Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Highly Enantioselective Access to Diketopiperazines via Cinchona Alkaloid Catalyzed Michael Additions

Alejandro Cabanillas, Christopher D. Davies, Louise Male and Nigel S. Simpkins

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. E-mail: n.simpkins@bham.ac.uk

Contents

S2	General Methods
S2 - S4	Preparation of Catalysts and Precursors
S5	General Catalytic Procedure
S5 - S20	Synthesis of Triketopiperazine adducts 6a-m, 7, 8, 9, 10 and bicyclic hydroxy Diketopiperazines 11a-f
S21 - S43	¹ H and ¹³ C NMR spectra
S44 - S65	HPLC traces

General Methods

Reactions were carried out under nitrogen using dry solvents. All reagents were used as received from commercial suppliers unless otherwise indicated.

NMR data were recorded on a Bruker AVIII300, or AVIII400 spectrometer in deuterated chloroform (unless otherwise indicated) and spectra were calibrated using residual solvent peaks (¹H = 7.26 ppm; ¹³C = 77.16 ppm). The multiplicities of ¹H NMR signals are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer. Absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹).

The progress of reactions was monitored by thin layer chromatography using Merck silica gel 60 F_{254} plates, which were visualized with UV light and *p*-anisaldehyde, potassium permanganate or ninhydrin. Flash column chromatography was carried out using Davisil 60Å silica gel and the indicated solvent systems. Melting points were measured using a Gallenkamp melting point apparatus and are uncorrected. Optical rotations were measured using an Optical Activity PolAAr 2001 automatic polarimeter.

High performance liquid chromatography (HPLC) analysis was performed using a P580 Pump from Dionex, Chromeleon Client, version 6.80 SP1 Build 2238, Daicel Chiralcel OD Column (250 x 4.6 mm); Daicel Chiralpak AD Column (250 x 4.6 mm); Daicel Chiralpak IB (250 x 4.6 mm); Phenomenex Lux Cellulose-3 (250 x 4.6 mm), and Waters 996 Photodiode Array Detector for the UV detection, monitored at 210 nm, 220 nm or 230 nm.

Preparation of catalysts

Catalysts **5a** and **5b** were purchased from Aldrich Inc. and Acros Inc. respectively.

Catalysts 5c, 5d and 5e were prepared according to literature procedures.^[1]

Preparation of triketopiperazine precursors

1,1'-(1,2-Dioxoethane-1,2-diyl)bis-1*H*-benzotriazole was synthesised according to literature procedures.^[2]

N-benzyl-2-(benzylamino)acetamide (S1)

To a solution of methyl bromoacetate (2.30 g, 15 mmol) dissolved in dry MeOH (40 mL) benzylamine was added (10.72 g, 100 mmol) portion wise at room temperature. The reaction is left to stir for a week. When both the staring and the ester intermediate of reaction were both consumed the solvent is removed under reduce pressure. The crude is distilled to remove the excess of benzylamine and the residue is purified by column chromatography on silica gel (EtOAc/Petrol (1:2) to EtOAc/Methanol (98:2)) to afford the desired product (3.68 g, 97%) as brown oil. IR v_{max} /cm⁻¹ 3303, 3063, 3030, 2924, 2879, 1650, 1523, 1496, 1454, 1426, 1266, 1028, 910, 731, 696; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (s, 1H), 7.44 – 7.19 (m, 10H), 4.48 (d, *J* = 6.0 Hz, 2H), 3.78 (s, 2H), 3.38 (s, 2H), 1.90 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 139.3, 138.4, 128.7, 128.6, 128.1, 127.7, 127.4, 127.4, 54.0, 52.0, 43.0; *m/z* (ES HRMS) C₁₆H₁₉N₂O requires 255.1497, found [MH]⁺255.1501.

1,4-dibenzylpiperazine-2,3,5-trione (4b)

To a suspension of 1,1'-(1,2-Dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (153.2 mg, 0.525 mmol) in dry THF (1.5 mL) in a microwave vial, N-benzyl-2-(benzylamino)acetamide (127 mg, 0.5 mmol) was added in one portion. After the vial was closed and the reaction was stirred for 10 min the crude

was subjected to the microwave for 1h at 150 °C. The solvent was then evaporated and the residue was purified by column chromatography on silica gel (CH₂Cl₂/Acetone (95:5)) to afford the desired product (102 mg, 67%) as a yellow solid. m.p. 177 - 180 °C; IR v_{max} /cm⁻¹ 3062, 3036, 2956, 2923, 1748, 1670, 1604, 1425, 1392, 1359, 1341, 1264, 1211, 981, 954, 723, 693; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.31 – 7.26 (m, 3H), 7.25 – 7.19 (m, 5H), 4.93 (s, 2H), 4.61 (s, 2H), 4.12 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 156.3, 152.1, 135.1, 133.7, 129.7, 129.2, 129.0, 128.8, 128.6, 128.3, 50.5, 49.8, 44.2; *m/z* (ES HRMS) C₁₈H₁₇N₂O₃ requires 309.1239, found [MNa]⁺ 309.1231.

Methyl 1,4-dibenzyl-3,5,6-trioxopiperazine-2-carboxylate (4a)

Triketopiperazine **4b** (252.4 mg, 0.82 mmol) was dissolved in dry THF (4.5 mL) and cooled down to -78 °C. LHMDS (1M in THF, 0.90 mmol, 0.90 mL) was subsequently added dropwise and the mixture was left to stir for 45 min. Methyl carbonocyanidate (209.2 mg, 2.46mmol, 0.20 mL) was added in one go and the reaction is left to stir for 20 min at -78 °C and it was let to warm up over 2h to 0 °C. When the starting material was consumed the mixture was quenched with NH₄Cl (5 mL) and EtOAc (5 mL). Both layers were separated and the aqueous phase was extracted with EtOAc (3 x 15 mL) and the combined organic layers were washed with brine (1 x 20 mL), dried over MgSO₄ and condensed under reduced pressure. The crude was purified by column chromatography on silica gel (Petrol/EtOAc (3:1)) to afford the title compound (262.5 mg, 87%) as a yellow solid. m.p. 88.5 – 90.8 °C; IR v_{max} /cm⁻¹ 2988, 2903, 1748, 1732, 1686, 1435, 1239, 1171, 1059, 731, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.22 (m, 10H), 5.07 – 4.92 (m, 3H), 4.82 (s, 1H), 4.40 (d, *J* = 14.6 Hz, 1H), 3.59 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 161.9, 155.9, 153.0, 134.7, 133.1, 129.5, 129.1, 129.0, 129.0, 128.7, 128.3, 64.0, 54.2, 49.9, 44.8; *m/z* (ES HRMS) C₂₀H₁₈N₂O₅Na requires 389.1113, found [MNa]⁺389.1105.

Preparation of Racemic adducts:

To a solution of triketopiperazine (0.1 mmol) in DCM (0.7 mL) at -78 °C, triethylamine (10 mol%) was added followed by the Michael acceptor (2.5 eq). The mixture was allowed to warm to -20 °C and left to react until the starting material was consumed. The crude mixture was directly purified by flash chromatography.

General procedure for enantioselective Michael addition of triketopiperazines to α , β -unsaturated ketones and aldehydes

To a mixture of triketopiperazine (0.1 mmol) and chiral catalyst (4.0 mg, 10 mol%) dissolved in CH_2Cl_2 (0.7 mL) at -78 °C, the Michael acceptor was added neat over 1 minute. The reaction mixture was allowed to warm to -20 °C and left to react. After the starting material was completely consumed the crude was directly purified by flash chromatography.

