Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

SUPPORTING INFORMATION

Self-disproportionation of Enantiomers of Thalidomide and its Fluorinated Analogue via Gravity-driven Achiral Chromatography: Mechanistic Rationale and Implications

Mayaka Maeno, Etsuko Tokunaga, Takeshi Yamamoto, Toshiya Suzuki, Yoshiyuki Ogino, Emi Ito, Motoo Shiro, Toru Asahi* and Norio Shibata*

General information

Silica-gel chromatographies were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light (302 nm). The 1 H-NMR (300 MHz), 19 F-NMR (282 MHz) spectra for solution in CDCl₃ were recorded on a Varian Mercury 300. Chemical shifts (δ) are expressed in ppm downfield from TMS or CFCl₃. Mass spectra were recorded on a SHIMADZU LCMS-2010EV. HPLC analyses were performed on a JASCO U-2080 Plus using 4.6 x 250 mm CHIRALCEL OJ-H column. Infrared spectra were recorded on a JASCO FT/IR-200 spectrometer. (\pm)- $\mathbf{1}^{[1]}$, (\pm)- $\mathbf{2}^{[2a, 2b]}$, (R)- $\mathbf{1}^{[3]}$, and (R)- $\mathbf{2}^{[4]}$ were prepared according to previously reported procedures. Their enantiomeric mixtures were prepared using (\pm)- $\mathbf{1}$ 100 mg and (R)- $\mathbf{1}$ 50 mg or (\pm)- $\mathbf{2}$ 100 mg and (R)- $\mathbf{2}$ 50 mg.

(±)-Thalidomide (1)

A white solid. ¹H NMR (300 MHz, CDCl₃): δ 7.97 (bs, 1H), 7.91-7.87 (m, 2H), 7.80-7.76 (m, 2H), 5.00 (dd, J = 12.2, 5.1 MHz, 1H), 2.95-2.75 (m, 3H), 2.19-2.14 (m, 1H); IR (KBr): 3195, 3098, 1772, 1710, 1387, 1327, 1259, 1209, 1114, 1091, 1019, 1001, 890, 859, 7278, 607 cm⁻¹; MS (ESI, m/z) calculated for C₁₃H₁₀N₂NaO₄ ([M + Na]+) 281.05, found 280.90

(R)-Thalidomide (1)

A white solid. Spectral data for (*R*)-1 (1 H NMR, IR, MS) corresponded to (\pm)-1. HPLC (DAICEL CHIRALCEL OJ-H, 4.6×250 mm, EtOH=100, flow rate 0.5 mL/min, λ =254 nm) t_{R} = 12.75 min (major).

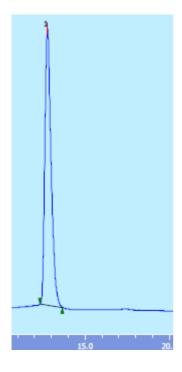
(±)-3'-Fluorothalidomide (2)

A white solid. 1 H NMR (300 MHz, CDCl₃): δ 8.07 (bs, 1H), 7.96-7.90 (m, 2H), 7.87-7.83 (m, 2H), 3.64-3.56 (m, 1H), 2.93-2.86 (m, 1H), 2.67-2.48 (m, 2H); 19 F NMR (282 MHz, CDCl₃): δ -131.51 (s, 1F); IR (KBr): 3317, 3175, 3100, 1798, 1738, 1699, 1365, 1331, 1205, 1117, 1042, 873, 837, 715, cm $^{-1}$; MS (ESI, m/z) calculated for $C_{13}H_{9}FN_{2}NaO_{4}$ ([M + Na] $^{+}$) 299.04, found 298.95

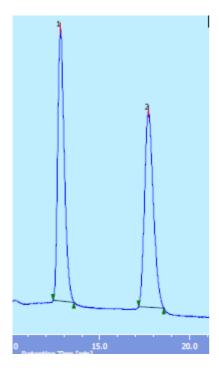
(R)-3'-Fluorothalidomide (2)

A white solid. Spectral data for (*R*)-2 (1 H NMR, 19 F NMR, IR, MS) corresponded to (\pm)-2. HPLC (DAICEL CHIRALCEL OJ-H, 4.6×250 mm, EtOH=100, flow rate 0.5 mL/min, λ =254 nm) t_{R} = 12.49 min (major).

Typical purification experiment using a column chromatography with an achiral phase

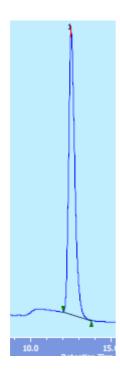

3 g of silica-gel (60N spherical neutral size 63-210 μ m or 40-50 μ m) was packed in a 10 mm x 50 mm glass column with hexane and ethyl acetate as the eluent under atmospheric pressure at room temperature. In general, a solution of 10.0 mg of 1 or 2 dissolved in 0.15 mL of DMSO was loaded on this packed column following which this column was pressurized at the abovementioned pressure and 50-60 (each 2.0 mL) fractions were collected until no more 1 or 2 were detected by TLC analysis. Each fraction was then subjected to high-performance liquid chromatography (HPLC) analysis to determine enantiomeric excess (ee).

