25min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV.

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 20min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV.

HPLC conditions analysis: Column Nucleodur C18, 100 Å, 3 μ m, elution with a linear gradient of 0 to 20% CH₃CN in triethylammonium acetate buffer, pH 7, in 20min, Flow rate 1 mL.min⁻¹, λ 260 nm.

MALDI-TOF MS conditions analysis: ionization in negative mode, THAP (MW= 168.15 g.mol⁻¹) as matrix and ammonium citrate (MW= 243.2 g.mol⁻¹) as co-matrix, delay time 150 ns and an acceleration voltage of 24 kV.

Denaturation experiments

Unless otherwise stated, the samples were prepared by mixing 3 μ M of the template with stoichiometric amounts of complementary strands. Denaturation experiments were performed in a 1M NaCl, 10mM sodium cacodylate buffer at pH 7.5, 8.5 or 9.5. A heating-cooling-heating cycle in the 0-90°C temperature range with a gradient of 0.5°C/min was applied. Tm values were determined from the maxima of the first derivative plots of absorbance at 260 nm versus temperature.

Melting curves and their derivatives

Table 1, entry 1 :

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₂CC/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (orange) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₂CC/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₃CC/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (yellow) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₃CC/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₄CC/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (yellow) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₄CC/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₅CC/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (yellow) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₅CC/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-CC(ACACAT)₆CC/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (yellow) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex $3^{-}CC(ACACAT)_{6}CC/5^{-}T^{bn}GTGTrA$ at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-r(CC(ACACAU)₂CC)/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (yellow) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-r(CC(ACACAU)₂CC)/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex $3'-r(CC(ACACAU)_3CC)/5'-TGTGTrA$ at pH 7.5 (blue); pH 9.5 (yellow); pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-r(CC(ACACAU)₃CC)/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-r(CC(ACACAU)₄CC)/5'-TGTGTrA at pH 7.5 (blue) ; pH 9.5 (yellow) ; pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex 3'-r(CC(ACACAU)₄CC)/5'-T^{bn}GTGTrA at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex $3'-r(CC(ACACAU)_5CC)/5'-TGTGTrA$ at pH 7.5 (blue); pH 9.5 (yellow); pH 7.5 3mM CN⁻ (green).

Melting curves and their derivatives of the complex $3'-r(CC(ACACAU)_5CC)/5'-T^{bn}GTGTrA$ at pH 7.5 (blue) ; pH 8.5 (orange) ; pH 9.5 (yellow) and pH 7.5 3mM CN⁻ (green).

Melting curves and derivatives from Table 2.

Table 2, entry 9 :

Melting curves and their derivatives of the complex 3'-CC-AGTAGT-ACACAT-AAAAAAA-CC /5'-TGTGTrA / 5'-TCATCrA (1/1/1) at pH 7.5 (blue) and pH 9.5 (yellow).

Assembly along templates having alternative sections with cyanide anions.

Table S2. UV thermal denaturation data with templates having alternative sections at pH 7.5 with cyanide anions.

Entry	Template	Complementary units	$T_m [^{\circ}C]^a$
1 3'-CC (ACACAT) ₂ AGTAGT (ACACAT) ₂ CC	C_1 / C_2	18.2	
	B_1 / B_2	41.0	
2 3'-CC AGTAGT (ACACAT AGTAGT) ₂ CC	C_1 / C_2	8.0	
	B_1 / B_2	33.8	
3 3'-CC AGTAGT ACACAT AAAAAAA CC	$C_1 / C_2 / C_3$	17.9	
	J -CC AUTAUT ACACAT AAAAAAA CC	$B_1 / B_2 / B_3$	30.8

^aMelting temperatures are obtained from the maxima of the first derivatives of the melting curve (A260 vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate at pH 7.5 and 3 mM sodium cyanide, Template concentration 3 μ M; C_n and B_n concentrations were adjusted according to stoichiometry. ^bB_n refer to 5'-TbnGTGTrA (B₁), 5'-T^{bn}CATCrA (B₂) and 5'-T^{bn}TTTTTT (B₃); C₁, C₂ and C₃ refer to their corresponding unmodified analogues.

Table S2, entry 1 :

3'-CC (ACACAT)₂ AGTAGT (ACACAT)₂ CC with 5'-TGTGTrA / 5'-TCATCrA (blue) or 5'-T^{bn}GTGTrA / 5'-T^{bn}CATCrA (orange) at pH 7.5 3mM CN⁻.

or 5'-T^{bn}GTGTrA / 5'-T^{bn}CATCrA / 5'-T^{bn}T₆ (orange) at pH 7.5 3mM CN⁻.