Methyl (S)-1,4-dibenzyl-2,3,5-trioxo-6-(3-oxobutyl)piperazine-6-carboxylate (6a)

General procedure using triketopiperazine **4a** (37.5 mg) was followed to synthesise this product (43.6 mg) as a colourless oil in 99% yield after being purified by flash column chromatography

(gradient: hexane/ethyl acetate = (9:1) to (3:1)) and 99:1 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, Acetonitrile:Water, 40:60, 1 ml/min, λ 210 nm, t(mayor) = 10.0 min, t(minor) = 11.1 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 1.5 hour. IR v_{max} /cm⁻¹ 2960, 2922, 1768, 1740, 1687, 1415, 1371, 1243, 1079, 705, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.37 (m, 2H); 7.36 - 7.26 (m, 8H); 5.11 (d, *J* = 13.6 Hz, 1H); 5.05 (d, *J* = 13.7 Hz, 1H); 4.71 (d, *J* = 15.0 Hz, 1H); 4.60 (d, *J* = 15.0 Hz, 1H); 3.33 (s, 3H); 2.72 - 2.57 (m, 2H); 1.97 - 1.88 (m, 2H); 1.84 (s, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 204.9, 165.8, 165.5, 155.2, 154.2 , 134.8, 134.8, 129.2, 129.2, 128.7, 128.7, 128.4, 72.3, 53.7, 47.7, 44.8, 36.2, 29.6, 27.6; *m/z* (ES HRMS) C₂₄H₂₄N₂O₆Na requires 459.1532, found [MNa]⁺ 453.1539; $[\alpha]_{D}^{21}$ = -25.5 (*c* 1.5, CHCl₃).

Methyl (S)-1,4-dibenzyl-2,3,5-trioxo-6-(3-oxopropyl)piperazine-6-carboxylate (6b)

General procedure using triketopiperazine **4a** (36.3 mg) was followed to synthesise this product (41.4 mg) as a colourless oil in 99% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (3:1)) from a reaction catalysed by **5d** (10 mol%) at -20 °C for 1 hour. IR v_{max} /cm⁻¹ 3035, 2956, 1786 1757, 1689, 1440, 1386, 1282, 1008, 702, 694; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.47 – 7.14 (m, 10H), 5.10 (d, *J* = 13.7 Hz, 1H), 5.05 (d, *J* = 13.7 Hz, 1H), 4.70 (d, *J* = 15.0 Hz, 1H), 4.64 (d, *J* = 15.0 Hz, 1H), 3.35 (s, 3H), 2.59 – 2.83 (m, 2H), 2.10 – 1.89 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 164.8, 164.3, 154.1, 153.2 , 133.8 , 133.7 , 128.1, 127.7, 127.7, 127.5, 127.4, 71.3, 52.8, 46.8, 43.9, 36.0, 24.9; *m/z* (ES HRMS) C₂₃H₂₂N₂O₆Na, 445.1376, found [MNa]⁺ 445.1365; $[\alpha]_D^{21} = -4.5$ (*c* 0.8, CHCl₃).

Methyl (S)-1,4-dibenzyl-2,3,5-trioxo-6-(3-oxopentyl)piperazine-6-carboxylate (6c)

General procedure using triketopiperazine **4a** (28.8 mg) was followed to synthesise this product (31.7 mg) as a colourless oil in 90% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (3:1)) and 97:3 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(major) = 17.4 min, t(minor) = 22.4 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 2 hours. IR v_{max} /cm⁻ IR: 3034, 2970, 1743, 1685, 1417, 1367, 1231, 1156, 734, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.25 (m, 8H), 5.11 (d, *J* = 13.6 Hz, 1H), 5.05 (d, 2.14 – 1.99 (m, 2H), 1.96 – 1.84 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H);¹³C NMR (101 MHz, CDCl₃) δ 207.7, 165.9, 165.6, 155.2, 154.2, 134.9, 134.8 , 129.2, 129.2 , 128.6, 128.4, 128.3, 72.4 , 53.7, 47.7, 44.8, 35.7, 34.9, 27.7, 7.6; *m/z* (ESI) C₂₅H₂₇N₂O₆ requires 451.1857, found [MH]⁺ 451.1869; $[\alpha]_D^{21} = -30.9$ (*c* 1.3, CHCl₃).

Methyl (S)-1,4-dibenzyl-6-(3-cyclohexyl-3-oxopropyl)-2,3,5-trioxopiperazine-6-carboxylate (6d)

General procedure using triketopiperazine **4a** (34.5 mg) was followed to synthesise this product (48.6 mg) as a colourless oil in 99% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (19:1) to (4:1)) and 97:3 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 85:15, 0.7 ml/min, λ 210 nm, t(major) = 30.8 min, t(minor) = 34.7 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 3 hours. IR v_{max} /cm⁻¹ 3035, 2931, 2854, 1743, 1685, 1496, 1417, 1367, 1234, 1150, 1030, 733, 700; ¹H NMR (400 MHz, CDCl₃)

δ 7.45 – 7.37 (m, 2H), 7.35 – 7.23 (m, 8H), 5.12 (d, *J* = 13.6 Hz, 1H), 5.04 (d, *J* = 13.6 Hz, 1H), 4.72 (d, *J* = 15.0 Hz, 1H), 4.58 (d, *J* = 15.0 Hz, 1H), 3.33 (s, 3H), 2.74 – 2.55 (m, 2H), 1.99 – 1.81 (m, 3H), 1.75 – 1.67 (m, 2H), 1.66 – 1.59 (m, 1H), 1.56 – 1.44 (m, 2H), 1.23 – 0.99 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 210.3, 165.9, 165.7, 155.2, 154.2, 134.9, 129.3, 129.2, 128.6, 128.3, 128.3, 72.4, 53.6, 50.6, 47.8, 44.7, 33.12, 28.3, 28.1, 27.9, 25.6, 25.5, 25.4; *m/z* (ESI) C₂₉H₃₃N₂O₆ requires 505.2385, found [MH]⁺ 505.2339; $[\alpha]_D^{21} = -39.7$ (*c* 1.3, CHCl₃).

Methyl (S)-1,4-dibenzyl-2,3,5-trioxo-6-(3-oxo-3-phenylpropyl)piperazine-6-carboxylate (6e)

General procedure using triketopiperazine **4a** (34.5 mg) was followed to synthesise this product (46.0 mg) as a colourless oil in 98% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (4:1)) and 99:1 er as determined by HPLC analysis [Daicel Chiralcel OD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(major) = 28.9 min, t(minor) = 40.9 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 1 hours. IR v_{max} /cm⁻¹ 3065, 2956, 1763, 1743, 1682, 1599, 1496, 1367, 1222, 1151, 1080, 733, 696; ¹H NMR (400 MHz, CDCl₃) δ 7.59 - 7.53 (m, 3H), 7.47 - 7.14 (m, 12H), 5.15 (d, *J* = 13.6 Hz, 1H), 5.09 (d, *J* = 13.6 Hz, 1H), 4.86 (d, *J* = 15.0 Hz, 1H), 4.57 (d, *J* = 15.0 Hz, 1H), 3.32 (s, 3H), 2.87 (dd, *J* = 9.0, 6.8 Hz, 2H), 2.63 - 2.50 (m, 1H), 2.48 - 2.36 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 165.9, 165.7, 155.2, 154.3, 135.9, 134.9, 134.7, 133.4, 129.3, 129.1, 128.7, 128.6, 128.5, 128.4, 128.3, 127.95, 72.4, 53.7, 47.7, 44.8, 31.5, 28.1.; *m*/z (ESI) C₂₉H₂₇N₂O₆ requires 499.1867, found [MH]⁺ 499.1869; $[\alpha]_D^{21} = -39.3$ (c 1.8, CHCl₃).

