Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Contents

I. Materials and Methods

- 1. General Experimental Methods
- 2. Synthetic Procedures and Compound Data

II. Supporting Figures and Tables

- 1. Absorption Spectra
- 2. ¹H and ¹⁹F NMR Spectra
- 3. ESI-TOF-MS data
- 4. Cyclic Voltammograms
- 5. Crystal Data
- 6. DFT Calculations
- 7. Femtosecond Transient Absorption Spectra and Decay Profiles
- 8. References

I. Materials and Methods

1. General Experimental Methods

All reagents and solvents were of commercial reagent grade and were used without further purification except where noted. Silica gel column chromatography was performed on Wakogel[®] C-200 and C-300. Alumina column chromatography was performed on Sumitomo Active alumina. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel 60 F₂₅₄ (Merck 5554). ¹H (600.17 MHz) and ¹⁹F (564.73 MHz) NMR spectra were recorded on a JEOL ECA-600 spectrometer, and chemical shifts were reported as the delta scale in ppm relative to CHCl₃ as internal reference for ¹H (δ = 7.260 ppm), and hexafluorobenzene as external reference for ¹⁹F (δ = -162.9 ppm). NMR signals were assigned from the ¹H–¹H COSY spectra and comparison with the spectra in the presence of D₂O (signals assigned for NH protons disappear in the presence of D₂O). High-resolution ESI-TOF method in the positive and negative ion mode. UV/Vis/NIR absorption spectra were recorded on a Shimadzu UV-3600PC spectrometer. X-Ray single crystal diffraction analyses were performed on a Rigaku XtaLAB P200 apparatus at –180 °C using two-dimensional detector PILATUS 100K/R with CuK α radiation (λ = 1.54187 Å). The structures were solved by direct method SIR-97 and refined by SHELXL-97 program.

2. Synthetic Procedures and Compound Data

5,20-bis(α-bithienyl)-10,15,25,30-tetrakis(pentafluorophenyl) [26]hexaphyrins T2 and 5,20-bis (α-terthienyl)-10,15,25,30-tetrakis(pentafluorophenyl) [26]hexaphyrins T3.

To a solution of 5,10-bis(pentafluorophenyl)tripyrromethane (280 mg, 0.50 mmol; 1.0 equiv) and the corresponding oligothiophene-5-carbaldehyde (1.0 equiv) in dry dichloromethane (10.0 mM) was added methanesulfonic acid (2.5 M diluted with CH_2Cl_2 ; 20 mol%), and the resulting solution was stirred under N_2 atmosphere at 0 °C for 2 h. After the addition of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ; 5.0 equiv), the solution was stirred for another 15 min, and then passed through a short alumina column with CH_2Cl_2 to remove tar. The reaction mixture was purified by silica-gel chromatography ($CH_2Cl_2 : n$ -hexane = 1:2) followed by recrystallization from CH_2Cl_2/n -hexane to give the corresponding hexaphyrins. **T2** as black crystals (85 mg; 22% yield) and **T3** as brown crystals (43 mg; 10% yield), respectively.

T2: ¹H NMR (600 MHz, CDCl₃, 213 K): δ (ppm) 8.23 (br s, 1H; inner NH), 8.21 (d, 2H, *J* = 3.7 Hz; outer β-H), 8.16 (s, 2H; outer β-H), 7.89 (d, 2H, *J* = 3.7 Hz; outer β-H), 7.70 (d, 2H, *J* = 4.0 Hz; outer β-H), 7.61 (s, 2H; outer β-H), 6.88 (d, 2H, *J* = 3.7 Hz; bithienyl-H), 6.34 (t, 2H, *J* = 3.7 Hz; bithienyl-H), 5.76 (d, 2H, *J* = 4.0 Hz; outer β-H), 5.28 (d, 2H, *J* = 4.6 Hz; bithienyl-H), 5.13 (s, 2H, bithienyl-H), 5.12 (br s, 1H; inner NH), and 4.72 (d, 2H, *J* = 4.6 Hz; bithienyl-H); ¹⁹F NMR (565 MHz, CDCl₃, 213 K): δ (ppm) –136.34 (d, 2F, *J* = 23.0 Hz; o-F), –136.52 (d, 2F, *J* = 23.0 Hz; o-F), –136.87 (d, 2F, *J* = 23.0 Hz; o-F), –138.03 (d, 2F, *J* = 23.0 Hz; o-F), –150.11 (t, 2F, *J* = 22.0 Hz; p-F), –150.51 (t, 2F, *J* = 22.0 Hz; p-F), –159.36 (br s, 2F; m-F), –159.60 (br s, 2F; m-F), –159.80 (br s, 2F; m-F), and –161.08 (br s, 2F; m-F). UV/vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 380 (80000), 484 (36000), 548 (41000), 636 (40000), 950 (11000), 1080 (7000).

