Electronic Supporting Information NMR and TRLFS Studies of Ln(III) and An(III) C5-BPP Complexes[†]

Christian Adam,*^{*a,b*} Björn B. Beele,^{*a,b*} Andreas Geist,^{*a*} Udo Müllich,^{*a*} Peter Kaden,^{*a*} and Petra J. Panak^{*a,b*}

^a Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany

^b University of Heidelberg, Institute for Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.

Contents

Mass Spectra	2
NMR Spectra of $[^{243}Am({^{15}N}C5-BPP)_3](OTf)_3$	9
Temperature-dependent ¹⁵ N NMR Spectra	16

Mass Spectra

Figure S1: MS (EI) of 1,1'-(pyridine-2,6-diyl)bis(5,5-dimethylhexane-1,3-dione), [M]⁺ = 359.2.

Figure S2: MS (LIFDI) of 2,6-bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl)-pyridine (C5-BPP) in CH₃OH, ion mode: FD+; detail m/z range 323.5 to 370.5; calculated for $C_{21}H_{30}N_5$ [M+H]⁺ 352.25, found: 352.20; calculated for $C_{21}H_{29}N_5$ [M]⁺: 351.24, found: 351.22.

Figure S3: MS (LIFDI) of 2,6-bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl)-pyridine (C5-BPP) in CH₃OH, 10% ¹⁵N-enrichment in pyrazole substituents; ion mode: FD+; detail m/z range 321.5 to 390; calculated for $C_{21}H_{29}N_3^{15}N_2$ [M]⁺: 353.25, found: 353.28.

Figure S4: MS (ESI) of [Y(C5-BPP)₃](OTf)₃ in CH₃OH, pos. ion mode; m/z range 173.2 - 2500.0.

Figure S5: MS (ESI) of [La(C5-BPP)₃](OTf)₃ in CH₃OH, pos. ion mode; m/z range 173.2 - 2500.0.

Figure S6: MS (ESI) of $[Sm (C5-BPP)_3](OTf)_3$ in CH₃OH, pos. ion mode; m/z range 173.2 - 2500.0.

Figure S7: MS (ESI) of [Yb(C5-BPP)₃](OTf)₃ in CH₃OH, pos. ion mode; m/z range 173.2 - 2500.0.

Analysis Info

Figure S8: MS (ESI) of [Lu(C5-BPP)₃](OTf)₃ in CH₃OH, pos. ion mode; m/z range 173.2 - 2500.0.

NMR Spectra of [²⁴³Am({¹⁵N}C5-BPP)₃](OTf)₃

Figure S9: ¹H direct excitation spectrum of [Am({¹⁵N}C5-BPP)₃](OTf)₃. Signals labeled with an asterisk (*) belong to minor complex species.

Figure S10: {¹H}¹³C direct excitation spectrum of [Am({¹⁵N}C5-BPP)₃](OTf)₃. Signals labeled with an asterisk (*) belong to minor complex species.

Figure S11: {¹H}¹⁵N direct excitation spectrum of [Am({¹⁵N}C5-BPP)₃](OTf)₃. To avoid negative NOEs inverse-gated decoupling was used.

Figure S12: ¹H,¹³C-gHSQC spectrum of [Am({¹⁵N}C5-BPP)₃](OTf)₃. 256 increments were sampled (8 scans) in the F1 direction, followed by linear prediction to 512 increments and zero-filling to 1k data points. Correlation signals belonging to minor complex species are shaded in gray.

Figure S13: ¹H,¹³C-gHMBC spectrum of [Am({¹⁵N}C5-BPP)₃](OTf)₃. 128 increments were sampled (32 scans) in the F1 direction, followed by linear prediction to 256 increments and zero-filling to 512 data points. Correlation signals belonging to minor complex species are shaded in gray.

Figure S14: ¹H,¹⁵N-gHMQC spectrum of [Am({¹⁵N}C5-BPP)₃](OTf)₃. 128 increments were sampled (128 scans) in the F1 direction, followed by linear prediction to 256 increments and zero-filling to 512 data points. Correlation signals belonging to minor complex species are shaded in gray.

Figure S15: ¹H,¹⁵N-gHMQC spectrum of the unlabeled [Am(C5-BPP)₃](OTf)₃. 128 increments were sampled (128 scans) in the F1 direction, followed by linear prediction to 256 increments and zero-filling to 512 data points. Correlation signals belonging to minor complex species are shaded in gray.

Temperature-dependent ¹⁵N NMR Spectra

Figure S16: ¹⁵N direct excitation spectra of [La({¹⁵N}C5-BPP)₃](OTf)₃ in MeOD-d₄ at increasing temperatures (N₉ left side, N₈ right side). All spectra are referenced to the internal standard TMS by the lock signal.

Figure S17: ¹⁵N direct excitation spectra of [Lu({¹⁵N}C5-BPP)₃](OTf)₃ in MeOD-d₄ at increasing temperatures (N₉ left side, N₈ right side). All spectra are referenced to the internal standard TMS by the lock signal.

Figure S18: ¹⁵N direct excitation spectra of [Y({¹⁵N}C5-BPP)₃](OTf)₃ in MeOD-d₄ at increasing temperatures (N₉ left side, N₈ right side). All spectra are referenced to the internal standard TMS by the lock signal.

Figure S19: ¹⁵N direct excitation spectra of [Sm({¹⁵N}C5-BPP)₃](OTf)₃ in MeOD-d₄ at increasing temperatures (N₉ left side, N₈ right side). All spectra are referenced to the internal standard TMS by the lock signal.

Figure S20: ¹⁵N direct excitation spectra of [Yb({¹⁵N}C5-BPP)₃](OTf)₃ in MeOD-d₄ at increasing temperatures (N₉ left side, N₈ right side). All spectra are referenced to the internal standard TMS by the lock signal.

325 K	N ₈	
315 K		
305 K	3 2 1 N 6 7 11 10 12	
295 K	HN-N NH 13-14	
285 K	Àm ³⁺ ⁷ 3	
275 K		L
265 K]
255 K		J
245 K		<u> </u>
235 K	****	
225 K		
215 K		
205 K	*****	
<u>195 K</u>		
<u>185 K</u>		
240 220	200 180 160 140 120 100 80 60 40 20 0 -20) ppm

Figure S21: ¹⁵N direct excitation spectra of [Am({¹⁵N}C5-BPP)₃](OTf)₃ in MeOD-d₄ at increasing temperatures (N₉ left side, N₈ right side). All spectra are referenced to the internal standard TMS by the lock signal.