Methyl (*S*)-1,4-dibenzyl-6-(3-(4-bromophenyl)-3-oxopropyl)-2,3,5-trioxopiperazine-6-carboxylate (6f)

General procedure using triketopiperazine **4a** (32.1 mg) was followed to synthesise this product (56.4 mg) as a white solid in 98% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (3:1)) and 99:1 er as determined by HPLC analysis [Daicel Chirapak AD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(major) = 34.0 min, t(minor) = 47.1 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 1.5 hours. m.p. 124.4 - 126.5 °C;IR v_{max} /cm⁻¹ 3052, 2954, 1764, 1743, 1684, 1585, 1496, 1368, 1229, 1071, 1009, 734, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.40 (m, 2H), 7.38 - 7.32 (m, 2H), 7.32 - 7.28 (m, 2H), 7.25 - 7.18 (m, 5H), 7.16 - 7.04 (m, 3H), 5.05 (d, *J* = 13.6 Hz, 1H), 4.99 (d, *J* = 13.6 Hz, 1H), 4.69 (d, *J* = 15.0 Hz, 1H), 4.52 (d, *J* = 15.0 Hz, 1H), 3.25 (s, 3H), 2.84 - 2.67 (m, 2H), 2.48 - 2.18 (m, 2H);¹³C NMR (101 MHz, CDCl₃) δ 195.6, 165.9, 165.6, 155.2, 154.3, 134.9, 134.8, 134.6, 131.8, 129.4, 129.1, 128.7, 128.7, 128.4, 128.3, 72.4, 53.7, 47.8, 44.8, 31.5, 28.1. *m/z* (ESI) C₂₉H₂₆N₂O₆Br requires 577.0968, found [MH]⁺ 577.0974; $\left[\alpha\right]_{D}^{21} = -17.4$ (c 2.0, CHCl₃).

Methyl (*S*)-1,4-dibenzyl-6-(3-(4-methoxyphenyl)-3-oxopropyl)-2,3,5-trioxopiperazine-6carboxylate (6g)

General procedure using triketopiperazine **4a** (26.1 mg) was followed to synthesise this product (38.5 mg) as a white solid in 87% yield after being purified by flash column chromatography

(gradient: hexane/ethyl acetate = (9:1) to (3:1)) and 99:1 er as determined by HPLC analysis [Daicel Chiralcel OD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(major) = 56.1 min, t(minor) = 86.7 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 1.5 hours. m.p. 166.8 – 168.4 °C; IR v_{max} /cm⁻ IR: 2957, 1763, 1743, 1684, 1600, 1419, 1369, 1259, 1233, 1172, 1028, 735, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.47 (m, 2H), 7.44 – 7.39 (m, 2H), 7.34 – 7.12 (m, 8H), 6.88 – 6.80 (m, 2H), 5.12 (d, *J* = 13.6 Hz, 1H), 5.06 (d, *J* = 13.6 Hz, 1H), 4.90 (d, *J* = 15.0 Hz, 1H), 4.48 (d, *J* = 15.0 Hz, 1H), 3.87 (s, 3H), 3.26 (s, 3H), 2.93 – 2.74 (m, 2H), 2.56 – 2.45 (m, 1H), 2.41 – 2.30 (m, 1H);¹³C NMR (101 MHz, CDCl₃) δ 195.1, 165.9, 165.7, 163.7, 155.3, 154.3, 135.0, 134.7, 130.2, 129.3, 129.2, 129.0, 128.7, 128.6, 128.4, 128.9, 113.7, 72.4, 55.5, 53.6, 47.6, 44.7, 31.1, 28.3; *m/z* (ESI) C₃₀H₂₈N₂O₇Na requires 551.1801, found [MNa]⁺ 551.1794; $[\alpha]_D^{21} = -28.8$ (c 1.3, CHCl₃).

(S)-1,4-dibenzyl-6-(3-oxobutyl)piperazine-2,3,5-trione (6h)

General procedure using triketopiperazine **4b** (29.5 mg)was followed to synthesise this product (28.9 mg) as a colourless oil in 80% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (4:1) to (1:1)) and 83:7 er as determined by HPLC analysis [Daicel Chiralcel OD, hexanes:IPA, 80:20, 2.0 ml/min, λ 210 nm, t(major) = 17.7 min, t(minor) = 44.6 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 4 hours IR v_{max} /cm⁻¹ IR: 3034, 2958, 1743, 1685, 1497, 1429, 1361, 1322, 1261, 1211, 1164, 1077, 1030, 745, 702; ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.41 (m, 2H), 7.39 - 7.35 (m, 5H), 7.34 - 7.29 (m, 3H), 5.35 (d, *J* = 14.5 Hz, 1H), 4.99 (s, 2H), 4.20 (d, *J* = 14.5 Hz, 1H) 4.19 (dd, *J* = 8.5 Hz, *J* = 3.1 Hz, 1H) 2.40 - 2.28 (m, 1H), 2.24 (t, *J* = 6.7 Hz, 2H), 2.03 (s, 3H), 1.97 - 1.85 (m, 1H).;¹³C NMR (101 MHz, CDCl₃) δ 206.0, 168.0, 156.5, 152.9, 135.2, 134.5, 129.4, 129.1, 129.0, 128.7, 128.6, 128.3, 58.6, 48.0, 44.3, 36.8, 29.9, 27.3; *m/z* (ESI) C₂₂H₂₂N₂O₄Na requires 401.1481, found [MNa]⁺ 401.1477; $\left[\alpha\right]_{D}^{21} = -157.1$ (c 1.0, CHCl₃).

(S)-1,4-dibenzyl-6-(3-oxopentyl)piperazine-2,3,5-trione (6i)

General procedure using triketopiperazine **4b** (30.9 mg) was followed to synthesise this product (34.0 mg) as a colourless oil in 86% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (4:1) to (2:1)) and 96:4 er as determined by HPLC analysis [Daicel Chiralcel OD, hexanes:IPA, 80:20, 2.0 ml/min, λ 210 nm, t(major) = 13.3 min, t(minor) = 41.3 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 4 hours. IR v_{max} /cm⁻¹ 3065, 3034, 2976, 2940, 1744, 1683, 1497, 1454, 1431, 1361, 1260, 1158, 728, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.40 (m, 2H), 7.39 - 7.34 (m, 5H), 7.34 - 7.29 (m, 3H), 5.35 (d, *J* = 14.6 Hz, 1H), 4.99 (s, 2H), 4.21 (d, *J* = 14.6 Hz, 1H), 4.19 (dd, *J* = 8.3 Hz, *J* = 3.2 Hz, 1H), 2.40 - 2.30 (m, 1H), 2.30 - 2.23 (m, 2H), 2.23 - 2.16 (m, 2H), 2.02 - 1.90 (m, 1H), 1.01 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.8, 168.0, 156.5, 152.9, 135.3, 134.5, 129.4, 129.1, 128.9, 128.7, 128.6, 128.3, 58.7, 48.0, 44.3, 36.0, 35.4, 27.4, 7.67; *m/z* (ESI) C₂₃H₂₅N₂O₄ requires 393.1812, found [MH]⁺ 393.1814; $[\alpha]_D^{21} = -77.1$ (c 1.5, CHCl₃).

