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Synthesis

All materials were used as received; lanthanide trifluoromethanesulfonate salts were obtained
from STREM and Sigma Aldrich in 98 % purity. NMR was performed on a Varian 700 MHz NMR
spectrometer. Dialysis was performed using membranes from Harvard Apparatus UK.

Ln.2 and Ln.3 was prepared as previously reported.! The composition of Ln.2 and Ln.3 was verified
by NMR and HRMS, see figures S1 and S2.

1.LnLn" was prepared using the Ugi reaction following the procedure we have used previously,lb’2
the inherent difficulty getting mass spectra of the multimetallic species did only allow us to
characterize the molecule using NMR and luminescence, the data are given in figures S1-S11
below.

1.EuTb: Eu.2 (536 mg, 0.9 mmol), Th.3 (537 mg, 0.87 mmol), naphthalene-2-carboxaldehyde
(156.2 mg, 1 ,mol), benzyl isonitrile (117 mg, 1 mmol, ~150 ul), and sodium sulfate (1 g) was
dissolved in ethanol (15 ml) and left to stir at 40 °C for 3 days. After this the solids were filtered off
and the solvent removed in vacuo. The crude was taken in a minimum of methanol and
precipitated with ether. The supernatant was decanted off, more ether was added, the solution
was agitated, allowed to settle, and the supernatant was decanted off. The solvent was removed
in vacuo. The crude was taken up in water (50 ml) and dialysed over a 500MwCO cellulose
membrane (Spectrumlabs) for three days, with 6 water changes. After removing the solvent a
waxy hydroscopic material was obtained. Repeated precipitation with ether from methanol
allowed for the isolation of the product as a white powder in a yield of 120 mg (9.4 %), the
material is highly hygroscopic, which prohibited quantitate analysis such as elemental analysis and
ICP-MS. 'H (D,0) 6 256.08, 239.95, 202.18, 192.25, 187.41, 135.56 (m), 110.68, 102.65, 82.43 (m), 71.49,
57.32 (m), 49.70, 48.32, 33.67, 33.24, 32.00 (m), 31.69, 30.55, 18.29, 13.26 (m), 12.20 (m), 11.48 (m), 10.82
(m),9.81 (m), 8.31 (m), 8.23 (m), 8.13 (m), 7.98 (m), 7.94 (m), 7.83 (m),7.74 (m), 7.61 (m), 7.51 (m), 7.29
(m), 7.22 (m), 6.98 (m), 6.89 (m), 6.07 (m), 5.28 (m), 4.64, 4.33 (m), 4.26 (m), 4.18 (m), 3.97, 3.82, 3.59,
3.39, 3.23, 3.07, 3.12, 3.07, 2.99, 2.86, 2.69, 2.51, 2.27, 2.11, 1.78, 1.55 (m), 1.35 (m), 1.20, 0.75 (m), 0.52
(m), 0.04, -0.56, -1.17,-2.31, -2.82, -3.24, -4.34 (m), -5.13, -5.71, -6.77, -7.25, -7.83, -8.11 -9.50 (m), -10.92, -
11.79,-12.68, -14.10, -14.32, -15.55, -16.16, -16.56, -37.60 (m), -49.23 (m), -62.38 (m), -67.43, -77.32, -
78.49, -80.16, -95.30, -98.77, -101.01, -110.10, -114.36, -122.65, -199.10, -364.78, -376.03, -379.12, -
393.09, -369.16 (m).