T3: ¹H NMR (600 MHz, CDCl₃, 213 K): δ (ppm) 8.35 (br s, 1H; inner NH), 8.20 (d, 2H, *J* = 4.1 Hz; outer β-H), 8.16 (s, 2H; outer β-H), 7.87 (d, 2H, *J* = 4.1 Hz; outer β-H), 7.76 (d, 2H, *J* = 4.6 Hz; outer β-H), 7.60 (s, 2H; outer β-H), 7.20 (d, 2H, *J* = 4.6 Hz; terthienyl-H), 6.97 (m, 2H; terthienyl-H), 6.90 (d, 2H, *J* = 3.2 Hz; terthienyl-H), 6.45 (d, 2H, *J* = 3.2 Hz; terthienyl-H), 5.98 (d, 2H, *J* = 4.6 Hz; outer β-H), 5.29 (d, 2H, *J* = 4.1 Hz; terthienyl-H), 5.22 (br s, 1H; inner NH), 5.15 (br s, 2H; terthienyl-H), and 4.78 (d, 2H, *J* = 4.1 Hz; terthienyl-H); ¹⁹F NMR (565 MHz, CDCl₃, 213 K): δ (ppm) –136.41 (d, 2F, *J* = 23.0 Hz; *o*-F), –136.58 (d, 2F, *J* = 23.0 Hz; *o*-F), –136.87 (d, 2F, *J* = 23.0 Hz; *o*-F), –137.96 (d, 2F, *J* = 23.0 Hz; *o*-F), –150.11 (t, 2F, *J* = 22.0 Hz; *p*-F), –150.82 (t, 2F, *J* = 22.0 Hz; *p*-F), –159.35 (m, 4F; *m*-F), –159.79 (br s, 2F; *m*-F), and –160.95 (br s, 2F; *m*-F). UV/vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 418 (95000), 650 (37000), and 975 (10000).

 α -quaterthiophene-5-carbaldehyde s3

According to the literature,^[S1, S2] **s1** (273 mg, 1.0 mmol), **s2** (440 mg, 1.5 mmol), **SPhos-Precat.** (36 mg, 5 mol%), and dry THF (5.0 mL; 0.2 M) were added to a Schlenk tube. To the mixture, degassed 0.5 M K₃PO₄ aq. (4.0 mL, 2.0 mmol) was added. The reaction mixture was stirred at 40 °C. After 8 h, the mixture was cooled to room temperature and CH_2Cl_2 was added to dissolve the solids. The organic phase was dried over Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (CH_2Cl_2) and recrystallization with $CH_2Cl_2/MeOH$ to give **s3** as brown solids (270 mg, 75% yield).

[S1] T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073.

[S2] N. C. Bruno, M. T. Tudge, S. L. Buchwald, Chem. Sci. 2013, 4, 916.

s3: ¹H NMR (600 MHz, CDCl₃, 300 K): δ (ppm) 9.87 (s, 1H), 7.67 (d, 1H, *J* = 3.7 Hz), 7.28 (d, 1H, *J* = 3.7 Hz), 7.25 (m, 2H), 7.20 (dd, 1H, *J*₁ = 0.9 Hz, *J*₂ = 3.7 Hz), 7.13 (m, 2H), 7.10 (d, 1H, *J* = 3.7 Hz), and 7.04 (dd, 1H, *J*₁ = 3.7 Hz, *J*₂ = 5.0 Hz); ¹³C NMR (151 MHz, CDCl₃, 300 K): δ (ppm) 182.53, 141.83, 139.01, 137.51, 137.48, 136.93, 135.20, 134.68, 128.14, 127.13, 125.27, 125,07, 124.70, 124.64, and 124.22.

5,20-bis(α-quaterthienyl)-10,15,25,30-tetrakis(pentafluorophenyl) [26]hexaphyrins T4

To a solution of 5,10-bis(pentafluorophenyl)tripyrromethane (140 mg, 0.25 mmol; 1.0 equiv) and α -quaterthiophene-5-carbaldehyde **s3** (90 mg; 1.0 equiv) in dry dichloromethane (25 ml; 10.0 mM) was added methanesulfonic acid (2.5 M diluted with CH₂Cl₂; 20 mol%), and the resulting solution was stirred under N₂ atmosphere at 0 °C for 2 h. After the addition of 2,3-dichloro-5,6-dicyanobenzoquinone (284 mg; 5.0 equiv), the solution was stirred for another 20 min, and then passed through a short alumina column with CH₂Cl₂ as an eluent. The reaction mixture was purified by silica-gel chromatography (CH₂Cl₂ : *n*-hexane = 1:1) followed by recrystallization from CH₂Cl₂/*n*-hexane to give **T4** as greenish crystals (34 mg, 15%).

T4: ¹H NMR (600 MHz, CDCl₃, 213 K): δ (ppm) 8.41 (br s, 1H; inner NH), 8.19 (d, 2H, *J* = 4.1 Hz; outer β-H), 8.14 (s, 2H; outer β-H), 7.86 (d, 2H, *J* = 4.1 Hz; outer β-H), 7.79 (d, 2H, *J* = 4.6 Hz; outer β-H), 7.59 (s, 2H; outer β-H), 7.25 (dd, 2H, *J*₁ = 0.9 Hz, *J*₂ = 5.0 Hz; quaterthienyl-H), 7.15 (dd, 2H, *J*₁ = 0.9 Hz, *J*₂ = 5.0 Hz; quaterthienyl-H), 7.01 (d, 2H, *J* = 3.7 Hz; quaterthienyl-H), 6.81 (d, 2H, *J* = 3.7 Hz; quaterthienyl-H), 6.45 (d, 2H, *J* = 3.6 Hz; quaterthienyl-H), 6.05 (d, 2H, *J* = 4.6 Hz; outer β-H), 5.41 (br s, 1H; inner NH), 5.30 (d, 2H, *J* = 4.1 Hz; quaterthienyl-H), 5.20 (d, 2H, *J* = 3.6 Hz; quaterthienyl-H), and 4.82 (d, 2H, *J* = 4.1 Hz; quaterthienyl-H); ¹⁹F NMR (565 MHz, CDCl₃, 213 K): δ (ppm) –136.53 (m, 4F; o-F), –136.90 (d, 2F, *J* = 23.0 Hz; o-F), –138.00 (d, 2F, *J* = 23.0 Hz; o-F), –150.34 (t, 2F, *J* = 22.0 Hz; p-F), –150.88 (t, 2F, *J* = 22.0 Hz;

p-F), –159.60 (m, 4F; *m*-F), –160.02 (br s, 2F; *m*-F), and –161.00 (br s, 2F; *m*-F). UV / vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 432 (102000), 557 (60000), and 1004 (17000).

