Supporting Information for:

Synthesis of arsenic-rich As_{n} ligand complexes from yellow arsenic

C. Graß1, M. Bodensteiner, M. Zabel and M. Scheer
Institut für Anorganische Chemie der Universität Regensburg, D-93040 Regensburg, Germany

Contents

General Procedures and Starting Materials 2
Experimental Section 2
Synthesis of 1 at $70^{\circ} \mathrm{C}$ 2
Synthesis of 1, 2 and 3 at room temperature 2
Crystal Data for 1 8
Crystal Data for 1*DCM. 10
Crystal Data for 2*4DCM. 12
Crystal Data for 2. 13
Crystal Data for 3 15
Selected Bond Distances and Angles for $2 * 4 D C M$ 17
Selected Bond Distances and Angles for 2 18
Selected Bond Distances and Angles for 3 19
References 20

General Procedures and Starting Materials

All reactions were performed under an atmosphere of dry argon with standard vacuum, Schlenk and glove box techniques. Solvents were purified and degassed by standard procedures. Mass spectra were recorded on a Finnigan MAT SSQ 710 A mass spectrometer. NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker Avance 400 $\left[{ }^{1} \mathrm{H}: 400.132 \mathrm{MHz}\right.$ standard tetramethylsilane, ${ }^{13} \mathrm{C}: 100.627 \mathrm{MHz}$ standard tetramethylsilane] or on a Bruker Avance $300\left[{ }^{1} \mathrm{H}: 300.130 \mathrm{MHz}\right.$ standard tetramethylsilane, ${ }^{13} \mathrm{C}: 75.468 \mathrm{MHz}$ standard tetramethylsilane]. The chemical shifts are reported relative to tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$.

Experimental Section

Synthesis of 1 at $70^{\circ} \mathrm{C}$

Freshly prepared $\mathrm{As}_{4}{ }^{1}$ (excess) solution (300 mL) in toluene was kept at $70^{\circ} \mathrm{C}$ and $\left[\left\{\eta^{5}-\mathrm{Cp}{ }^{\text {" }} \mathrm{Co}_{2}\right\}_{2}-\mu-\left\{\eta^{4: 4}{ }^{-}\right.\right.$ toluene \} $]^{2}(0.560 \mathrm{~g}, 0.83 \mathrm{mmol})$ was added in toluene (50 mL) in the darkness. The solution was stirred for two hours at $70^{\circ} \mathrm{C}$ yielding a green solution. The solvent was removed completely under vacuum. The residue was extracted with dichloromethane and filtrated over diatomaceous earth. 1 was yielded as green powder (600 mg , $0.68 \mathrm{mmol}, 82 \%)$.

Synthesis of 1, 2 and 3 at room temperature

Freshly prepared $\mathrm{As}_{4}{ }^{1}$ (excess) solution (300 mL) in toluene was cooled down to room temperature and [\{ η^{5} $\left.\mathrm{Cp}{ }^{-}{ }^{-} \mathrm{Co}_{2}\right\}_{2}-\mu-\left\{\eta^{4: 4}\right.$-toluene $\left.\}\right]^{2}(0.350 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added in toluene $(50 \mathrm{~mL})$ in the darkness. The solution was stirred for two hours at room temperature. The solvent was removed completely under vacuum. The residue was extracted with 10 mL of dichloromethane, 2 g of silica was added and the solvent was evaporated from the mixture in vacuum until it was free-flowing. Column chromatography (column: $25 \times 3 \mathrm{~cm}$, silica, temperature: $20^{\circ} \mathrm{C}$) with hexane/toluene ($9: 1$) a green fraction ($240 \mathrm{mg}, 54 \%$) of $\mathbf{1}$ followed by a brown zone containing 120 $\mathrm{mg}(14 \%)$ of $\mathbf{3}$. Finally elution of a brown zone with tetrahydrofuran yielded a fraction from which 77 mg (8\%) of $\mathbf{2}$ was isolated.

Analytical Data for 1:

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0 K}\right): 1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH})$;

Figure S1: ${ }^{1} \mathrm{H}$-NMR of $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0 K}$): $31.8\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 33.8\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.4\left(\mathrm{~s}, C \mathrm{H}_{3}\right)$, $79.2\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 106.3(\mathrm{~s}, \mathrm{CH}), 107.6\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right)$;

Figure S2: ${ }^{13} \mathrm{C}$-NMR of $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
MS (FDI): $m / z(\%): 883.6$ (100) $\left[\mathrm{M}^{+}\right]$; Calculated (\%) for $\mathbf{C}_{34} \mathbf{H}_{58} \mathbf{C o}_{2} \mathbf{A s} \mathbf{s}_{4}(884.01 \mathrm{~g} / \mathrm{mol}) \mathrm{C} 46.18$, H 6.61; found: C 45.96, H 6.92.