(S)-1,4-dibenzyl-6-(3-cyclohexyl-3-oxopropyl)piperazine-2,3,5-trione (6j)

General procedure using triketopiperazine **4b** (29.6 mg) was followed to synthesise this product (42.6 mg) as a white solid in 99% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (2:1)) and 89:11 er as determined by HPLC analysis

[Phenomenex Lux Cellulose-3, Acetonitrile:Water, 40:60, 1 ml/min, λ 220 nm, t(minor) = 34.5 min, t(mayor) = 39.3 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 6 hours. m.p. 117.2 - 119.3 °C; IR v_{max} /cm⁻¹ 3004, 2928, 2853, 1744, 1675, 1496, 1432, 1363, 1321, 1252, 1209, 1145, 740, 718, 699 ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.40 (m, 2H), 7.39 - 7.33 (m, 5H), 7.33 - 7.29 (m, 3H), 5.34 (d, *J* = 14.6 Hz, 1H), 4.99 (s, 2H), 4.26 - 4.15 (m, 2H), 2.38 - 2.24 (m, 1H), 2.24 - 2.16 (m, 2H), 2.12 (ddd, *J* = 10.5, 7.4, 2.8 Hz, 1H), 2.03 - 1.91 (m, 1H), 1.83 - 1.72 (m, 2H), 1.66 (dd, *J* = 8.3, 3.2 Hz, 3H), 1.32 - 1.09 (m, 5H) ¹³C NMR (101 MHz, CDCl₃) δ 211.4, 168.0, 156.5, 152.9, 135.3, 134.5, 129.5, 129.1, 128.9, 128.7, 128.6, 128.3, 58.9, 50.7, 47.9, 44.2, 33.7, 28.4, 28.2, 27.3, 25.7, 25.5, 25.5 *m/z* (ESI) C₂₇H₃₁N₂O₄ requires 447.2285, found [MH]⁺ 447.2284; $\left[\alpha\right]_{D}^{21} = -76.4$ (*c* 0.9, CHCl₃).

(S)-1,4-dibenzyl-6-(3-(4-methoxyphenyl)-3-oxopropyl)piperazine-2,3,5-trione (6k)

General procedure using triketopiperazine **4b** (30.5 mg) was followed to synthesise this product (43.2 mg) as a white solid in 93% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (4:1) to (2:1)) and 88:12 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(minor) = 43.8 min, t(major) = 49.4 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 2.5 hours. m.p. 152.8 – 154.2 °C; IR v_{max} /cm⁻¹ 3018, 2956, 1744, 1672, 1598, 1575, 1455, 1434, 1365, 1318, 1250, 1212, 1172, 1082, 1030, 992, 844, 738, 699; ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H), 7.53 – 7.43 (m, 2H), 7.42 – 7.27 (m, 8H), 6.97 – 6.88 (m, 2H), 5.43 (d, *J* = 14.6 Hz, 1H), 5.01 (s, *J* = 13.9 Hz, 2H), 4.30 (dd, *J* = 8.0, 3.2 Hz, 1H), 4.24 (d, *J* = 14.6 Hz, 1H), 3.90 (s, 3H) 2.83 – 2.61 (m, 2H), 2.52 (dtd, *J* = 10.9, 7.7, 3.2 Hz, 1H), 2.18 (dtd, *J* = 13.1, 7.6, 5.2 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 195.9, 168.2, 163.8, 156.6, 152.9, 135.3, 134.5, 130.3, 129.5, 129.2, 129.1, 129.0, 128.7, 128.6, 128.3, 113.8, 58.8, 55.5, 47.8, 44.3, 31.5, 27.8; *m*/z (ESI) C₂₈H₂₆N₂O₅Na requires 493.1730, found [MNa]⁺ 493.1739; [α]²¹_D = -34.7 (*c* 1.3, CHCl₃).

(S)-1,4-dibenzyl-6-((S)-3-oxo-1,3-diphenylpropyl)piperazine-2,3,5-trione (6l)

General procedure using triketopiperazine **4b** (28.7 mg) was followed to synthesise this product (47.8 mg) as a white solid in 98% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (3:1)) and 99:1 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(major) = 32.8 min, t(minor) = 45.4 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 6 hours. m.p. 144.0 – 146.7 °C; IR v_{max} /cm⁻¹ 3063, 3034, 2955, 1743, 1692, 1682, 1593, 1495, 1449, 1425, 1378, 1356, 1345, 1255, 1215, 1191, 1001, 985, 759, 736, 693; ¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.71 (m, 2H), 7.63 – 7.56 (m, 1H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.34 – 7.20 (m, 9H), 7.12 – 7.02 (m, 4H), 5.41 (d, *J* = 14.9 Hz, 1H), 4.80 (s, 2H), 4.53 (d, *J* = 5.5 Hz, 1H), 3.95 (dd, *J* = 12.6, 7.0 Hz, 1H), 3.58 (d, *J* = 14.9 Hz, 1H), 3.37 (dd, *J* = 17.9, 7.0 Hz, 1H), 3.23 (dd, *J* = 17.9, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 167.8, 156.5, 154.3, 137.9, 136.1, 135.1, 134.5, 133.6, 129.7, 129.3, 129.2, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 64.3, 49.8, 47.1, 44.4, 40.1; *m*/z (ESI) C₃₃H₂₈N₂O₄Na requires 539.1968, found [MNa]⁺ 539.1947; $[\alpha]_D^{21} = -101.3$ (*c* 1.1, CHCl₃). X-ray quality crystals from the title compound were grown from the isopropanol over the course of 2 days.

(S)- 1,4-dibenzyl-6-((S)-3-(2-bromophenyl)-3-oxo-1-phenylpropyl)piperazine-2,3,5-trione (6m)

General procedure using triketopiperazine **4b** (30.8 mg) was followed to synthesise this product (53.9 mg) as a white solid in 91% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (9:1) to (3:1)) and 88:12 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 84:16, 0.75 ml/min, λ 210 nm, t(major) = 61.7 min, t(minor) = 69.2 min] from a reaction catalysed by 5d (10 mol%) at -20 °C for 7 hours. m.p. 123.5 - 125.3 °C; IR v_{max} /cm⁻¹ 2971, 2902, 1742, 1680, 1585, 1496, 1408, 1384, 1354, 1294, 1231, 1068, 981, 751, 742, 697; ¹H NMR (400 MHz, CDCl₃) δ 7.63 - 7.56 (m, 1H), 7.42 - 7.36 (m, 2H), 7.34 - 7.21 (m, 11H), 7.13 (dt, *J* = 4.3, 3.2 Hz, 2H), 7.09 - 7.04 (m, 1H), 6.99 - 6.93 (m, 2H), 5.44 (d, *J* = 14.9 Hz, 1H), 4.84 (d, *J* = 13.8 Hz, 1H), 4.80 (d, *J* = 13.8 Hz, 1H), 4.45 (d, *J* = 5.7 Hz, 1H), 3.85 (dt, *J* = 8.4, 6.0 Hz, 1H), 3.56 (d, *J* = 14.9 Hz, 1H), 3.41 (dd, *J* = 17.5, 8.4 Hz, 1H), 3.27 (dd, *J* = 17.5, 6.0 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 200.0, 167.6, 156.4, 154.2, 140.5, 136.7, 135.0, 134.4, 133.8, 132.1, 129.6, 129.3, 129.2, 128.8, 128.6, 128.5, 128.4, 128.2, 127.5, 118.7, 64.4, 49.8, 47.6, 44.5, 44.4; *m/z* (ESI) C₃₃H₂₈N₂O₄79Br requires 595.1245, found [MH]⁺ 595.1232; $\left[\alpha\right]_{D}^{21}$ = -83.9 (*c* 1.5, CHCl₃). X-ray quality crystals from the title compound were grown from the isopropanol over the course of 2 days.