5,15-bis(pentafluorophenyl)-10,20-bis(2-thienyl)porphyrin P1 &

5,15-bis(pentafluorophenyl)-10,20-bis(5-bromo-2-thienyl)porphyrin P1Br

To a solution of 5-pentafluorophenyldipyrromethane s4 (156 mg, 0.50 mmol; 1.0 equiv) and the corresponding thiophene-carboxaldehyde s5 or s6 (1.0 equiv) in dry dichloromethane (50 ml; 10 mM) was added methanesulfonic acid (2.5 M diluted with CH_2Cl_2 ; 25 mol%), and the resulting solution was stirred under N₂ atmosphere at 0 °C for 2 h. After the addition of 2,3-dichloro-5,6-dicyanobenzoquinone (340 mg; 3.0 equiv), the solution was stirred for another 30 min, and then passed through a short alumina column with CH_2Cl_2 as an eluent. The reaction mixture was purified by silica-gel chromatography ($CH_2Cl_2 : n$ -hexane = 1:1) followed by recrystallization from CH_2Cl_2/n -hexane to give P1 (65 mg, 32%) or P1Br (156 mg, 56%) as purple crystals.

P1: ¹H NMR (600 MHz, CDCl₃, 300 K): δ (ppm) 9.15 (d, 4H, *J* = 4.6 Hz; β-H), 8.79 (d, 4H, *J* = 4.6 Hz; β-H), 7.95 (dd, 2H, *J*₁ = 5.5 Hz, *J*₂ = 1.4 Hz; thienyl-H), 7.90 (br d, 2H, *J* = 5.5 Hz; thienyl-H), 7.53 (dd, 2H, *J*₁ = 5.5 Hz, *J*₂ = 3.2 Hz; thienyl-H), and –2.74 (br s, 2H; inner NH); ¹⁹F NMR (565 MHz, CDCl₃, 300 K): δ (ppm) –136.66 (dd, 4F, *J*₁ = 25.2 Hz, *J*₂ = 7.0 Hz; o-F), –152.11 (t, 2F, *J* = 22.0 Hz; *p*-F), and –160.90 (br t, 4H, *J* = 22.0 Hz; *m*-F). UV / vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 419 (360000), 514 (21000), 550 (4800), 591 (6700) and 650 (1500). HR ESI-TOF-MS (positive mode): *m/z* (% intensity): 807.0730 (100) [*M*+H]⁺, calcd for C₄₀H₁₇F₁₀N₄S₂ = 807.0729.

P1Br: ¹H NMR (600 MHz, CDCl₃, 300 K): δ (ppm) 9.20 (d, 4H, *J* = 4.6 Hz; β-H), 8.82 (d, 4H, *J* = 4.6 Hz; β-H), 7.67 (dd, 2H, $J_1 = 3.7$ Hz, $J_2 = 1.4$ Hz; thienyl-H), 7.50 (dd, 2H, $J_1 = 3.7$ Hz, $J_2 = 1.4$ Hz; thienyl-H), and –2.80 (br s, 2H; inner NH); ¹⁹F NMR (565 MHz, CDCl₃, 300 K): δ (ppm) –136.70 (dd, 4F, $J_1 = 25.2$ Hz, $J_2 = 7.0$ Hz; o-F), –152.76 (t, 2F, *J* = 22.0 Hz; p-F), and –161.60 (br t, 4H, *J* = 22.0 Hz; *m*-F). UV/vis (in CH₂Cl₂): λ_{max} [nm] (nomalized) = 421 (1.000), 515 (0.061), 551 (0.017), 591 (0.021) and 652 (0.004). HR ESI-TOF-MS (positive mode): *m*/*z* (% intensity): 964.8929 (100) [*M*+H]⁺, calcd for C₄₀H₁₅F₁₀N₄S₂Br₂ = 964.8922.

General Procedure for the Synthesis of 5,15-bis(pentafluorophenyl)-10,20-bis(α-oligothienyl)porphyrins

P1Br (48 mg, 50 μ mol), the corresponding boronic acid pinacol ester (4.0 eq), **SPhos-Precat.** (3.6 mg, 10 mol%), and dry THF (2.0 mL; 25 mM) were added to a Schlenk tube. To the mixture, degassed 0.5 M K₃PO₄ aq. (0.40 mL; 4.0 eq) was added. The reaction mixture was stirred at 40 °C. After 3 h, the mixture was cooled to room temperature and CH₂Cl₂ was added to dissolve the solids. The organic phase was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (CH₂Cl₂ : *n*-hexane = 1:1) and recrystallization with CH₂Cl₂/MeOH to give **P2-hex** (52 mg, 91% yield) or **P3** (34 mg, 60% yield) or **P4** (20 mg, 31% yield) as brown or purple solids, respectively. (**#P2** (n = 2, R = H) was difficult to isolate because of its low solubility.)