Analytical Data for 2:

${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0 K}$): 1.05 (br s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.12$ (br s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25(\mathrm{br} \mathrm{s}, 18 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.43\left(\mathrm{br} \mathrm{s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 4.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 5.03(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, CH);

Figure S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Signals marked with a star are impurities which cannot be removed through column chromatographic workup.

MS (FDI): $m / z(\%): 1918.4$ (100) $\left[\mathrm{M}^{+}\right], 1326.3$ (100) $\left[\mathrm{M}^{+}-\mathrm{Cp}^{\prime \prime}{ }^{\prime} \mathrm{CoAs}_{4}\right], 884.2(100)\left[\mathrm{M}^{+}\right.$-(Cp'"'Co) $\left.{ }_{2} \mathrm{As}_{6}\right]$;
Calculated (\%) for $\mathbf{C}_{68} \mathbf{H}_{116} \mathbf{C o 4}_{4} \mathbf{A s}_{10}$ (1917.86 g/mol) C 42.57, H 6.09; found: C 42.73, H 6.22.

Analytical Data for 3:

${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, $\left.\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0 K}\right): 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.36(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 4.80(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH})$, 5.03 (s br, 2H, CH);

Figure S4: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0 K}\right): 31.8\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.2\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.5\left(\mathrm{~s} \mathrm{br}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.8(\mathrm{~s}$, $\left.C H_{3}\right), 33.5\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 33.7\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 33.8\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.9\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.2\left(\mathrm{~s} \mathrm{br}, \mathrm{C}\left(C \mathrm{H}_{3}\right)_{3}\right), 34.3\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 34.4$ ($\left.\mathrm{s}, C \mathrm{H}_{3}\right), 34.7\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 79.2\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 82.2\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 82.6\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 85.8\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 107.4(\mathrm{~s}, C \mathrm{H})$, $109.1(\mathrm{~s}, \mathrm{CH}), 110.1(\mathrm{~s}, \mathrm{CH}), 112.8\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 113.6\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right)$;

Figure S5: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
 (100) $\left[\mathrm{M}^{+}-\mathrm{Cp}\right.$ "'‘CoAs $\left.{ }_{11}\right]$; Calculated (\%) for $\mathbf{C}_{51} \mathbf{H}_{87} \mathbf{C o}_{3} \mathbf{A s}_{12}(1775.54 \mathrm{~g} / \mathrm{mol}) \mathrm{C} 34.49$, H 4.94; found: C 34.81, H 4.91.

Crystal Data for 1.

Experimental. Single green block-shaped crystals of (1) were recrystallized from a saturated hexane solution at $-25^{\circ} \mathrm{C}$. A suitable crystal $\left(0.23 \times 0.12 \times 0.08 \mathrm{~mm}^{3}\right)$ was selected and mounted on a MITIGEN holder oil on an Aiglent Technologies (formerly Oxford Diffraction) Gemini R Ultra diffractometer. Using Olex2, ${ }^{3}$ the structure was solved with the SIR-97 ${ }^{4}$ structure solution program, using the Direct Methods solution method. The model was refined with version 2014/6 of ShelXL ${ }^{5}$ using Least Squares minimization. Absorption correction was applied empirically using SCALE3 program implemented to CrysAlis PRO software.

Crystal Data. $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{As}_{4} \mathrm{Co}_{2}, M_{r}=884.34$, monoclinic, $\mathrm{P}_{2} / \mathrm{n}$ (No. 14), $a=8.43860(10) \AA, b=$ $13.76760(10) \AA, c=16.02760(10) \AA, \beta=100.2700(10)^{\circ}, \alpha=\gamma=90^{\circ}, V=1832.24(3) \AA^{3}, T=123(2) \mathrm{K}, Z=$ $2, Z^{\prime}=0.5, \mu\left(\mathrm{CuK}_{\alpha}\right)=11.249,19971$ reflections measured, 3181 unique $\left(R_{\text {int }}=0.0879\right)$ which were used in all calculations. The final $w R_{2}$ was 0.0926 (all data) and R_{l} was 0.0331 (I >2(I)).