1.TbEu: Tb.2 (536 mg, 0.89 mmol), Eu.3 (531 mg, 0.87 mmol), naphthalene-2-carboxaldehyde
(156.2 mg, 1 ,mol), benzyl isonitrile (117 mg, 1 mmol, ~150 ul), and sodium sulfate (1 g) was
dissolved in ethanol (15 ml) and left to stir at 40 °C for 3 days. After this the solids were filtered off
and the solvent removed in vacuo. The crude was taken in a minimum of methanol and
precipitated with ether. The supernatant was decanted off, more ether was added, the solution
was agitated, allowed to settle, and the supernatant was decanted off. The solvent was removed
in vacuo. The crude was taken up in water (50 ml) and dialysed over a 500MwCO cellulose
membrane (Spectrumlabs) for three days, with 6 water changes. After removing the solvent a
waxy hydroscopic material was obtained. Repeated precipitation with ether from methanol
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allowed for the isolation of the product as a white powder in a yield of 180 mg (14.1 %), the
material is highly hygroscopic, which prohibited quantitate analysis such as elemental analysis and
ICP-MS.'H (D,0) 6 258.48, 249.41, 245.76, 242.37, 201.32, 191.92, 135.68, 117.02, 108.88, 82.36, 76.28
(m), 73.56, 60.56 (m), 52.75, 45.32, 39.75, 33.70 (m), 33.05, 32.16, 30.92, 30.74, 23.87, 19.35, 13.29 (m),
12.32 (m), 11.76 (m), 11.01 (m), 8.25 (m), 7.34 (m), 7.28 (m), 5.52, 5.01, 4.65, 3.97, 3.82, 3.62, 3.41, 3.26,
3.13,3.08, 2.93, 2.86, 2.72, 2.31, 2.15, 1.58 (m), 1.40 (m), 1.23 (m), 1.17 (m), 1.08 (m), 0.79 (m), 0.55 (m),
0.07 (m), -0.16, -0.48, -1.15, -1.51 (m), -1.91, -3.07, -3.35, -4.35 (m), -4.63 (m), -4.92, -5.65, -6.19 (m), -6.74,
-6.99, -7.38 (m), -7.90, -8.10 (m), -8.84 (m), -9.47(m), -10.35, -11.16, -11.45 (m), -12.11, 12.73, -14.67, -
14.73,-14.92,-15.03, -15.39, -16.16 (m), -16.61, -33.98 (m), -45.22 (m), -56.19 (m), -63.98, -69.77 (m), -
70.92 (m), -75.54, -76.55, -78.24 (m), -81.28, -95.28, -96.56, -98.86, -103.93 (m), -108.69, -116.49, 130.07, -
201.11 (m), -213.55 (m), -224.68 (m), -227.58 (m), -362.86, -373.57, -376.52, -396.24, -401.43.
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Figure S1a. Paramagnetic 700 MHz 'H NMR spectra in D,0 employing water suppression through saturation
(top) and HRMS spectra (bottom) of Tb.2.
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Figure S1b. Paramagnetic 700 MHz 'H NMR spectra in D,O employing water suppression through saturation
(top) and HRMS spectra (bottom) of Tb.3.
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Figure S2a. Paramagnetic 400 MHz '"H NMR spectra in D,O employing water suppression through saturation

(top) and HRMS spectra (bottom) of Eu.2.
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Figure S2b. Paramagnetic 700 MHz 'H NMR spectra in D,O employing water suppression through saturation
(top) and HRMS spectra (bottom) of Eu.3.
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Spectroscopy
Luminescence spectroscopy was performed using a Horiba Fluorolog 3.
Oxygen titrations

The effect of oxygen concentration was determined by measuring the photophysical properties at
ambient conditions. At oxygen free conditions, by degassing the solution through 5 freeze pump
thaw cycles. And at oxygen saturated conditions by backfilling with oxygen after a series of freeze
pump thaw cycles.

Furthermore, an oxygen titration was carried out in pure water by degassing with N, or purging
with O, and determining the dissolved oxygen concentration using an optical DO meter from
Mettler-Toledo.

Conformational space available to the complexes

The terbium luminescence lifetime in H,0/D,0 depends on the wavelength of excitation. Direct
excitation yields a longer observed luminescence lifetime than sensitiser-mediated excitation. The
tentative conclusion is that the conformational space available in the two excited state
populations differ:

Total number of molecules
in all possible conformations

Conformations where sensitisation
and deactivation can occur

Average lifetime 1.9 ms/ 3.3 ms
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NMR spectra of lanthanide complexes 1-3
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Figure S3. Paramagnetic 'H NMR spectra in D,0 employing water suppression through saturation, from the
top: Eu.2 (400 MHz), Th.3 (700 MHz), and 1.EuTb (700 MHz).
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Figure S4. Paramagnetic 'H NMR spectra in D,0 employing water suppression through saturation, from the
top: Tb.2 (700 MHz), Eu.3 (700 MHz), and 1.TbEu (700 MHz).
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Photophysical properties of lanthanide complexes Ln.2 and Ln.3
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Figure S5. Corrected and normalized excitation spectra of Ln.2 and Ln.3 (Ln: Eu, Th).
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Figure S6. Normalized emission spectra of Ln.2 and Ln.3 (Ln: Eu, Th).
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Photophysical properties of lanthanide complexes 1.LnLn’