P2-hex: ¹H NMR (600 MHz, CDCl₃, 300 K): δ (ppm) 9.28 (d, 4H, *J* = 4.6 Hz; β-H), 8.80 (d, 4H, *J* = 4.6 Hz; β-H), 7.80 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.53 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.25 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.68 (d, 2H, *J* = 3.7 Hz; thienyl-H), 2.90 (t, 4H, *J* = 7.7 Hz; hexyl-H), 1.77 (t, 4H, *J* = 7.7 Hz; hexyl-H), 1.53 (m, 4H; hexyl-H), 1.37 (m, 8H; hexyl-H), 0.93 (m, 6H; hexyl-H), and -2.70 (br s, 2H; inner NH); ¹⁹F NMR (565 MHz, CDCl₃, 300 K): δ (ppm) -136.65 (dd, 4F, *J*₁ = 25.2 Hz, *J*₂ = 7.0 Hz; *o*-F), -152.02 (t, 2F, *J* = 22.0 Hz; *p*-F), and -160.73 (br t, 4H, *J* = 22.0 Hz; *m*-F). UV/vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 421 (150000), 519 (18000), 566 (10000), 591 (9800) and 659 (2500). HR ESI-TOF-MS (positive mode): *m/z* (% intensity): 1139.2363 (100) [*M*+H]⁺, calcd for C₆₀H₄₅F₁₀N₄S₄ = 1139.2362.

P3: ¹H NMR (600 MHz, CDCl₃, 300 K): δ (ppm) 9.29 (d, 4H, *J* = 4.6 Hz; β-H), 8.82 (d, 4H, *J* = 4.6 Hz; β-H), 7.84 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.61 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.35 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.29 (m, 4H; thienyl-H), 7.22 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.09 (m, 2H; thienyl-H), and -2.67 (br s, 2H; inner NH); ¹⁹F NMR (565 MHz, CDCl₃, 300 K): δ (ppm) -136.68 (dd, 4F, *J*₁ = 25.2 Hz, *J*₂ = 7.0 Hz; *o*-F), -151.95 (t, 2F, *J* = 22.0 Hz; *p*-F), and -160.70 (br t, 4H, *J* = 22.0 Hz; *m*-F). UV / vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 418 (180000), 517 (21000), 567 (13000), 591 (12000) and 657 (2200). HR ESI-TOF-MS (positive mode): *m*/*z* (% intensity): 1135.0219 (100) [*M*+H]⁺, calcd for C₅₆H₂₅F₁₀N₄S₆ = 1135.0238.

P4: ¹H NMR (600 MHz, CDCl₃, 300 K): *δ* (ppm) 9.30 (d, 4H, *J* = 4.6 Hz; *β*-H), 8.82 (d, 4H, *J* = 4.6 Hz; *β*-H), 7.84 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.62 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.36 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.23 (m, 6H; thienyl-H), 7.19 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.15 (d, 2H, *J* = 3.7 Hz; thienyl-H), 7.05 (dd, 2H, *J*₁ = 5.0 Hz,

 $J_2 = 3.7$ Hz; thienyl-H), and –2.67 (br s, 2H; inner NH); ¹⁹F NMR (565 MHz, CDCl₃, 300 K): δ (ppm) –136.66 (dd, 4F, $J_1 = 25.2$ Hz, $J_2 = 7.0$ Hz; o-F), –151.93 (t, 2F, J = 22.0 Hz; p-F), and –160.69 (br t, 4H, J = 22.0 Hz; m-F). UV/vis (in CH₂Cl₂): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 419 (160000), 515 (22000; shoulder), 571 (13000), 584 (13000) and 659 (2200). HR ESI-TOF-MS (negative mode): m/z (% intensity): 1297.9887 (100) [M]⁻, calcd for C₆₄H₂₈F₁₀N₄S₈ = 1297.9914.

II. Supporting Figures and Tables

1. Absorption Spectra

Figure S1. UV/Vis/NIR absorption spectra of T1–T4 in various solvents.

Figure S2. Temperature dependent UV/Vis/NIR absorption spectra of T1 in 2-methyl THF (T = 77–297 K).

Figure S3. Temperature dependent UV/Vis/NIR absorption spectra of T2 in 2-methyl THF (T = 77–297 K).

Figure S4. Temperature dependent UV/Vis/NIR absorption spectra of T3 in 2-methyl THF (T = 77–297 K).

Figure S5. Temperature dependent UV/Vis/NIR absorption spectra of T4 in 2-methyl THF (T = 77–297 K).

2. ¹H and ¹⁹F NMR Spectra

Figure S6. Variable temperature ¹H and ¹⁹F NMR spectra of **T2** in CDCl₃. *: Residual solvent peaks.

Figure S7. Variable temperature ¹H and ¹⁹F NMR spectra of T3 in CDCl₃. *: Residual solvent peaks.

Figure S8. Variable temperature ¹H and ¹⁹F NMR spectra of T4 in CDCl₃. *: Residual solvent peaks.

Figure S9. (a) ¹H and (b) ¹³C NMR spectra of **s3** in $CDCl_3$ at 25 °C. *: Residual solvent peaks.

Figure S10. (a) ¹H and (b) ¹⁹F NMR spectra of **P1** in CDCl₃ at 25 °C. *: Residual solvent peaks.

Figure S11. (a) ¹H and (b) ¹⁹F NMR spectra of **P1Br** in $CDCl_3$ at 25 °C. *: Residual solvent peaks.

Figure S12. (a) ¹H and (b) ¹⁹F NMR spectra of **P2** in CDCl₃ at 25 °C. *: Residual solvent peaks.