Compound	1
CCDC	1028573
Formula	$\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{As}_{4} \mathrm{Co}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.603
μ / mm^{-1}	11.249
Formula Weight	884.34
Colour	green
Shape	block
Max Size/mm	0.23
Mid Size/mm	0.12
Min Size/mm	0.08
T/K	123(2)
Crystal System	monoclinic
Space Group	$\mathrm{P} 21 / \mathrm{n}$
$a / \AA{ }^{\text {a }}$	8.4386(1)
b/Å	13.7676(1)
c / \AA	16.0276(1)
$\alpha 1^{\circ}$	90
$\beta 1^{\circ}$	100.270(1)
$\gamma 1^{\circ}$	90
V/ ${ }^{3}$	1832.24(3)
Z	2
Z^{\prime}	0.5
$\Theta_{\text {min }} I^{\circ}$	4.263
$\Theta_{\max } l^{\circ}$	66.683
Measured Refl.	19971
Independent Refl.	3181
Reflections Used	3018
$R_{\text {int }}$	0.0879
Parameters	181
Restraints	0
Largest Peak	0.900
Deepest Hole	-0.871
GooF	1.052
$w R_{2}$ (all data)	0.0926
$w R_{2}$	0.0915
R_{l} (all data)	0.0348
R_{I}	0.0331

Crystal Data for $1 * \mathbf{C H}_{2} \mathrm{Cl}_{2}$.

Experimental. Single green block-shaped crystals of $1 * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were recrystallized from a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-25^{\circ} \mathrm{C}$. A suitable crystal $\left(0.58 \times 0.37 \times 0.35 \mathrm{~mm}^{3}\right)$ was selected and mounted on a MITIGEN holder oil on an Agilent Technologies (formerly Oxford Diffraction) Gemini R Ultra diffractometer. Using Olex2, ${ }^{3}$ the structure was solved with the SIR-97 ${ }^{4}$ structure solution program, using the Direct Methods solution method. The model was refined with version 2014/6 of ShelXL ${ }^{5}$ using Least Squares minimization. Absorption correction was applied empirically using SCALE3 program implemented to CrysAlis PRO software. For the refinement of the disorder solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule (90:10) displacement parameter restraints (SIMU) were applied.

Crystal Data. $\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{As}_{4} \mathrm{Cl}_{2} \mathrm{Co}_{2}, M_{r}=969.27$, monoclinic, $\mathrm{C} 2 / \mathrm{c}$ (No. 15), $a=17.8930(10) \AA, b=$ $19.9249(11) \AA, c=11.6299(5) \AA, \beta=107.903(5)^{\circ}, \alpha=\gamma=90^{\circ}, V=3945.5(4) \AA^{3}, T=123(2) \mathrm{K}, Z=4, Z^{\prime}=$ $0.5, \mu\left(\mathrm{MoK}_{\alpha}\right)=4.329,13850$ reflections measured, 6515 unique ($R_{\text {int }}=0.0241$) which were used in all calculations. The final $w R_{2}$ was 0.0998 (all data) and R_{l} was 0.0387 (I > 2(I)).

Compound	$1 * \mathrm{CH}_{2} \mathrm{Cl}_{2}$
CCDC	1028574
Formula	$\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{As}_{4} \mathrm{Cl}_{2} \mathrm{Co}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.632
μ / mm^{-1}	4.329
Formula Weight	969.27
Colour	green
Shape	block
Max Size/mm	0.58
Mid Size/mm	0.37
Min Size/mm	0.35
T/K	123(2)
Crystal System	monoclinic
Space Group	C2/c
a / \AA	17.8930(10)
$b / A ̊$	19.9249(11)
$c / A ̊$	11.6299(5)
$\alpha 1^{\circ}$	90
$\beta 1^{\circ}$	107.903(5)
$\gamma 1^{\circ}$	90
V/ ${ }^{3}$	3945.5(4)
Z	4
Z^{\prime}	0.5
$\Theta_{\text {min }} I^{\circ}$	2.686
$\Theta_{\max } l^{\circ}$	32.651
Measured Refl.	13850
Independent Refl.	6515
Reflections used	5548
$R_{\text {int }}$	0.0241
Parameters	204
Restraints	12
Largest Peak	1.679
Deepest Hole	-0.865
GooF	1.087
$w R_{2}$ (all data)	0.0998
$w R_{2}$	0.0948
R_{l} (all data)	0.0490
R_{I}	0.0387

Crystal Data for 2*4 CH2Cl ${ }_{2}$.