= Em 700 nm
‘\“ 154 ——Em 615 nm
2 —— Em 545 nm
(7))

[

Q

£ 1.0-

C

(@)

R

R

e

O (.54

§®)

(<))

0

c_Eu

s 0.0 - - - : -

Z 250 300 350 400 450 500

Wavelength / nm

Figure S7. Corrected excitation spectra of 1.EuTb monitored at different wavelengths; the spectra have
been normalized at 285 nm.
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Figure S8. Corrected excitation spectra of 1.TbEu monitored at different wavelengths; the spectra have
been normalized at 273 nm.
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Figure S9. Uncorrected emission spectra of 1.EuTb following excitation at different wavelengths; the
spectra have been normalized at 589 nm.
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Figure S10. Uncorrected emission spectra of 1.TbEu following excitation at different wavelengths; the
spectra have been normalized at 589 nm.
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Luminescence lifetimes of the lanthanide complexes 1-3

Table S1. Lifetimes in milliseconds of terbium and europium centered emission in 1.EuTb at ambient,
degassed and saturated O, concentration (ignoring the possible differences due to excitation in ligand vs.
metal for Tb, N is the number of repetitions of the measurement, o standard deviation).

solvent 02 Tb N o Eu N o

H,0 Ambient 1.88 6 0.06 0.60 8 0.03
H,0 Degassed 1.88 8 0.07 0.62 8 0.02
H,0 Saturated 1.86 9 0.07 0.61 8 0.01
H,0 all 1.87 23 0.06 0.61 24 0.02
D,0 Ambient 3.15 6 0.26 2.10 8 0.03
q 0.8 - - 1.1 - -

Table S2. Lifetimes in milliseconds of terbium and europium centered emission in 1.TbEu at ambient,
degassed and saturated O, concentration (ignoring the possible differences due to excitation in ligand vs.
metal for Tb, N is the number of repetitions of the measurement, o standard deviation).

solvent 02 Tb N o Eu N o
H,0 Ambient 1.78 9 0.08 0.64 11 0.01
H,0 Degassed 1.80 9 0.09 0.63 6 0.01
H,0 Saturated | 1.79 8 0.13 0.63 6 0.005
H,0 all 1.79 26 0.08 0.63 23 0.01
D,0 Ambient 3.10 7 0.21 2.43 6 0.04
q 1.1 - - 1.1 - -

Table S3. Lifetimes in milliseconds of terbium and europium centered emission in Ln.2 and Ln.3 at ambient
0O, concentration (N is the number of repetitions of the measurement, o standard deviation).

Complex solvent Tb N o Eu N o
Ln.2 H,0 1.45 9 0.5 0.64 5 0.04
D,0 3.06 9 0.4 2.32 6 0.09
q 1.5 - - 13 - -
Ln.3 H,0 1.74 8 0.2 0.68 6 0.06
D,0 3.07 8 0.3 2.34 9 0.2
q 0.9 - - 1.2 - -
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Effect of oxygen concentration on the photophysics of lanthanide complexes
1.LnLn’
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Figure S11. Uncorrected emission spectra of 1.EuTb following excitation at 290 nm; the spectra have been
normalized at 702 nm.



Thomas Just S@grensen et al. 16 Bimetallic lanthanide complexes...

—— Ambient
—— Degassed
8 — O, saturated

0 J T J T T T T
450 500 550 600 650 700 750
Wavelength / nm

Normalised emisison intensity / a.u.
N

1 —— Ambient
7000'_ —— Degassed
g 6000 - — O, saturated
< 5000-
b i
@ 4000- ﬂ
2
£
C
o
%)
A2
€
i

30001

2000-

1000

RIAW] A
500

450 550 600 650 700 750
Wavelength / nm

—— Ambient
—— Degassed
2000 +— O, saturated

100:\“\--~4f\~ , //“/\QQ/N\\_

650 700
Wavelength / nm

Emisison intensity / kCPS

Figure S12. Uncorrected emission spectra of 1.TbEu following excitation at 290 nm; the spectra have been
normalized at 702 nm.
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Table S4 Full table of lifetimes of terbium and europium centred emission in 1.EuTb at ambient, degassed

and saturated 02 concentration.

