Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene

Xin-Gui Li,[‡]*^{ab} Yao-Zu Liao,^{‡ab} Mei-Rong Huang^{*ab} and Richard B. Kaner^{*b}

Electronic supplementary information

Table S1. Characteristics of Virgin PFA Synthesized by Three Different Feed Methods^[a]

	PFA	Polymerization yield / %	UV-vis wavelength in NMP / nm			Large π -conjugation	
Reactant Feed Method	product color		Band I	Band II	Band III	degree: intensity ratio of band III to band I	
Drop-wise addition of FeCl ₃ into FA	Dark yellow	60.5	292	502	537	0.083	
Direct mixing	Dark red	68.9	292	500	535	0.297	
Drop-wise addition of FA into FeCl ₃	Brown	72.4	291	500	533	0.352	

^[a] The same fixed conditions of C_6H_{14}/CH_3NO_2 volume ratio of 3/2, FeCl₃/FA molar ratio of 5, polymerization temperature of 50 °C,

and polymerization time of 24 h.

C ₆ H ₁₄ /CH ₃ NO ₂	PFA	Polymerization yield / %	UV-vis w	avelength in	Large π -conjugation	
volume ratio	product color		Band I	Band II	Band III	degree: intensity ratio of band III to band I
2/3	Brown	86.5	262	501	536	0.432
1/1	Black	87.6	265	500	535	0.465
3/2	Black	88.1	262	500	531	0.509
4/1	Brown	81.3	292	500	535	0.401

Table S2. Characteristics of Virgin PFA Synthesized with Various C₆H₁₄/CH₃NO₂ Volume Ratios^[a]

^[a]Fixed conditions: Oxidant FeCl₃/monomer FA molar ratio of 7 at 70 °C for 24 h.

^aState Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China.

E-mail: adamxgli@yahoo.com; huangmeirong@tongji.edu.cn; Fax: +86-21-65983869; Tel: +86-21-69582104

^bDepartment of Chemistry & Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA. E-mail: <u>kaner@chem.ucla.edu</u>; Fax: +1 (310) 206-4038, Tel: +1 (310) 825-5346

[‡] X.-G. Li and Y. -Z. Liao contributed equally to this work.

Table S3. Solubility and Solution Color of PFA Synthesized with Various FeCl₃/FA Molar Ratios^[a]

FeCl ₃ /FA	Solubil	Solubility ^[0] and solution color ^[c] of FA and PFA in various solvents											
molar ratio	NMP	DMSO	DMF	98%H ₂ SO ₄	НСООН	CH ₃ CN	Benzene	CH ₃ COOH	CH ₃ NO ₂	CHCl ₃	THF		
0 (FA)	S, cl	S, cl	S, cl	PS, g	S, cl	S, cl	S, cl	S, cl	S, by	S, cl	S, cl		
3	S, bo	S, bo	PS, y	PS, dg	SS, gg	IS	MS, y	PS, p	IS	IS	IS		
5	S, r	S, bo	PS, bo	PS, dg	SS, gg	IS	MS, y	PS, p	IS	IS	IS		
7	S, r	MS, r	PS, bo	PS, dg	SS, gg	IS	MS,bo	PS, p	IS	IS	IS		
9	S, r	S, lr	PS, bo	PS, dg	SS, gg	IS	MS, o	PS, p	IS	IS	IS		
Optimal	MS, r	MS, r	PS, bo	PS, dg	IS	IS	MS, lr	PS, p	IS	SS, p	IS		

^[a]Fixed conditions: C₆H₁₄/CH₃NO₂ volume ratio 3/2, polymerization temperature 50 °C, and polymerization time 18 h.

^[b]IS=Insoluble; MS=mostly soluble; PS=partially soluble; SS=slightly soluble.

^[c]bo=brilliant orange; by=brilliant yellow; cl=colorless; dg=dark green; g=green; gg=grassy green; lr=light red; o=orange; p=pink;

r=red; y=yellow.

			-			
Polymers	Atmosphere	Heating rate (°C·min ⁻¹)	<i>T_d / T_{dm}</i> (°C)	$(d\alpha/dt)_m$ (wt%·min ⁻¹)	Char yield $(\% \circ C^{-1})$	Refs.
PFA ^[a]	N_2	20	420/510	0.303	52/985	This
PFA ^[b]	N_2	20	422/557	0.219	60/985	I IIIS
Optimal PFA	N_2	20	434/576	0.231	60/985	study
Poly(anthracene oil)	N ₂	10	200/250	0.07	37/600	[40]
Poly(o-phenylenediamine)	N_2	10	-/677	2.7	39/700	[41]
Poly(oxybenzoate-co-oxynaphthoate)	Не	20	529/543	31	40/800	[42]
Polybenzazole	N_2	10	700/720	_	68/800	[43]
Poly(<i>p</i> -phenylene benzobisthiazole)	Не	20	675/767	_	84/800	[44]

Table S4. Thermal Properties of PFAs and Selected Heat Resistant Polymers

^{[a],[b]}Synthetic conditions: Polymerization temperature of [a] 50 °C and [b] 70 °C at the fixed other conditions:

C₆H₁₄/CH₃NO₂ volume ratio of 3/2, FeCl₃/FA molar ratio of 5, and polymerization time of 18 h.

Fig. S1. Size distribution **a**) in pure water of the optimal PFA particles using a laser-particle size analyzer, **b**) in acetone determined by dynamic light scattering of the PFA particles synthesized with C_6H_{14}/CH_3NO_2 volume ratios of 1/1, 3/2, 3/1, and 50/3 at room temperature under the other optimal conditions of polymerization, and **c**) SEM image of the ethanol-dispersed PFA particles (with the diameter of around 220 nm) synthesized with a C_6H_{14}/CH_3NO_2 volume ratio of 3/2.

Figure S2. DMSO solution in sunlight (top) and in 365 nm UV (middle) of a) FA and PFA synthesized with various $FeCl_3/FA$ molar ratios: b) 3, c) 5, d) 7, and e) 9 at a fixed concentration of 50 mg L⁻¹, optimal PFA at different concentrations: f) 5, g) 25, h) 50, i) 500 mg L⁻¹; (bottom) PFA synthesized with various $FeCl_3/FA$ molar ratios of b) 3, c) 5, d) 7, and j) optimal PFA in 375 nm UV in DMSO-D6 at a very high concentration of ca. 10 g L⁻¹.