Experimental. Single black block-shaped crystals of ($2 * \mathbf{4} \mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$) were recrystallized from a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-25^{\circ} \mathrm{C}$. A suitable crystal $\left(0.15 \times 0.10 \times 0.04 \mathrm{~mm}^{3}\right)$ was selected and mounted on a MITIGEN holder oil on an Agitlent Technologies (formerly Oxford diffraction) Gemini R Ultra diffractometer. Using Olex2, ${ }^{3}$ the structure was solved with the SIR-97 ${ }^{4}$ structure solution program, using the direct methods solution method. The model was refined with version 2014/6 of ShelXL ${ }^{5}$ using by full matrix least squares on \mathbf{F}^{2} minimization. Absorption correction was applied empirically using SCALE3 program implemented to CrysAlis PRO software. Distance and displacement parameter restraints (DFIX, SIMU) were applied to the two solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules. The third solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is located at the inversion center and could not be modelled. Therefore the Squeeze ${ }^{6}$ function of the Platon ${ }^{7}$ software was applied to back calculate its contribution to the structure factors.

Crystal Data. $\mathrm{C}_{72} \mathrm{H}_{124} \mathrm{As}_{10} \mathrm{Cl}_{8} \mathrm{Co}_{4}, M_{r}=2258.22$, triclinic, P-1 (No. 2), $a=13.7956(8) \AA, b=14.0892(8) \AA, c=$ $15.0382(10) \AA, \alpha=62.971(6)^{\circ}, \beta=69.895(6)^{\circ}, \gamma=61.292(6)^{\circ}, V=2254.0(1) \AA^{3}, T=123(2) \mathrm{K}, Z=1, Z^{\prime}=0.5$, $\mu\left(\mathrm{CuK}_{\alpha}\right)=12.199,11135$ reflections measured, 6133 unique $\left(R_{\text {int }}=0.0672\right)$ which were used in all calculations. The final $w R_{2}$ was 0.1770 (all data) and R_{l} was $0.0787(\mathrm{I}>2(\mathrm{I})$).

Compound	2*4 $\mathbf{C H}_{2} \mathrm{Cl}_{2}$
CCDC	1028576
Temperature/K	123(1)
Crystal system	triclinic
Space group	P-1
a/Å	13.7956(8)
b/Å	14.0892(8)
c/Å	15.0382(10)
$\alpha /{ }^{\circ}$	62.971(6)
$\beta /{ }^{\circ}$	69.895(6)
γ°	61.292(6)
Volume/ \AA^{3}	2254.0(3)
Z	1
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.664
μ / mm^{-1}	12.199
F(000)	1130.0
Crystal size $/ \mathrm{mm}^{3}$	$0.15 \times 0.1 \times 0.035$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$

2Θ range for data collection $/{ }^{\circ} 6.686$ to 124.232
Index ranges $\quad-15 \leq h \leq 15,-14 \leq k \leq 15,-13 \leq 1 \leq 17$
Reflections collected 11135
Independent reflections $\quad 6133\left[\mathrm{R}_{\text {int }}=0.0672, \mathrm{R}_{\text {sigma }}=0.0879\right]$

Data/restraints/parameters 6133/231/452
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.108$
Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0787, \mathrm{wR}_{2}=0.1658$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1088, \mathrm{wR}_{2}=0.1770$
Largest diff. peak/hole / e $\AA^{-3} 0.97 /-1.02$

Crystal Data for 2.

Experimental. Single black block-shaped crystals of (2) were recrystallised from a saturated hexane solution at $8^{\circ} \mathrm{C}$. A suitable crystal $\left(0.11 \times 0.10 \times 0.04 \mathrm{~mm}^{3}\right)$ was selected and mounted on a MITIGEN holder oil on an Agilent Technologies (formerly Oxford diffraction) SuperNova A diffractometer. Using Olex2, ${ }^{3}$ the structure was solved with the SIR-97 ${ }^{4}$ structure solution program, using the direct methods solution method. The model was refined with version 2014/6 of ShelXL ${ }^{5}$ using by full matrix least squares on \mathbf{F}^{2} minimization. Absorption correction was applied empirically using SCALE3 program implemented to CrysAlis PRO software.