Influence of mismatches on the assembly.

Entry Template Template sequence ^b			Hevameric	Hexameric	$T_m [^{\circ}C]^a$	
	Template sequence ^o	sequence ^b	рН 7.5	рН 9.5		
1	т	22 CC (ACACAT) ACTICT (ACACAT) CC	5'-TGTGTA	26.3	24.3	
1	$I \qquad I_{\alpha} \qquad 3 \text{-CC} (\text{ACACA1})_2 \text{ AGIAGI} (\text{ACACA1})_2$	$3 - CC (ACACAT)_2 AGTAGT (ACACAT)_2 CC$	5'-T ^{bn} GTGTA	28.3	34.3 ^c	
2 Τ _{α'} 3'·	3'-CC (ACACAT) ₂ ACCTAT (ACACAT) ₂ CC	5'-TGTGTA	24.7	23.7		
		5'-T ^{bn} GTGTA	29.8	33.8 ^c		
3 Τ _{α"}	т		5'-TGTGTA	23.8	22.8	
	$3 - CC (ACACAT)_2 ACCCAT (ACACAT)_2 CC$	5'-T ^{bn} GTGTA	30.8	35.2		
4	т 2' СС	3'-CC (ACACAT) ₂ ACACAA (ACACAT) ₂ CC	5'-TGTGTA	24.8	24.9	
	1 α'''		5'-T ^{bn} GTGTA	33.4	36.4	

Table S3. UV thermal denaturation data with templates T_{α} mismatched on position 3.

^aMelting temperatures are obtained from the maxima of the first derivatives of the melting curve (A260 vs temperature) recorded in a buffer containing 1 M NaCl and 10 mM of sodium cacodylate, Template concentration 3 μM, hexameric sequences concentration 15μM. ^bMismatches are indicated in italic in template sequences; T^{bn} refers to boronothymidine and bold letters represent RNA residues. ^cHigh stabilization suggesting the formation of a stabilized bulge (See Figure S1).

Figure S1. Plausible bulge formation at pH 9.5.

With T_{α} and $T_{\alpha'}$, high levels of stabilization are displayed at pH 9.5 suggesting the formation of a stabilized bulge between the 5'-end of section 2 and the 3'-end of section 4.

pH 9.5 (yellow).

Table S3, entry 4 :

Native Polyacrylamide Gel Electrophoresis

Native PAGE experiments were performed with polyacrylamide gels prepared by mixing: TrisBorateEDTA (TBE) 1X solution, ammonium peroxodisulfate (APS), Acrylamide/N,N'- methylenebisacrylamide (19/1 v/v), and N,N,N',N'-tetramethyl-ethylenediamine (TEMED) in proportion shown below (Table S3). Freshly casted gels were pre-runned at constant power of 10 W for 40 min. After loading of the samples, run were performed at constant power of 10 W for the indicated time then revealed by UV shadowing.

Table S4. Reagent volumes for a 40 mL gel

Reagent	Quantity
APS	400 mg
TEMED	30 µL
TBE buffer $(1X)$	QSP 40 mL
Volume of Acrylamide/N,N'-methylenebisacrylamide	
For a 20% gel	20 mL
For a 15% gel	15 mL

Conditions of migrations :

Figure 2a : 20% native polyacrylamide gel, 120 min, 15 °C.

Figure 2b : 15% native polyacrylamide gel, 120 min, 15 °C.

Figure 2c : 20% native polyacrylamide gel, 100 min, 15 °C.

Figure 3d : 20% native polyacrylamide gel, 120 min, 15 °C.

Figure S2. Native PAGE with 5'-CC (TACACA)_n CC (T_n , n= 2-6) as templates and 5'-T^{bn}GTGTrA (B) or 5'-TGTGTrA (C) as hexameric units.

Conditions : 20% native polyacrylamide gel, 120 min, 20 °C.

Neither boronic nor unmodified units hybridization was observed at 20 °C.

Figure S3. PAGE with mismatched T_{α} templates.

Conditions : 20% native polyacrylamide gel, 90 min, 10 °C.

Mismatched T_{α} templates are compared to T_5 alone and in presence of B_1 5'-T^{bn}GTGTrA. Retarded bands are observed when only one mismatch is present either on central or terminal nucleotide of position 3.