Electronic Supplementary Information

Highly Sensitive and Multiplexed Analysis of CpG Methylation at Singlebase Resolution with Ligation-Based Exponential Amplification

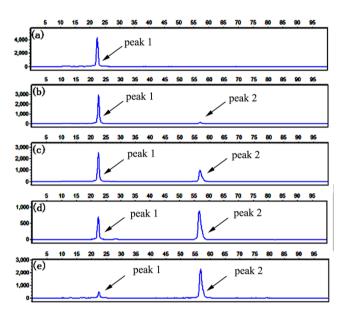
Fengxia Su,^a Limei Wang,^a Yueying Sun,^a Chenghui Liu,^b Xinrui Duan,^b and Zhengping Li *,^{ab}
^a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; College
of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei Province, P.
R. China.

^b Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi Province, P. R. China

Email: <u>lzpbd@snnu.edu.cn</u>

List of Contents:

- 1. Table S1. The sequences of targets and probes used in the experiments.
- **2.** The electropherograms for detection of target M_1 at different concentrations.
- 3. The analytical performance of the LCR-based assay for detection target N₁.
- **4.** The electropherograms for detection of target M_1 in the mixture samples of target M_1 and target N_1 .


1. Table S1. The sequences of targets and probes used in the experiments (5'-3').

Targets and probes	Sequences
	GGAGGTTAAGGTTGTTTCGTACGGTTCGG <u>C</u> GGGCGAGCGAG
Target M ₁	TTCGGGTTGTAGTAGTTT
Probe A _{M1}	Phosphate-CCGAACCGTACGAAACAACCTTAACCTCC
Probe B _{M1}	AAAAACTACTACAACCCGAACTCGCTCGCCCG
Probe A' _{M1}	FAM-AAGGAGGTTAAGGTTGTTTCGTACGGTTCGGC
Probe B' _{M1}	Phosphate-GGGCGAGCGAGTTCGGGTTGTAGTAGTTT
	GGAGGTTAAGGTTGTTTTGTATGGTTTGG <u>T</u> GGGTGAGTGAG
Target N ₁	TTTGGGTTGTAGTAGTTT
Probe A _{N1}	Phosphate-CCAAACCATACAAAACAACCTTAACCTCC
Probe B _{N1}	AAAAACTACTACAACCCAAACTCACTCACCCA
Probe A' _{N1}	TAMRA-AAGGAGGTTAAGGTTGTTTTGTATGGTTTGGT
Probe B' _{N1}	Phosphate-GGGTGAGTGAGTTTGGGTTGTAGTAGTTT
	TTTTTTTTGGAGGGTCGATGAGGTAATG <u>C</u> GGTTTTGTTATT
Target M ₂	GGTTTGAGGGGGGGT
Probe A _{M2}	Phosphate-CATTACCTCATCGACCCTCCAAAAAAAAA
Probe B _{M2}	AAACCCGCCCCTCAAACCAATAACAAAACCG
Probe A' _{M2}	FAM-AATTTTTTTGGAGGGTCGATGAGGTAATGC
Probe B' _{M2}	Phosphate-GGTTTTGTTATTGGTTTGAGGGGGGGGGTAAAAA
	AGTTCGAGGCGGGTTTTCGGGGGGTTTAGCGTTATATTATTC
Target M ₃	GGTCGTTTAGGTAGCGG
Probe A _{M3}	Phosphate-CTAAACCCCGAAAACCCCGCCTCGAACT
Probe B _{M3}	AACCGCTACCTAAACGACCGAATAATATAACG
Probe A' _{M3}	FAM-AAAGTTCGAGGCGGGGTTTTCGGGGGGTTTAGC
	Phosphate-
Probe B' _{M3}	GTTATATTATTCGGTCGTTTAGGTAGCGGAAAAAAAAA

Note: Target M_1 , target M_2 , and target M_3 are synthetized DNA fragments in the promoter region of TIMP-3 gene, which respectively contains the methylated CpG site 1, site 2, and site 3 (underlined in the sequence). The sequences of target M_1 , target M_2 , and target M_3 are corresponding to the methylated DNA sequences after bisulfite-treatment. The sequence of target N_1 is corresponding to

the unmethylated target M_1 sequence after bisulfite-treatment, in which uracil is substituted by thymine. The relationship between other targets and their probes is the same as that between target M_1 and their probes. The probe A_{M1} , B_{M1} , A'_{M1} , B'_{M1} , probe A_{N1} , B_{N1} , A'_{N1} , B'_{N1} , probe A_{M2} , B_{M2} , A'_{M2} , B'_{M2} , and probe A_{M3} , A'_{M3} , A'_{M3} , B'_{M3} are specific to the target M_1 , target M_2 , and target M_3 , respectively.