The crystals appeared to possess a large mosaicity. Several attempts to refine the structure including disorder failed. Therefore, we assume dynamic rotation of the tert-butyl groups, probably together with two disordered positions of the cyclopentadienyl rings.

Crystal Data. $\mathrm{C}_{68} \mathrm{H}_{116} \mathrm{As}_{10} \mathrm{Co}_{4}, M_{r}=1918.52$, triclinic, P-1 (No. 2), $a=10.3921(5) \AA, b=14.3707(7) \AA, c=$ $14.8262(8) \AA, \alpha=62.530(5)^{\circ}, \beta=76.535(4)^{\circ}, \gamma=79.819(4)^{\circ}, V=1904.35(19) \AA^{3}, T=123(1) \mathrm{K}, Z=1, Z^{\prime}=0.5$, $\mu\left(\mathrm{CuK}_{\alpha}\right)=11.799,22490$ reflections measured, 7152 unique $\left(R_{\text {int }}=0.0363\right)$ which were used in all calculations. The final $w R_{2}$ was 0.2212 (all data) and R_{l} was $0.0781(\mathrm{I}>2(\mathrm{I})$).

Compound	2
CCDC	1028575
Formula	$\mathrm{C}_{68} \mathrm{H}_{116} \mathrm{As}_{10} \mathrm{Co}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.673
μ / mm^{-1}	11.799
Formula Weight	1918.52
Colour	black
Shape	block
Max Size/mm	0.11
Mid Size/mm	0.10
Min Size/mm	0.04
T/K	123(1)
Crystal System	triclinic
Space Group	P-1
$a / \AA{ }^{\text {a }}$	10.3921(5)
b/Å	14.3707(7)
c / \AA	14.8262(8)
$\alpha 1^{\circ}$	62.530(5)
$\beta 1^{\circ}$	76.535(4)
$\gamma 1^{\circ}$	79.819(4)
V/ ${ }^{3}$	1904.35(19)
Z	1
Z^{\prime}	0.5
$\Theta_{\text {min }} I^{\circ}$	3.411
$\Theta_{\max } l^{\circ}$	70.824
Measured Refl.	22490
Independent Refl.	7152
Reflections Used	6108
$R_{\text {int }}$	0.0363
Parameters	295
Restraints	6
Largest Peak	1.719
Deepest Hole	-0.926
GooF	1.072
$w R_{2}$ (all data)	0.2212
$w R_{2}$	0.2137
R_{l} (all data)	0.0864
R_{I}	0.0781

Crystal Data for 3.

Experimental. Single black plate-shaped crystals of (3) were recrystallized from a saturated hexane solution at $-25^{\circ} \mathrm{C}$. A suitable crystal $\left(0.07 \times 0.04 \times 0.01 \mathrm{~mm}^{3}\right)$ was selected and mounted on a MITIGEN holder oil on an Agilent Technologies (formerly Oxford diffraction) SuperNova A diffractometer. Using Olex2, ${ }^{3}$ the structure was solved with the SIR- 97^{4} structure solution program, using the direct methods solution method. The model was refined with version 2014/6 of ShelXL ${ }^{5}$ using by full matrix least squares on $\mathbf{F}^{\mathbf{2}}$ minimization. Absorption correction was applied empirically using SCALE3 program implemented to CrysAlis PRO software.

Crystal Data. $\mathrm{C}_{51} \mathrm{H}_{87} \mathrm{As}_{12} \mathrm{Co}_{3}, M_{r}=1776.03$, monoclinic, $\mathrm{C} 2 / \mathrm{c}$ (No. 15), $a=28.9202(3) \AA, b=$ $15.78990(10) \AA, c=29.9375(3) \AA, \beta=112.7520(10)^{\circ}, \alpha=\gamma=90^{\circ}, V=12607.1(2) \AA^{3}, T=123.00(10) \mathrm{K}$, $Z=8, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=13.346,38088$ reflections measured, 11768 unique ($R_{\text {int }}=0.0451$) which were used in all calculations. The final $w R_{2}$ was 0.0589 (all data) and R_{1} was 0.0271 (I > 2(I)).