Figure S13. (a) ¹H and (b) ¹⁹F NMR spectra of **P3** in $CDCl_3$ at 25 °C. *: Residual solvent peaks.

Figure S14. (a) ¹H and (b) ¹⁹F NMR spectra of **P4** in CDCl₃ at 25 °C. *: Residual solvent peaks.

Figure S15. ¹H–¹H COSY spectrum of **T2** in CDCl₃ at –60 °C.

Figure S16. ¹H–¹H COSY spectrrum of **T3** in CDCl₃ at –40 °C.

Figure S17. ¹H–¹H COSY spectrrum of **T4** in CDCl₃ at –40 °C.

3. ESI-TOF-MS Data

Figure S18. Observed (top) and simulated (bottom) high-resolution ESI-TOF-MS of (a): **T2**, (b): **T3**, and (c): **T4** in MeCN.

Figure S19. Observed (top) and simulated (bottom) high-resolution ESI-TOF-MS of (a): **P1**, (b): **P2**, (c): **P1Br**, (d): **P3**, and (e): **P4** in MeCN.

4. Cyclic Voltammograms

Figure S20. Cyclic voltammogram (CV; red line) of T1–T4.

Table S1. Electrochemical potentials^[a] and estimated HOMO–LIMO gaps (ΔE) of **T1–T4**.

	E ^{1/2} ox2	$E^{1/2}_{ox1}$	E ^{1/2} red1	E ^{1/2} red2	E ^{1/2} red3	E ^{1/2} red4	∆ <i>E</i> [eV]
T1	_	0.38	-0.91	-0.98	-1.81	-2.11	1.29
T2	0.54	0.27	-0.91	-1.16	-1.76	-2.05	1.18
Т3	0.39	0.22	-0.88	-1.12	-1.70	-1.96	1.09
Τ4	0.29	0.17	-0.87	-1.14	-1.71	-1.98	0.98

[a] Measured in CH_2Cl_2 , potentials [V] vs ferrocene/ferrocenium ion. Scan rate, 0.05 Vs⁻¹; working electrode, Pt; counter electrode, Pt wire; supporting electrolyte, 0.1 M Bu_4NPF_6 .

5. Crystal Data

Figure S21. X-Ray crystal structure of **T2**. Solvent molecules are omitted for clarity. The thermal ellipsoids represent 30% probability level.

Figure S22. X-Ray crystal structure of **T3**. Solvent molecules are omitted for clarity. The thermal ellipsoids represent 30% probability level.

Figure S23. X-Ray crystal structure of **T4**. Solvent molecules are omitted for clarity. The thermal ellipsoids represent 30% probability level.

	T2	T3	T4
formula	$2(C_{70}H_{24}F_{20}N_6S_4)$	$C_{78}H_{28}F_{20}N_6S_6$	$2(C_{86}H_{32}F_{20}N_6S_8)$,
	1.84(C ₆ H ₁₄)	0.51(C ₇ H ₁₆), C ₇ ,	2(C ₇ H ₁₆), 0.44C ₇ ,
	1.10(CH ₂ Cl ₂)	1.89(CH ₂ Cl ₂)	1.53(CCl ₃), O
Solvent	CH_2Cl_2	CH_2Cl_2	CHCl ₃
	<i>n</i> -hexane	<i>n</i> -heptane	<i>n</i> -heptane
$M_{ m r}$	3165.36	1882.68	4006.31
T [K]	93	93	93
crystal system	triclinic	monoclinic	triclinic
space group	<i>P</i> -1	C2/c	<i>P</i> -1
	(No. 2)	(No. 15)	(No. 2)
a [Å]	18.9073(16)	49.998(16)	17.2734(8)
<i>b</i> [Å]	20.7452(6)	12.402(3)	18.9028(5)
<i>c</i> [Å]	21.091(2)	35.242(11)	30.1289(17)
α[°]	67.38(2)	-	105.000(14)
β[°]	77.21(2)	131.613(5)	92.92(2)
γ[°]	65.257(13)	-	107.23(3)
<i>V</i> [Å ³]	6917.2(9)	16338(8)	8988.7(7)
Ζ	2	8	2
$ ho_{ m calcd}[m gcm^{-3}]$	1.520	1.531	1.481
$R_1\left[I > 2\sigma(I)\right]$	0.0639	0.0850	0.1104
wR_2 [all data]	0.1805	0.2299	0.3750
GOF	1.042	1.034	1.073
CCDC Number	1025770	1025771	1025772

Table S2. Crystal data for T2, T3, and T4.

Figure S24. Selected bond length and HOMA value of **T2** in the packing structure. #The unit cell contains two different hexaphyrins. The tripyrrodimethene units on the left half are included in the helical structure.

Figure S25. Selected bond length and HOMA value of **T3** in the packing structure. The tripyrrodimethene unit on the left half is included in the helical structure.

6. DFT Calculations

All calculations were carried out using the Gaussian 09 program.^{S1} Initial geometries were obtained from X-ray structures. All structures were fully optimized without any symmetry restriction. The calculations were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional),^{S2,S3} employing a basis set 6-31G(d) for C, H, N, and F. The NICS values and absolute ¹H shielding values were obtained with the GIAO method at the B3LYP/6-31G(d) level. The ¹H chemical shift values were calculated relative to CHCl₃ (δ = 7.26 ppm, absolute shielding: 24.94 ppm). The global ring centers for the NICS values were designated at the nonweighted means of the carbon and nitrogen coordinates on the peripheral positions of macrocycles. In addition, NICS values were also calculated on centers of other local cyclic structures as depicted in the following figures.