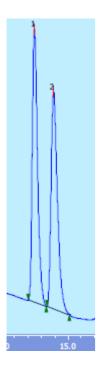
References


- [1] G. W. Muller, W. E. Konnecke, A. M. Smith, V. D. Khetani, *Org. Process Res. Dev.* 1999, 3, 139-140.
- [2] a) Y. Takeuchi, T. Shiragami, K. Kimura, E. Suzuki, N. Shibata, *Org. Lett.* **1999**, *1*, 1571–1573; b) selectfluor[®] (1.5 equiv.) was used instead of FClO₃
- [3] E. Suzuki, N. Shibata, Enantiomer 2001, 6, 275-279.
- [4] T. Yamamoto, Y. Suzuki, E. Ito, E. Tokunaga, N. Shibata, Org. Lett. 2011, 13, 470-473.

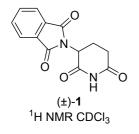
HPLC chromatograms of (\pm) -1 and (R)-1

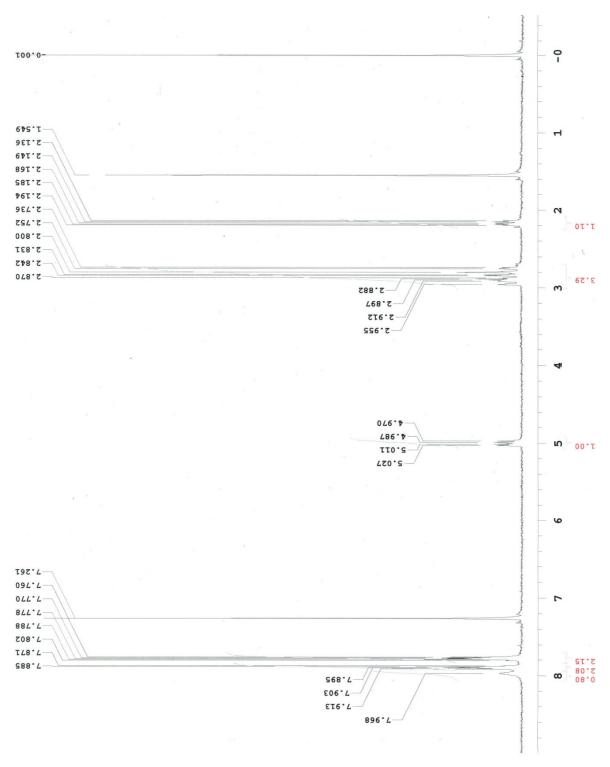
DAICEL CHIRALCEL OJ-H, 4.6×250 mm, EtOH=100, flow rate 0.5 ml/min, λ =254 nm