Compound	3
CCDC	1028577
Formula	$\mathrm{C}_{51} \mathrm{H}_{87} \mathrm{As}_{12} \mathrm{Co}_{3}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.871
μ / mm^{-1}	13.346
Formula Weight	1776.03
Colour	black
Shape	plate
Max Size/mm	0.07
Mid Size/mm	0.04
Min Size/mm	0.01
T/K	123(1)
Crystal System	monoclinic
Space Group	C2/c
a/Å	28.9202(3)
b/Å	15.7899(1)
$c / A ̊$	29.9375(3)
$\alpha{ }^{\circ}$	90
$\beta 1^{\circ}$	112.752(1)
$\gamma 1{ }^{\circ}$	90
V/A ${ }^{3}$	12607.1(2)
Z	8
Z^{\prime}	1
$\Theta_{\text {min }} l^{\circ}$	3.201
$\Theta_{\max }{ }^{\circ}$	70.494
Measured Refl.	38088
Independent Refl.	11768
Reflections Used	10045
$R_{\text {int }}$	0.0451
Parameters	622
Restraints	0
Largest Peak	0.914
Deepest Hole	-0.489
GooF	1.032
$w R_{2}$ (all data)	0.0589
$w R_{2}$	0.0555
R_{l} (all data)	0.0363
R_{l}	0.0271

Figure S6: Molecular structure of $\mathbf{2} \boldsymbol{*} \mathbf{4} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$. The H atoms and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules are omitted for clarity. Anisotropic displacement parameters are depicted at 50% probability level.

Selected Bond Distances and Angles for 2*4 CH2Cl $\mathbf{2}$

Atom	Atom	Length/A	Atom	Atom	Length/Å
As5	As5'	$2.402(3)$	As2	Co1	$2.351(3)$
As5	As4,	$2.424(2)$	As1	Co2	$2.479(2)$
As5	As3'	$2.435(2)$	As1	Co1	$2.349(3)$
As5	Co1	$2.273(2)$	As3	As5'	$2.435(2)$
As4	As5'	$2.424(2)$	As3	Co2	$2.447(2)$
As4	As1	$2.379(2)$			
As4	Co2	$2.432(3)$			
As2	As1	$2.705(2)$			
As2	As3	$2.377(2)$			
As2	Co2	$2.465(3)$			

Figure S7: Molecular structure of 2. The H atoms are omitted for clarity.

Selected Bond Distances and Angles for 2

Co1	As2	$2.431(2)$
Co1	As3	$2.437(2)$
Co1	As4	$2.4763(19)$
Co1	As5	$2.4656(19)$
Co2	As1,	$2.2816(15)$
Co2	As4	$2.3476(18)$
Co2	As5	$2.3448(18)$
As1	Co2,	$2.2816(15)$
As1	As1,	$2.4085(16)$
As1	As2	$2.4265(14)$
As1	As3	$2.4225(14)$
As2	As4	$2.3673(14)$
As3	As5	$2.3755(14)$
As4	As5	$2.6723(19)$

Figure S8: Molecular structure of 3. The H atoms are omitted for clarity. Anisotropic displacement parameters are depicted at 50% probability level.

Selected Bond Distances and Angles for 3

Co1 As1 2.4702(6)	Co1 As2 2.4627(6)	Co1 As3 2.4383(6)	Co1 As4 2.4284(6)
Co2 As1 2.3628(6)	Co2 As2 2.3610(6)	Co2 As6 2.2628(6)	Co3 As8 2.4525(6)
Co3 As9 2.4554(6)	Co3 As11 2.4402(6)	Co3 As12 2.4423(6)	As1 As2 2.6684(5)
As1 As3 2.3809(5)	As2 As4 2.3821(5)	As3 As5 2.4156(5)	As4 As5 2.4350(6)
As5 As6 2.4352(4)	As6 As7 2.4312(5)	As6 As10 2.4472(5)	As7 As8 2.4130(5)
As7 As12 2.4282(5)	As8 As9 2.3478(6)	As9 As10 2.4277(6)	As10 As11 2.4288(5)

References

O. J. Scherer, H. Sitzmann, G. Wolmershäuser, J. Organomet. Chem., 1986, 309, 77-86.
J. J. Schneider, D. Wolf, C. Janiak, O. Heinemann, J. Rust, C. Krüger, Chem. Eur. J., 1998, 4, 1982-1991.
O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst., 1999, 32, 115-119.
G. M. Sheldrick, Acta Cryst., 2008, A64, 339-341.
P. Sluis, A. L. Spek, Acta Cryst., 1990, A46, 194-201.
A.L.Spek, J.Appl.Cryst., 2003, 36, 7-13