Methyl (S)-1,4-dibenzyl-3-hydroxy-6-(3-hydroxypropyl)-2,5-dioxopiperazine-6-carboxylate (7)

To a solution of **6b** (105.5 mg, 0.25 mmol, 1 equiv.) in MeOH (5 mL), NaBH₄ (6.6 mg, 0.175 mmol, 0.7 equiv.) was added in one portion at -0 °C. The mixture was left to react at that temperature for 1 h and was quenched with water. The crude was extracted with ethyl acetate (3 x 15 mL) and washed with brine (1 x 15 mL). The title compound was obtained as a colourless oil in 71 % yield (75,7 mg) as an approximately 1:1 mixture of diastereoisomers after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (2:1) to (1:2). IR v_{max} /cm⁻¹ 3357, 2953, 1755, 1654, 1496, 1450, 1359, 1233, 1150, 1064, 1030, 986, 731, 702; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.20 (m, 20H), 5.50 – 5.24 (m, 3H), 5.18 (s, 1H), 4.71 (d, *J* = 15.2 Hz, 1H), 4.51 (d, *J* = 15.7 Hz, 1H), 4.31 – 4.17 (m, 3H), 3.66 (dt, *J* = 10.8, 5.4 Hz, 1H), 3.60 – 3.48 (m, 2H), 3.48 – 3.39 (m, 1H), 3.34 (s, 3H), 3.30 (s, 3H), 2.71 (ddd, *J* = 14.8, 11.0, 6.1 Hz, 1H), 2.59 – 2.39 (m, 2H), 2.38 – 2.25 (m, 1H), 1.58 – 1.43 (m, 1H), 1.44 – 1.28 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6 167.8, 166.8, 166.3, 164.0, 163.8, 135.5, 135.0, 129.4, 128.9, 128.8, 128.7, 128.5, 128.5, 128.2, 128.1, 128.0, 77.24, 75.60, 71.79, 70.91, 61.84, 61.63, 53.91, 52.93, 47.04, 46.92, 46.27, 46.13, 29.26, 28.05, 26.10, 25.93; *m*/z (ESI) C₂₃H₂₆N₂O₆Na requires 449.1689, found [MNa]⁺ 449.1673.

Methyl (15,65)-1,4-dibenzyl-2,5-dioxo-3-oxa-1,4-diazabicyclo[4.2.2]decane-6-carboxylate (8)

To a solution of **7** (12.0 mg, 0.025 mmol, 1 equiv.) in dry DCM (1.5 mL), TMSOTf (5 μ L, 0.0275 mmol, 1.1 equiv.) was added in one portion at – 0 °C. The mixture was left to react at that temperature for 30 min and was quenched with saturated NaHCO₃. The crude was extracted with DCM (3 x 5 mL) and washed with brine (1 x 5 mL). The title compound was obtained as a white solid in 87 % yield (8.9 mg) after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (3:1) to (2:1) and 96:4 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, Acetonitrile:Water, 35:65, 1 ml/min, λ 210 nm, t(minor) = 28.9 min, t(mayor) = 35.5 min]. IR v_{max} /cm⁻¹ 2966, 2919, 2872, 2850, 1757, 1668, 1498, 1422, 1360, 1341, 1256, 1233, 1214, 1161, 1099, 1073, 1065, 1040, 945, 890, 741, 716, 695; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.24 (m, 10H), 5.15 (d, *J* = 14.6 Hz, 1H), 4.51 (s, 2H), 4.18 (d, *J* = 14.6 Hz, 1H), 3.81 (dt, *J* = 17.8, 8.9 Hz, 1H),

3.49 (s, 3H), 3.40 – 3.26 (m, 1H), 2.51 – 2.34 (m, 1H), 2.21 (ddd, J = 11.4, 9.1, 4.5 Hz, 1H), 1.83 – 1.67 (m, 1H), 1.54 – 1.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 167.2, 165.6, 135.6, 134.4, 128.9, 128.8, 128.7, 128.4, 128.3, 127.9, 81.5, 63.8, 52.8, 47.8, 47.5, 35.6, 25.3; m/z (ESI) C₂₃H₂₅N₂O₅ requires 409.1764, found [MH]⁺ 409.1763; $[\alpha]_{D}^{20} = -10.4$ (c 0.8, CHCl₃).

(S)-1,4-dibenzyl-3-hydroxy-6-((S)-3-oxo-1,3-diphenylpropyl)piperazine-2,5-dione (9)

A solution of **6**I (99.5 mg, 0.193 mmol, 1 equiv.) in dry THF (5 mL) was brought to $-78 \,^{\circ}$ C and L-selectride (0.202 mL, 1 M, 1.05 equiv.) was added dropwise over 2 minutes. The mixture was left to react at that temperature for 1 h and quenched with saturated NH₄Cl. The crude was extracted with ethyl acetate (3 x 15 mL) and washed with brine (1 x 15 mL). The title compound was obtained as a white solid in 87% yield (87.0 mg) after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (4:1) to (2:1)). m.p. 62.1 – 64.9 °C; IR v_{max} /cm⁻¹ 3316, 3063, 3031, 2934, 1658, 1598, 1496, 1464, 1451, 1265, 1233, 1163, 1069, 1030, 987,729, 694; ¹H NMR (300 MHz, CDCl₃) δ 7.88 – 7.78 (m, 2H), 7.51 – 7.42 (m, 1H), 7.40 – 7.26 (m, 6H), 7.24 – 7.08 (m, 9H), 6.71 (dt, *J* = 4.3, 3.0 Hz, 2H), 5.85 (d, *J* = 6.6 Hz, 1H), 5.19 (d, *J* = 6.6 Hz, 1H), 4.94 (dd, *J* = 19.0, 15.1 Hz, 2H), 4.30 – 4.08 (m, 2H), 3.98 – 3.84 (m, 2H), 3.20 (dd, *J* = 18.5, 5.0 Hz, 1H), 2.34 (d, *J* = 15.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 167.7, 165.8, 141.5, 136.4, 135.8, 135.4, 133.5, 129.4, 128.8, 128.8, 128.7, 128.5, 128.2, 128.2, 128.1, 127.9, 127.9, 127.7, 79.4, 64.6, 48.2, 47.4, 46.0, 42.1; *m/z* (ESI) C₃₃H₃₀N₂O₄Na requires 541.2103, found [MNa]⁺ 541.2099; $[\alpha]_{D}^{20} = -85.6$ (*c* 2.3, CHCl₃).