Ex\Em 488 nm 545 nm 590 nm 615 nm 700 nm
(Tb) (Tb) (Eu)
solvent 02
. 1.7 (1.2) 1.1(2.0)
1. 1. .62
H,0 Ambient 80 79 0.63 (6.0) 0.49 (3.2) 0.6
0.27 (3.8) 0.25(3.0) 1.59 (1.5)
D . .62
290 nm H20 egassed | 153(3.8) |1.81(3.4) |049(39) | 0-6
1.4(2.3) 0.83 (4.0)
1. 1. .
H,0 Saturated 77 78 056 (5.8) 0.33 (2.4) 0.63
D,0 Ambient 2.88 2.75 2.24 2.09 2.07
. 1.75(1.2) | 1.44(0.5)
1.91 1.91 .
H,0 Ambient 9 9 0.53 (1.3) 0.50 (6.4) 0.59
1.87 (1.87) | 1.43(0.9)
D 1. 1. .
380 nm Hz20 egassed | 1.95 4 0.58(2.4) |043(13) |2
1.89 (1.8) 1.35(0.8)
1. 1. .
H,0 Saturated 89 93 0.62 (2.3) 0.43 (1.5) 0.60
D,0 Ambient 3.30 3.37 2.44 2.11 2.12
H,0 Ambient - 1.64 0.63 0.61 0.58
392 nm H,0 Degassed - 1.88 0.62 0.61 0.63
(Eu) H,0 Saturated | 1.90 1.78 062 0.61 0.62
D,0 Ambient - 3.0 2.16 2.11 2.10
H,0 Ambient 1.91 1.95 1.47 1.30 0.55
488 nm H,0 Degassed 1.82 1.81 1.19 1.03 06.1
(Th) H,0 Saturated | 1.92 1.94 1.51 1.30 0.60
D,0 Ambient 3.29 3.29 2.83 2.53 2.07
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Table S5. Full table of lifetimes of terbium and europium centred emission in 1.TbEu at ambient, degassed

and saturated 02 concentration.

Ex\Em 488 nm 545 nm 590 nm 615 nm 700 nm
(Thb) (Tb) (Eu)
solvent 02
. 1.6 (3.5) 1.6 (0.9)
1.71 1. .
H,0 Ambient 7 70 0.58 (5.8) 0.61(3.3) 0.63
0.18(2.1) |0.15(1.6) | 1.6(5.7) 1.6 (1.3)
D .62
290 nm H20 egassed | 19(77) |1.7(47) |o043(46) |053(28 |°°
1.5 (3.2) 1.2 (1.5)
1. 1. .
H,0 Saturated 7 67 0.57 (5.5) 0.51(2.8) 0.63
D,0 Ambient 2.85 2.76 2.59 2.56 2.39
. 1.9 (0.5)
1. 1. - .62
H,0 Ambient 83 85 0.63 (1.2) 0.6
1.8 (1.6) 2.0(0.4)
D 1. 1. .62
H,0 egassed 85 87 0.6 (2.0) 0.65 (1.2) 0.6
380 nm 16 (0.9)
H,0 Saturated 1.84 1.83 - 0.54 (1.5) 0.63
. 3.0(2.8)
D,0 Ambient 3.25 3.26 2.1(1.2) 2.54 2.49
H,0 Ambient - 1.7 0.65 0.63 0.63
392 nm H,0 Degassed - 1.6 0.64 0.63 0.62
(Eu) H,0 Saturated | - 1.7 0.64 0.63 0.63
D,0 Ambient - 3.06 2.45 2.39 2.41
. 1.9 (1.6)
H,0 Ambient 1.79 1.86 1.96 0.6 (0.7) 0.65
0.22 (0.5) 1.8 (3.7) 1.8 (1.4)
D 1. .
?fs)”m H20 egassed 84 187(3.7) |047(0.6) |o05(06) |°°
1.7 (3.3) 1.9 (1.6)
1.82 1. .
H,0 Saturated 8 85 0.4 (0.5) 0.61 (0.8) 0.64
D,0 Ambient 3.25 3.24 3.0 2.82 2.45
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Time-resolved emission curves for 1.LnLn’

Figure S13. Lifetime traces for 1.EuTb
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