Figure S26. Frontier orbital diagrams of T0.

Figure S27. Frontier orbital diagrams of T1.

Figure S28. Frontier orbital diagrams of T2.

Figure S29. Frontier orbital diagrams of T3.

Figure S30. Frontier orbital diagrams of T4.

Figure S31. Summary of energy diagrams of T0–T4.

Figure S32. NICS values at various positions and simulated chemical shifts of T0.

Figure S33. NICS values at various positions and simulated chemical shifts of T1 on the optimized structure.

Figure S34. NICS values at various positions and simulated chemical shifts of T2 on the optimized structure.

-8.77 -8.77 A–1 В -9.75 B+1 -16.76 B–1 -16.76 С -7.17 C+1 -9.39 C–1 -9.39

Α

-8.30

Figure S35. NICS values at various positions and simulated chemical shifts of T3 on the optimized structure.

Figure S36. NICS values at various positions and simulated chemical shifts of T4 on the optimized structure.

Figure S37. Calculated absorption spectra on the basis of optimized structures (bars) and observed absorption spectra (lines) of **T1**.

Table S2. The detailed information about TD-DFT calculation of **T1**. (Excited state 1–15)

Excited State 1: 1050.	25 nm, f=0.1492	Excited State 9: 500.47 nm, f=0.0000			
322 -> 324	0.15587	316 -> 324	-0.14799		
322 -> 325	-0.22360	317 -> 324	-0.12866		
323 -> 324	0.63636 (HOMO to LUMO)	321 -> 325	-0.42930		
323 -> 325	0.15862	322 -> 326	0.20272		
		323 -> 326	-0.17250		
Excited State 2: 906.3	1 nm, f=0.0413	323 -> 327	0.43072 (HOMO to LUMO+3)		
322 -> 324	0.30353				
323 -> 324	-0.21412	Excited State 10: 487	.78 nm, f=0.0000		
323 -> 325	0.60341 (HOMO to LUMO+1)	317 -> 324	0.24306		
		319 -> 324	0.62266 (HOMO-4 to LUMO)		
Excited State 3: 623.3	9 nm, f=0.0000	319 -> 325	0.13079		
321 -> 324	0.61958 (HOMO-2 to LUMO)				
323 -> 326	0.33174	Excited State 11: 483	.73 nm f=0.1293		
		314 -> 324	0.16781		
Excited State 4: 605.9	8 nm, f=0.3817	318 -> 324	0.60043 (HOMO-5 to LUMO)		
322 -> 324	0.59761 (HOMO-1 to LUMO)	320 -> 324	0.19430		
322 -> 325	0.15099	320 -> 325	-0.11583		
323 -> 325	-0.33096	322 -> 325	0.13476		
323 <- 325	0.11510	323 -> 328	0.16714		
Excited State 5: 577.3	7 nm, f=0.0000	Excited State 12: 474	.26 nm, f=0.0000		
319 -> 324	-0.11339	317 -> 324	0.64118 (HOMO-6 to LUMO)		
321 -> 324	-0.26836	319 -> 324	-0.21206		
321 -> 325	-0.41781	321 -> 325	-0.10008		
323 -> 326	0.44005 (HOMO to LUMO+2)	323 -> 326	-0.14567		
323 -> 327	-0.18796				
		Excited State 13: 460	.90 nm. f=0.0914		
Excited State 6: 572.1	0 nm, f=0.6506	314 -> 324	0.17444		
318 -> 324	-0.10633	318 -> 324	0.13355		
320 -> 324	-0.25811	318 -> 325	-0.14536		
322 -> 324	-0.13603	320 -> 325	0.55768 (HOMO-3 to LUMO+1)		
322 -> 325	0.58596 (HOMO-1 to LUMO+1)	323 -> 328	-0.31740		
323 -> 324	0.21040				
323 -> 325	0.10320	Excited State 14: 455.27 nm, f=0.0000			
		313 -> 324	0.25489		
Excited State 7: 523.3	6 nm, f=0.0000	316 -> 324	0.61709 (HOMO-7 to LUMO)		
319 -> 324	-0.11230	322 -> 326	0.17202		
321 -> 324	-0.14005				
321 -> 325	0.31043	Excited State 15: 448	.23 nm, f=0.0092		
323 -> 326	0.35168	314 -> 324	0.21670		
323 -> 327	0.46922 (HOMO to LUMO+3)	315 -> 324	0.61437 (HOMO-7 to LUMO)		
		320 -> 325	-0.16255		
Excited State 8: 508.7	2 nm, f=0.1278	323 -> 328	-0.16068		
314 -> 324	0.10852				
318 -> 324	-0.28879				
320 -> 324	0.58435 (HOMO-3 to LUMO)				
322 -> 325	0.17473				
323 -> 328	0.11325				

Figure S38. Calculated absorption spectra on the basis of optimized structures (bars) and observed absorption spectra (lines) of **T2**.