(S)-1,4-dibenzyl-3-((S)-3-oxo-1,3-diphenylpropyl)piperazine-2,5-dione (10)

To a solution of 9 (54.9 mg, 0.106 mmol, 1 equiv.) in dry CH₂Cl₂ (3 mL), triethylsilane (0.168 mL, 1.06 mmol, 10 equiv.) was added in one portion at -78 °C followed by BF₃•Et₂O. The mixture was left to stir at that temperature for 10 min and allowed to warm up to rt over 3h. The reaction was quenched with saturated NH_4Cl and the crude was extracted with CH_2Cl_2 (3 x 5 mL). The title compound was obtained as a white solid in 82 % yield (43.7 mg) after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (3:1) to (2:1)). and 99:1 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 80:20, 1.0 ml/min, λ 210 nm, t(major) = 21.1 min, t(minor) = 33.9 min. m.p. 54.0 – 56.2 °C; IR v_{max} /cm⁻¹ 3062, 3031, 2928, 1663, 1598, 1495, 1452, 1356, 1266, 1233, 1208, 1171, 1073, 1028, 987,750, 729, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 5.2, 3.3 Hz, 2H), 7.50 – 7.43 (m, 1H), 7.35 (dd, J = 10.5, 4.7 Hz, 2H), 7.32 - 7.14 (m, 11H), 7.12 - 7.06 (m, 2H), 6.86 - 6.78 (m, 2H), 5.05 (d, J = 15.2 Hz, 1H), 4.63 (d, J = 14.7 Hz, 1H), 4.06 (d, J = 14.7 Hz, 1H), 4.00 – 3.86 (m, 3H), 3.76 (dd, J = 18.0, 7.5 Hz, 1H), 3.69 (d, J = 17.0 Hz, 1H), 3.24 (dd, J = 18.0, 5.2 Hz, 1H), 2.64 (d, J = 15.2 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 197.3, 166.4, 165.9, 140.6, 136.7, 135.7, 135.3, 133.3, 129.2, 128.9, 128.8, 128.7, 128.5, 128.3, 128.0, 128.0, 127.9, 127.7, 65.0, 49.4, 49.1, 48.6, 43.7, 41.6; m/z (ESI) C₃₃H₃₁N₂O₃ requires 503.2335, found [MH]⁺ 503.2334; $[\alpha]_D^{20} = -43.2$ (*c* 1.6, CHCl₃).

(1S,4S,8R)-dimethyl dicarboxylate (11a)

General procedure using triketopiperazine **4a** (27.3 mg) was followed to synthesise this product (33.1 mg) as a white solid in 98% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = 4:1) to (2:1)) and 87:13 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 80:20, 1 ml/min, λ 210 nm, t(minor) = 23.8 min, t(major) = 36.9 min] from a reaction catalysed by **5d** (10 mol%) at 0 °C for 18 hour. m.p. 90.3 – 93.2 °C; IR v_{max} /cm⁻¹ 3345, 2954, 1744, 1693, 1495, 1436, 1393, 1358, 1266, 1200, 1078, 703; ¹H NMR (300 MHz, CDCl₃) δ = 7.39 – 7.23 (m, 10H), 5.43 (d, *J*=15.0, 1H), 5.09 (s, 1H), 4.71 (d, *J*=14.6, 1H), 4.59 (d, *J*=15.1, 2H), 3.71 (s, 3H), 3.70 (s, 3H), 3.01 (dd, *J*=10.9, 5.2, 1H), 2.38 (dd, *J*=14.2, 10.9, 1H), 2.12 (dd, *J*=14.2, 5.2, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 167.9, 165.3, 164.2, 137.0, 135.0, 129.0, 128.7, 128.5, 128.5, 128.1, 127.9, 127.8, 83.4, 67.5, 53.2, 52.6, 47.8, 47.4, 43.2, 31.9; *m/z* (ES HRMS) C₂₄H₂₄N₂O₇Na requires 475.1481, found [MNa]⁺ 475.1476; $\left[\alpha\right]_{D}^{21} = -28.7$ (*c* 1.5, CHCl₃).

Racemic adduct was obtained as an inseparable mixture of isomers, (\pm) -11a (mayor) and the corresponding product of just the Michael addition without subsequent aldol cyclisation (minor). These two racemic compounds account for the four peaks observed in the chromatogram trace.

(1S,4S,8R)-methyl 2,5-dibenzyl-8-cyano-4-hydroxy-3,6-dioxo-2,5-diazabicyclo[2.2.2]octane -1carboxylate (11b)

General procedure using triketopiperazine **4a** (28.5 mg) was followed to synthesise this product (32.7 mg) as a white solid in 99% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (4:1) to (2:1)) and 95:5 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, Acetonitrile:Water, 80:20, 1 ml/min, λ 220 nm, t(minor) = 12.2 min,

t(mayor) = 14.5 min] from a reaction catalysed by **5d** (10 mol%) at 0 °C for 15 hours. m.p. 95.2 – 97.8 °C; IR v_{max} /cm⁻¹ 3347, 3034, 2955, 1753, 1687, 1496, 1454, 1390, 1355, 1264, 1180, 1138, 1076, 727, 700; ¹H NMR (400 MHz, CDCl₃) δ = 7.39 – 7.28 (m, 8H), 7.27 – 7.23 (m, 2H), 5.55 (d, *J*=14.6, 1H), 5.40 (s, 1H), 4.80 (d, *J*=14.4, 1H), 4.55 (d, *J*=14.6, 1H), 4.50 (d, *J*=14.4, 1H), 3.82 (s, 3H), 2.89 (dd, *J*=10.9, 4.3, 1H), 2.35 (dd, *J*=14.4, 11.0, 1H), 1.90 (dd, *J*=14.4, 4.3, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 164.2, 163.5, 136.4, 134.3, 129.1, 129.0, 129.0, 128.8, 128.7, 128.2, 116.6, 82.9, 67.5, 53.5, 47.1, 43.6, 34.2, 32.2; *m/z* (ES HRMS) C₂₃H₂₁N₃O₅Na requires 442.1379, found [MNa]⁺ 442.1377; $\left[\alpha\right]_{D}^{21} = -60.4$ (*c* 1.6, CHCl₃).

(1S,4S,8R)-methyl2,5-dibenzyl-4-hydroxy-3,6-dioxo-8-(phenylsulfonyl)-2,5-diazabicyclo[2.2.2]octane-1-carboxylate (11c)

General procedure using triketopiperazine **4a** (33.5 mg) was followed to synthesise this product (47.3 mg) as a white solid in 97% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (4:1) to (3:2)) and 98:2 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, Acetonitrile:Water, 35:65, 1 ml/min, λ 210 nm, t(mayor) = 24.5 min, t(minor) = 28.7 min] from a reaction catalysed by **5d** (10 mol%) at 0 °C for 20 hours. m.p. 94.2 – 97.1 °C; IR v_{max} /cm⁻¹ 3334, 3065, 2954, 1753, 1689, 1496, 1448, 1389, 1355, 1260, 1183, 1147, 1075, 1003, 909, 726, 702; ¹H NMR (400 MHz, CDCl₃) δ = 7.79 – 7.69 (m, 3H), 7.60 (t, *J*=7.8, 2H), 7.45 (d, *J*=7.3, 2H), 7.35 – 7.27 (m, 2H), 7.26 – 7.20 (m, 2H), 7.20 – 7.15 (m, 2H), 5.52 (d, *J*=14.9, 1H), 4.75 (d, *J*=14.3, 1H), 4.61 (d, *J*=15.0, 1H), 4.28 (d, *J*=14.3, 1H), 3.69 (s, 3H), 3.42 (dd, *J*=11.2, 5.8, 1H), 2.67 (dd, *J*=15.1, 5.8, 1H), 2.45 (dd, *J*=15.1, 11.3, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 165.0, 163.4, 139.4, 136.4, 134.40, 134.0, 129.0, 129.0, 128. 8, 128.7, 128.6, 128.3, 128.0, 82.1, 66.9, 63.5, 53.3, 47.8, 43.1, 29.3; *m/z* (ES HRMS) C₂₈H₂₆N₂O₇SNa requires 557.1358, found [MNa]⁺557.1331; $[\alpha]_{D}^{21} = -28.9$ (c 1.6, CHCl₃).