2. The electropherograms for detection of target M_1 at different concentrations.

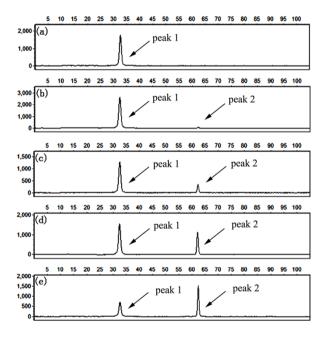
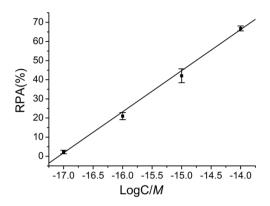


Fig. S1. The electropherograms for detection of target M_1 at different concentrations with the LCR-based by using target M_1 -specific probes (probe A_{M1} , B_{M1} , A'_{M1} , and B'_{M1}). The concentration of target M_1 is (a) blank, (b) 10 aM, (c) 100 aM, (d) 1 fM, and (e) 10 fM, respectively. The abscissa axis in the electropherograms represents the retention time and the longitudinal axis represents the relative fluorescence signal. Peak 1 is the signal of probe A'_{M1} and peak 2 is produced by the LCR products. The LCR-based assay is performed according to the procedures described in the Experimental methods.


3. The analytical performance of the LCR-based assay for detection target N₁.

Besides the analytical performance evaluation for the detection of target M₁, we further

investigated the analytical performance of target N_1 in order to validate the capability of the LCR-based assay. A series of dilution of target N_1 were detected with the LCR-based assay by using target N_1 -specific probes (probe A_{N1} , B_{N1} , A'_{N1} , and B'_{N1}). As shown in Fig. S2, the peak area of LCR products gradually increased with increasing the target N_1 concentration, while the peak area of FAM-labeled probe A'_{N1} decreased. After calculating the relative peak area (RPA) for each concentration of target N_1 , as depicted in Fig. S3, a good linear relationship between RPA(%) and logarithm (log) of target N_1 concentration was obtained. The linear curve is fitted the equation of RPA (%) = 366.84 + 21.47 log C (M) and the corresponding correlation coefficient R is 0.999. The target N_1 can be accurately detected as low as 10 aM, with a linear range of over 3 orders of magnitude.

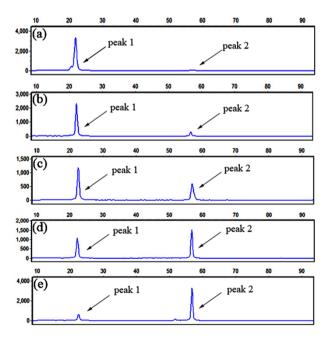


Fig. S2. The electropherograms for detection of target N_1 at different concentrations with the LCR-based by using target N_1 -specific probes (probe A_{N1} , B_{N1} , A'_{N1} , and B'_{N1}). The concentration of target N_1 is (a) blank, (b) 10 aM, (c) 100 aM, (d) 1 fM, and (e) 10 fM, respectively. Peak 1 is the signal of probe A'_{N1} and peak 2 is produced by the LCR products. The experimental conditions are the same as described in Fig. S1.

Fig. S3. The linear relationship between RPA(%) and log of target N_1 concentration (M) in the LCR-based assay. The concentration of target N_1 is 10 aM, 100 aM, 1 fM, and 10 fM, respectively. Error bars are estimated from the standard deviation of three repetitive measurements.

4. The electropherograms for detection of target M_1 in the mixture samples of target M_1 and target N_1 .

Fig. S4. The electropherograms for detection of target M_1 with different proportions in the mixture of target N_1 and target M_1 with LCR-based assay by using target M_1 -specific probes (probe A_{M1} , B_{M1} , A'_{M1} , and B'_{M1}). The target M_1 and target N_1 are mixed with a fixed total concentration of 10

fM, in which the proportion of target M_1 is 0%, 0.1%, 1%, 10%, and 100%, respectively. The peak 1 is the signal of probe A'_{M1} and the peak 2 is generated by the LCR products. The experimental conditions are the same as that described in Experimental methods.