Table S3. The detailed information about TD-DFT calculation of T2. (Excited state 1–15)

Excited State 1: 1130	.66 nm, f=0.1137	Excited State 10: 542	.03 nm, f=0.0133
363 -> 367	0.14821	362 -> 367	-0.10545
364 -> 367	-0.10000	363 -> 368	0.11020
365 -> 366	0.68345 (HOMO to LUMO)	364 -> 368	-0.11221
		365 -> 369	0.66605 (HOMO to LUMO+4)
Excited State 2: 1001	.95 nm, f=0.1039		· · · · ·
363 -> 366	-0.14184	Excited State 11: 2.52	287 eV, 490.32 nm f=0.0736
365 -> 367	0.69778 (HOMO to LUMO+1)	361 -> 366	0.39049
		364 -> 368	-0.31401
Excited State 3: 724.0	03 nm, f=0.0001	365 -> 370	0.47796 (HOMO to LUMO+5)
363 -> 366	0.10523		
364 -> 366	0.69123 (HOMO-1 to LUMO)	Excited State 12: 488	.05 nm, f=0.0262
		361 -> 366	0.57652 (HOMO-4 to LUMO)
Excited State 4: 690.7	74 nm, f=0.0051	364 -> 368	0.26694
362 -> 366	-0.15966	365 -> 370	-0.26729
364 -> 367	0.53085 (HOMO-1 to LUMO+1)		
365 -> 368	-0.43096	Excited State 13: 477	.87 nm, f=0.0058
		361 -> 367	0.69074 (HOMO-4 to LUMO+1)
Excited State 5: 648.6	64 nm, f=0.0048		
362 -> 366	0.54476 (HOMO-3 to LUMO)	Excited State 14: 456	.10 nm, f=0.0057
363 -> 367	0.42358	355 -> 366	0.14640
365 -> 368	-0.12491	356 -> 366	0.12087
		360 -> 366	0.63989 (HOMO-5 to LUMO)
Excited State 6: 625.4	14 nm, f=0.1261	363 -> 368	0.16038
362 -> 367	-0.43985		
363 -> 366	0.51205 (HOMO-2 to LUMO)	Excited State 15: 443	.03 nm, f=0.0220
365 -> 367	0.12797	354 -> 366	-0.12130
365 -> 369	-0.15061	357 -> 366	-0.24470
		359 -> 366	0.60275 (HOMO-6 to LUMO)
Excited State 7: 592.3	35 nm, f=0.0398	362 -> 368	-0.18632
362 -> 366	-0.13404		
363 -> 367	0.27673		
364 -> 367	0.37122		
365 -> 368	0.51243 (HOMO to LUMO+2)		
Excited State 8: 568.9	00 nm, f=0.0945		
362 -> 367	0.46103 (HOMO-3 to LUMO+1)		
363 -> 366	0.38912		
364 -> 368	0.14497		
365 -> 370	0.29590		
Excited State 9: 555.3	37 nm, f=0.6748		
362 -> 366	-0.38012		
363 -> 367	0.46031 (HOMO-2 to LUMO+1)		
364 -> 367	-0.25468		
365 -> 366	-0.17063		
365 -> 368	-0.17134		

Figure S39. Calculated absorption spectra on the basis of optimized structures (bars) and observed absorption spectra (lines) of **T3**.

Table S4. The detailed information about TD-DFT calculation of T3. (Excited state 1–15)

Excited State 1: 1190.95 nm, f=0.0938 Excited State 11: 527.23 nm, f=0.0816 404 -> 409 0.14645 404 -> 408 -0.10595 407 -> 408 0.68845 (HOMO to LUMO) 405 -> 409 -0.10682 406 -> 410 -0.44059 Excited State 2: 1066.72 nm, f=0.2131 407 -> 412 0.51655 (HOMO to LUMO+4) 404 -> 408 -0.11374 407 -> 409 0.70413 (HOMO to LUMO+1) Excited State 12: 497.14 nm, f=0.0120 402 -> 408-0.16725 Excited State 3: 804.41 nm, f=0.0018 403 -> 408 0.65621 (HOMO-4 to LUMO) 406 -> 408 0.70177 (HOMO-1 to LUMO) 404 -> 410 -0.12639 Excited State 4: 754.76 nm, f=0.0002 Excited State 13: 491.96 nm, f=0.0005 405 -> 408-0.13966 402 -> 409 -0.32863 403 -> 409 406 -> 409 0.59806 (HOMO-1 to LUMO+1) 0.57675 (HOMO-4 to LUMO+1) 407 -> 410 405 -> 410 -0.33812 0.18386 Excited State 5: 702.86 nm, f=0.0073 Excited State 14: 484.97 nm, f=0.0125 404 -> 409 401 -> 409 0.33368 0.10316 405 -> 408 0.60254 (HOMO-2 to LUMO) 402 -> 408 0.66732 (HOMO-5 to LUMO) 406 -> 409 0.11832 403 -> 408 0.14590 Excited State 6: 676.04 nm, f=0.1589 Excited State 15: 471.44 nm, f=0.0045 404 -> 408 -0.34311 402 -> 409 0.57929 (HOMO-5 to LUMO+1) 405 -> 409 0.59554 (HOMO-2 to LUMO+1) 403 -> 409 0.21149 407 -> 411 -0.10428 405 -> 410 0.32146 Excited State 7: 643.17 nm, f=0.0344 404 -> 409 0.13534 406 -> 409 0.33885 407 -> 410 0.60134 (HOMO to LUMO+2) Excited State 8: 597.57 nm, f=0.1075 0.52412 (HOMO-3 to LUMO) $404 \rightarrow 408$ 405 -> 409 0.27346 406 -> 410 0.18249 407 -> 412 0.31959 Excited State 9: 571.13 nm, f=0.6455 404 -> 409 0.58153 (HOMO-3 to LUMO+1) 405 -> 408 -0.31713 407 -> 408 -0.15886 407 -> 410 -0.11056 Excited State 10: 560.05 nm, f=0.0186 404 -> 410 -0.10803 407 -> 411 0.67222 (HOMO to LUMO+3)

Figure S40. Calculated absorption spectra on the basis of optimized structures (bars) and observed absorption spectra (lines) of **T4**.