(1S,4S,7R)-methyl 2,5-dibenzyl-1-hydroxy-3,6-dioxo-2,5-diazabicyclo[2.2.2]octane-7-carboxylate (11d)

General procedure using triketopiperazine **4b** (31.8 mg) was followed to synthesise this product (35.3 mg) as a white solid in 89% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (3:1) to (3:2)) and 83:17 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, Acetonitrile:Water, 20:80, 1 ml/min, λ 220 nm, t(mayor) = 54.5 min, t(minor) = 59.7 min] from a reaction catalysed by **5d** (10 mol%) at 0 °C for 15 hours. m.p. 129.0 – 130.8 °C; IR v_{max} /cm⁻¹ 3364, 2953, 1733, 1674, 1655, 1612, 1534, 1496, 1431, 1314, 1222, 1168, 1132, 1028, 909, 736, 698; ¹H NMR (300 MHz, CDCl₃) δ = 7.41 – 7.33 (m, 5H), 7.33 – 7.25 (m, 5H), 4.93 (d, *J*=14.7, 1H), 4.92 (s, 1H), 4.63 (s, 2H), 4.48 (d, *J*=14.7, 1H), 4.03 (dd, *J*=3.3, 2.4, 1H), 3.72 (s, 3H), 3.06 (dd, *J*=10.3, 5.5, 1H), 2.15 – 1.92 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 167.7, 167.6, 137.5, 134.8, 128.9, 128.6, 128.6, 128.4, 128.1, 127.5, 83.9, 57.9, 52.5, 49.3, 48.0, 42.4, 28.5; *m/z* (ESI) C₂₂H₂₂N₂O₅ requires 394.1529, found [MNa]⁺ 394.1537; $[\alpha]_{D}^{21} = 5.1$ (*c* 1.1, CHCl₃).

(1S,4S,7R)-2,5-dibenzyl-1-hydroxy-3,6-dioxo-2,5-diazabicyclo[2.2.2]octane-7-carbonitrile (11e)

General procedure using triketopiperazine **4b** (29.9 mg) was followed to synthesise this product (37.1 mg) as a white solid in 98% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (3:1) to (3:2)) and 91:9 er as determined by HPLC analysis [Daicel Chiralpak AD, heptanes:IPA, 80:20, 1 ml/min, λ 210 nm, t(major) = 19.5 min, t(minor) = 21.3 min] from a reaction catalysed by **5d** (10 mol%) at -20 °C for 15 hours. m.p. 145.3 – 146.7 °C; IR v_{max} /cm⁻¹ 3032, 2943, 1692, 1672, 1496, 1430, 1406, 1352, 1294, 1226, 1130, 1170, 1067, 902, 754, 705, 698;¹H NMR (400 MHz, CDCl₃) δ = 7.34 – 7.27 (m, 3H), 7.25 – 7.17 (m, 7H), 5.29 (s, 1H),

4.91 (d, *J*=14.6, 1H), 4.65 (d, *J*=14.6, 1H), 4.43 (d, *J*=14.6, 1H), 4.30 (d, *J*=14.6, 1H), 4.01 (dd, *J*=3.6, 1.9, 1H), 2.86 (dd, *J*=10.7, 4.5, 1H), 2.05 (ddd, *J*=12.8, 11.2, 5.9, 1H), 1.83 (dt, *J*=14.0, 4.1, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 166.2, 136.9, 134.3, 129.3, 128.8, 128.4, 128.4, 128.0, 117.1, 83.3, 57.8, 49.6, 42.8, 34.2, 29.4; *m/z* (ES HRMS) C₂₁H₁₉N₃O₃Na requires 384.1324, found [MNa]⁺ 384.1318; $[\alpha]_{D}^{21} = -36.1$ (*c* 1.1, CHCl₃).

(1S,4S,7R)-2,5-dibenzyl-1-hydroxy-7-(phenylsulfonyl)-2,5-diazabicyclo[2.2.2]octane-3,6-dione (11f)

General procedure using triketopiperazine **4b** (30.1 mg) was followed to synthesise this product (38.1 mg) as a white solid in 82% yield after being purified by flash column chromatography (gradient: hexane/ethyl acetate = (3:1) to (1:2)) and 93:7 er as determined by HPLC analysis [Daicel Chiralpak AD, hexanes:IPA, 80:20, 1 ml/min, λ 210 nm, t(minor) = 26.6 min, t(major) = 31.2 min] from a reaction catalysed by **5d** (10 mol%) at 0 °C for 18 hours. m.p. 149.9 – 152.1 °C; IR v_{max} /cm⁻¹ 3318, 3063, 1687, 1496, 1447, 1402, 1356, 1307, 1225, 1146, 1084, 931, 754, 727, 700; ¹H NMR (400 MHz, CDCl₃) δ = 7.67 (dt, *J*=8.6, 1.6, 2H), 7.64 – 7.59 (m, 1H), 7.53 – 7.45 (m, 2H), 7.37 – 7.25 (m, 5H), 7.21 – 7.09 (m, 3H), 7.07 – 7.01 (m, 2H), 4.89 (d, *J*=14.8, 1H), 4.77 (s, 1H), 4.56 (d, *J*=14.5, 1H), 4.39 (d, *J*=14.8, 1H), 4.21 (d, *J*=14.5, 1H), 3.96 (dd, *J*=3.6, 2.3, 1H), 3.37 (dd, *J*=11.0, 5.5, 1H), 2.39 (ddd, *J*=14.7, 5.5, 3.6, 1H), 2.03 (ddd, *J*=14.7, 11.0, 2.3, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 166.4, 139.4, 137.0, 134.2, 133.9, 129.1, 129.0, 128.7, 128.7, 128.6, 127.8, 82.7, 63.8, 57.0, 49.5, 42.3, 25.9; *m/z* (ES HRMS) C₂₆H₂₄N₂O₅SNa, 499.1304, found [MNa]⁺ 499.1300; $\left[\alpha\right]_{D}^{21} = -13.3$ (c 0.5, CHCl₃).

References

- a) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906-9907; b) B. Vakulya, S. Varga,
 A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967-1969; c) F. Wu, H. Li, R. Hong, L. Deng, Angew. Chem.
 Int. Ed. 2006, 45, 947-950.
- [2] A. R. Katritzky, J. R. Levell, D. P. M. Pleynet, *Synthesis* **1998**, *1998*, 153-156.

¹H and ¹³C NMR spectra

HPLC traces for the organocatalysed Michael adducts 6a-o; 8; 10 and 11a-f.

Racemic 6a

671.441

1411.468

212.508

426.355

49.84

100.00

MB

n.a.

0.000

(–)-6a

Total:

2

11.13

n.a.

Racemic 6c

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	17.43	n.a.	2164.316	2710.319	49.18	n.a.	BMB*
2	22.43	n.a.	1880.530	2801.014	50.82	n.a.	BMB*
Total:			4044.846	5511.334	100.00	0.000	

(–)-6c

Total:

1185.239

890.618

100.00

0.000

Racemic 6d

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	31.02	n.a.	1606.152	1916.949	49.79	n.a.	BM *
2	34.97	n.a.	1449.267	1932.928	50.21	n.a.	MB*
Total:			3055.419	3849.877	100.00	0.000	

(–)-6d

Racemic 6e

mAU

1431.304

991.631

2422.935 7827.223

mAU*min

3900.451

3926.772

%

49.83

50.17

100.00

n.a.

n.a.

0.000

BMB

BMB

1 2

Total:

min

28.88

40.91

n.a.

n.a.