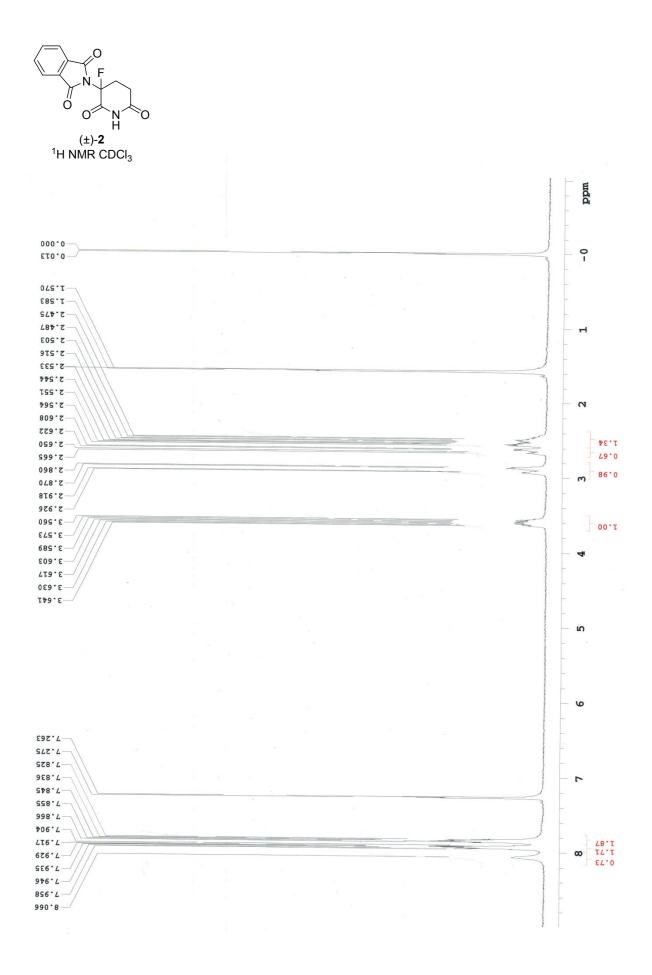

PK No	Time	Area%
1	12.750	100

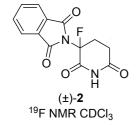

PK No	Time	Area%
1	12.767	50.762
2	17.675	49.238

HPLC chromatograms of (\pm) -2 and (R)-2

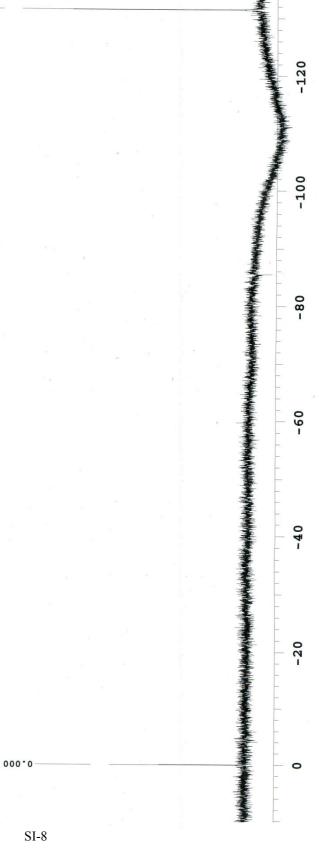

DAICEL CHIRALCEL OJ-H, 4.6×250 mm, EtOH=100, flow rate 0.5 ml/min, λ =254 nm

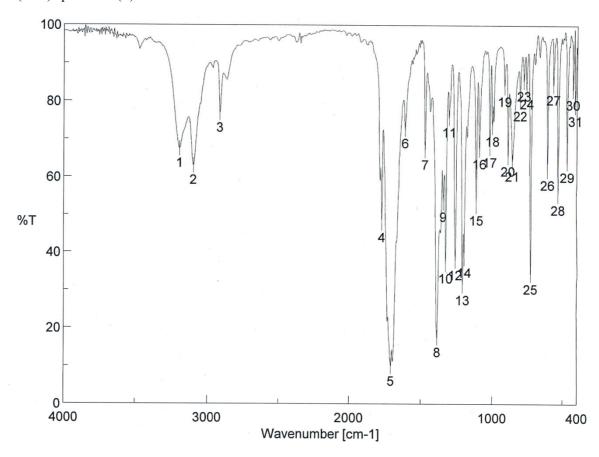


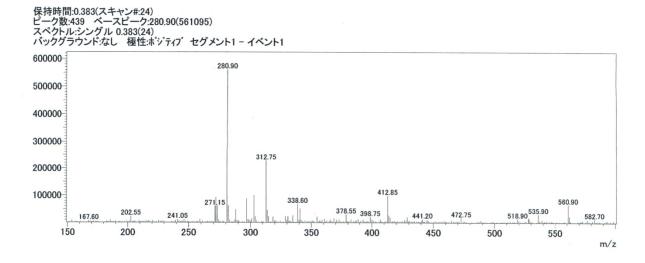

PK No	Time	Area%
1	12.492	100

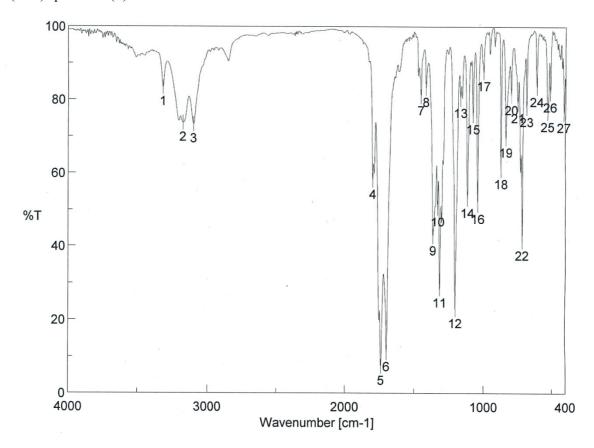


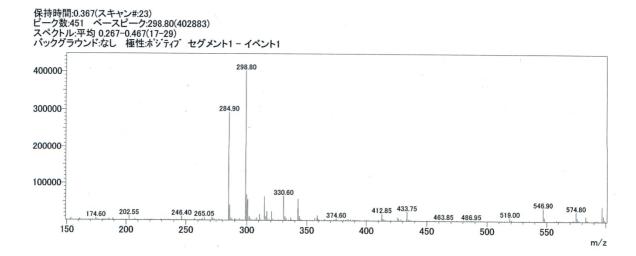

PK No	Time	Area%
1	12.475	50.719
2	13.908	49.281








IR (KBr) spectra of (\pm)-1


ESI MS spectra of (\pm)-1 calculated for $C_{13}H_{10}N_2NaO_4$ ([M + Na]⁺) 281.05, found 280.90

IR (KBr) spectra of (±)-2

ESI MS spectra of (\pm)-2 calculated for $C_{13}H_9FN_2NaO_4$ ([M + Na]⁺) 299.04, found 298.95