Table S5. The detailed information about TD-DFT calculation of T4. (Excited state 1–15)

Excited State 1: 1228.4	0 nm, f=0.0827	Excited State 11: 560.03 nm, f=0.0830	
446 -> 451	0.13890	445 -> 450	-0.41358
449 -> 450	0.69091 (HOMO to LUMO)	448 -> 452	0.31855
		449 -> 453	0.13221
Excited State 2: 1112.9	96 nm, f=0.3492	449 -> 454	0.42213 (HOMO to LUMO+4)
449 -> 451	0.70571 (HOMO to LUMO+1)		
		Excited State 12: 549	.88 nm, f=0.0269
Excited State 3: 871.20	0 nm, f=0.0046	445 -> 450	0.46693 (HOMO-4 to LUMO)
448 -> 450	0.70072 (HOMO-1 to LUMO)	446 -> 450	0.14042
	× /	448 -> 452	0.28634
Excited State 4: 811.4	40 nm, f=0.0090	449 -> 453	-0.24755
447 -> 450	0.12936	449 -> 454	0.30730
448 -> 451	0.64119 (HOMO-1 to LUMO+1)		
449 -> 452	-0.24789	Excited State 13: 545	.20 nm, f=0.0013
		445 -> 451	0.65190 (HOMO-4 to LUMO+1)
Excited State 5: 753.61	nm. f=0.0253	447 -> 452	0.15495
446 -> 451	0.27722	449 -> 455	-0.13363
447 -> 450	0.63022 (HOMO-2 to LUMO)		
448 -> 451	-0.12555	Excited State 14: 514	67 nm, f=0.0816
		444 -> 450	0 67421 (HOMO-5 to LUMO)
Excited State 6: 729.51	nm. f=0.2015	446 -> 451	-0.11863
446 -> 450	-0.24779		
447 -> 451	0.64460 (HOMO-2 to LUMO+1)	Excited State 15: 510	42 nm, f=0.2247
		444 -> 451	0.58483 (HOMO-5 to LUMO+1)
Excited State 7: 678 45	nm f=0.0680	447 -> 451	-0 13350
446 -> 451	-0.10292	448 -> 452	0.28168
448 -> 451	0.25739	449 -> 454	-0.10801
449 -> 452	0.64310 (HOMO to LUMO+2)	449 -> 456	-0.10527
119 9 132			0.10527
Excited State 8: 615 64	nm f=0 1748		
446 -> 450	0 54796 (HOMO-3 to LUMO)		
447 -> 451	0.17120		
448 -> 452	0.18832		
$440 \Rightarrow 452$ $449 \Rightarrow 454$	-0.33769		
101 - 101	-0.55705		
Excited State 9: 584.17	' nm. f=0 5041		
444 -> 450	0.12215		
446 -> 451	0.60425 (HOMO-3 to LUMO+1)		
447 -> 450	-0.27592		
449 -> 450	-0.13578		
Excited State 10: 572.5	54 nm, f=0.0152		
445 -> 450	0.27878		
448 -> 452	0.16632		
449 -> 453	0.60671 (HOMO to LUMO+3)		

Figure S41. Selected bond length and HOMA value of T0 on the optimized structure.

Figure S42. Selected bond length and HOMA value of **T1** on the optimized structure. The tripyrrodimethene unit on the left half is included in the helical structure.

Figure S43. Selected bond length and HOMA value of **T2** on the optimized structure. The tripyrrodimethene unit on the left half is included in the helical structure.

Figure S44. Selected bond length and HOMA value of **T1** on the optimized structure. The tripyrrodimethene unit on the left half is included in the helical structure.

Figure S45. Selected bond length and HOMA value of **T4** on the optimized structure. The tripyrrodimethene unit on the left half is included in the helical structure.

	ТО	ті	Т2	ТЗ	Τ4
NICS (calcd.)	-15.54	-12.21	-8.50 (-7.21)	-8.30 (-7.17)	-8.26 (-7.13)
HOMA (obsd.)	0.783	0.568	0.464 (0.425)	0.397	_a
HOMA (calcd.)	0.737	0.604	0.518	0.498	0.498
Excited Lifetime (ps)	138	25.4	15.2	10.0	8.5
ΔE (eV vs Fc; CV)	_	1.29	1.18	1.09	1.04
∆E (eV; calcd.)	1.88	1.44	1.41	1.35	1.31
δ (outer β -H)	10.49–9.03	8.16–7.38	8.21–5.76	8.20–5.98	8.19–6.05
δ (inner NH)	-4.97	_	8.23, 5.12	8.35, 5.22	8.41, 5.41
δ (thienyl-H)	_	5.35-4.55	6.88–4.72	7.20–4.78	7.25–4.82

Table S3. Summary of various spectral and photophysical data for T0–T4.

[a]: The obtained data of **T4** was not sufficient to discuss the bond length in details.

7. Femtosecond Transient Absorption Spectra and Decay Profiles

Figure S46. Femtosecond transient absorption spectra of T1-T4 in toluene.

Figure S47. Decay profiles of T1-T4.

8. References

^[51]Gaussian 09, Revision A.02. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

^[52] A. D. Becke, J. Chem. Phys. **1993**, 98, 1372.

^[53]C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785.