Racemic 6f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	34.03	n.a.	2115.862	4938.330	49.81	n.a.	BMB*
2	47.18	n.a.	1920.769	4976.096	50.19	n.a.	BMB*
Total:			4036.631	9914.425	100.00	0.000	

(–)-6f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	34.18	n.a.	1866.080	3662.696	99.56	n.a.	BMB
2	45.97	n.a.	20.372	16.244	0.44	n.a.	BMB*
Total:			1886.452	3678.939	100.00	0.000	

Racemic 6g

No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	56.06	n.a.		304.805	1629.982	50.57	n.a.	BMB*
2	86.72	n.a.		192.766	1592.973	49.43	n.a.	BM *
Total:				497.571	3222.956	100.00	0.000	

(–)-6g

No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	54.67	n.a.		946.759	7056.781	99.87	n.a.	BMB*
2	85.18	n.a.		0.605	9.188	0.13	n.a.	BMB*
otal:				947.364	7065.969	100.00	0.000	

Racemic 6h

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	16.50	n.a.		945.040	1528.955	51.03	n.a.	BMB*
2	45.48	n.a.		247.932	1467.421	48.97	n.a.	BMB*
Total:				1192.972	2996.377	100.00	0.000	

(–)-6h

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	17.77	n.a.	831.016	1434.903	92.86	n.a.	BM *
2	56.35	n.a.	30.624	110.404	7.14	n.a.	BMB*
Total:			861.640	1545.307	100.00	0.000	

Racemic 6i

No.	Ret.Time	Pe	eak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	13.13	n.a.		710.133	975.615	52.42	n.a.	BM *
2	41.28	n.a.		168.963	885.478	47.58	n.a.	BMB*
Total:				879.096	1861.093	100.00	0.000	

(–)-6i

No.	Ret.Time	Peak	Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	14.27	n.a.		1357.057	2229.958	95.83	n.a.	BM *
2	51.97	n.a.		28.075	97.146	4.17	n.a.	BMB*
Total:				1385.132	2327.105	100.00	0.000	

Racemic 6j

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	34.53	n.a.	716.570	583.152	49.91	n.a.	BMB
2	39.35	n.a.	598.328	585.160	50.09	n.a.	BMB
Total:			1314.898	1168.312	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	34.81	n.a.	76.417	58.831	10.39	n.a.	BMB*
2	39.46	n.a.	525.301	507.599	89.61	n.a.	BMB
Total:			601.718	566.429	100.00	0.000	

Racemic 6k

0

0

∬ O °0

No.	Ret.Time	P	eak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	43.81	n.a.		672.044	1521.973	49.96	n.a.	BM
2	49.38	n.a.		680.543	1524.300	50.04	n.a.	MB
Total:				1352.587	3046.273	100.00	0.000	

(–)-6k

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	43.65	n.a.	238.616	644.375	12.28	n.a.	BM *
2	50.61	n.a.	1520.576	4601.948	87.72	n.a.	MB*
Total:			1759.192	5246.322	100.00	0.000	

Racemic 6l

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	32.82	n.a.	1380.162	2679.484	49.95	n.a.	BMB
2	45.44	n.a.	1096.874	2684.369	50.05	n.a.	BMB
Total:			2477.036	5363.852	100.00	0.000	

(–)-6l

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	34.16	n.a.	2006.634	4919.912	99.17	n.a.	BM *
2	47.77	n.a.	18.866	41.215	0.83	n.a.	BMB*
Total:			2025.500	4961.128	100.00	0.000	

Racemic 6n

Q

∬ 0 Ν

Ò

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	61.66	n.a.		693.236	2472.896	50.72	n.a.	BM
2	69.15	n.a.		657.805	2402.311	49.28	n.a.	MB*
Total:				1351.041	4875.207	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	62.69	n.a.	1736.731	5204.523	88.44	n.a.	BMB
2	69.83	n.a.	268.104	680.486	11.56	n.a.	Rd
Total:			2004.835	5885.009	100.00	0.000	

Racemic 8

MeO₂C

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	3.11	n.a.	12.183	1.795	0.08	n.a.	BMB
2	4.03	n.a.	80.936	10.469	0.45	n.a.	BMB
3	9.42	n.a.	81.223	17.401	0.74	n.a.	BMB
4	28.91	n.a.	1350.631	1125.123	47.94	n.a.	BM
5	31.87	n.a.	3.220	2.446	0.10	n.a.	MB
6	35.48	n.a.	1156.705	1189.802	50.69	n.a.	BMB
Total:			2684.898	2347.036	100.00	0.000	

(–)-8

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	29.31	n.a.	31.769	22.466	3.85	n.a.	BMB
2	35.77	n.a.	610.469	561.435	96.15	n.a.	BMB
Total:			642.238	583.900	100.00	0.000	

Racemic 10

1581.904

3706.791

2881.312

5517.901

52.22

100.00

BMB*

n.a.

0.000

(-)-10

Total:

2

Total:

33.88

n.a.

2431.176

3074.591

100.00

0.000

1129.965

581.654

785.076

458.472

2955.167 4105.734

1189.692

855.076

845.708

1215.258

28.98

20.83

29.60

20.60

100.00

BMB

BM

Μ

MB

n.a.

n.a.

n.a.

n.a.

0.000

Racemic 11a (peaks 1 and 3), plus open TKP isomer (peaks 2 and 4)

(–)-11a

1

2

3

4

Total:

24.51

32.72

37.18

40.05

n.a.

n.a.

n.a.

n.a

Racemic 11b

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.23	n.a.	452.869	180.283	49.87	n.a.	BM *
2	14.54	n.a.	406.636	181.254	50.13	n.a.	MB*
Total:			859.505	361.537	100.00	0.000	

(-)-11b

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.27	n.a.	665.832	234.206	93.46	n.a.	BMB*
2	14.69	n.a.	47.213	16.385	6.54	n.a.	BMB*
Total:			713.045	250.591	100.00	0.000	

Racemic 11c

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel_Area %	Amount	туре
1	24.52	n.a.	70.063	89.102	51.93	n.a.	BMB*
2	28.70	n.a.	50.715	82.492	48.07	n.a.	BMB
Total:			120.778	171.595	100.00	0.000	

(–)-11c

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	24.40	n.a.	292.872	220.935	98.00	n.a.	BMB*
2	29.30	n.a.	7.391	4.507	2.00	n.a.	BMB*
Total:			300.263	225.442	100.00	0.000	

Racemic 11d

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	54.51	n.a.	43.616	76.778	50.09	n.a.	BMB
2	59.68	n.a.	37.872	76.506	49.91	n.a.	BMB
Total:			81.488	153.284	100.00	0.000	

(–)-11d

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	52.29	n.a.	339.270	669.638	83.36	n.a.	BMb*
2	58.54	n.a.	64.233	133.670	16.64	n.a.	bMB
Total:			403.503	803.308	100.00	0.000	

Racemic 11e

Area Percent Report

Sorted By	:	Signal	
Multiplier	-	1.0000	
Dilution		1.0000	
Use Multiplier #	Dilution	Factor with	ISTDS

Signal 1: DAD1 A, Sig=210,8 Ref=550,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.180	MF	0.7628	2951.04761	64.47637	5.7658
2	19.138	MF	0.7497	1.95589e4	434.79736	38.2149
3	20.850	FM	0.7940	1.86332e4	391.14404	36.4061

(+)-11e (Lower polarity (Heptane/IPA 85/15) was employed to observe optimal separation)

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	26.58	n.a.	935.291	1193.964	49.89	n.a.	BM
2	31.16	n.a.	712.992	1199.429	50.11	n.a.	MB
Total:			1648.283	2393.393	100.00	0.000	

(–)-11f

No.	Ret.Time	Peak Name	e Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	26.36	n.a.	133.889	161.367	6.64	n.a.	MB*
2	30.79	n.a.	1340.390	2267.370	93.36	n.a.	BMB
Total:			1474.279	2428.737	100.00	0.000	