ESI to accompany

Exceptionally long-lived light-emitting electrochemical cells: multiple intra-cation π -stacking interactions in $[Ir(C^N)_2(N^N)][PF_6]$ emitters

Andreas M. Bünzli,^a Edwin C. Constable,^a Catherine E. Housecroft,^{a*} Alessandro Prescimone,^a Jennifer A. Zampese,^a Giulia Longo,^b Lidón Gil-Escrig,^b Antonio Pertegás,^b Enrique Ortí,^b Henk J. Bolink^{*b,c}

Experimental

¹H and ¹³C NMR spectra were recorded on a Bruker Avance III-500 or III-600 NMR spectrometer (chemical shifts with respect to ∂ (TMS) = 0 ppm). Solution electronic absorption and emission spectra were recorded on an Agilent 8453 spectrophotometer and Shimadzu 5301PC spectrofluorophotometer, respectively; a Perkin Elmer Spectrum Two UATR instrument was used to record FT-IR spectra of solid samples. Electrospray ionization (ESI) mass spectra were measured using a Bruker esquire 3000^{plus} mass spectrometer. Solution and solid-state quantum yields were measured using a Hamamatsu absolute PL quantum yield spectrometer C11347 Quantaurus_QY. Lifetimes and emission spectra of powdered samples were measured using a Hamamatsu Compact Fluorescence lifetime Spectrometer C11367 Quantaurus-Tau.

Electrochemical measurements were performed using a CH Instruments 900B potentiostat using a glassy carbon working electrode, platinum-wire auxiliary electrode, and silver-wire pseudo-reference electrode. The redox potentials were determined by both cyclic voltammetry (CV) and square wave voltammetry. HPLC grade, argon degassed CH_2Cl_2 solutions ($\approx 10^{-4}$ mol dm⁻³) of samples were used in the presence of 0.1 M [ⁿBu₄N][PF₆] as supporting electrolyte; a scan rate of 0.1 V s⁻¹ and ferrocene (Fc⁺/Fc) was used as an internal standard.

The compounds HPhppy¹ and HPh₂ppy^{1,2} were made according to literature methods. Atom labelling for NMR assignments is shown in Scheme S1.

Scheme S1. Ring and atom labelling in $[Ir(Ph_2ppy)_2(2)]^+$. Analogous ring labelling is used in all complex cations.

[Ir₂(Phppy)₄Cl₂]

A mixture of H₂O (8 mL) and 2-ethoxyethanol (25 mL) containing HPhppy (0.60 g, 2.59 mmol) and IrCl₃:xH₂O (6.38, 1.13 mmol) was heated at 115 °C for 20 h. The reaction mixture was allowed to reach room temperature, and then the yellow precipitate was removed by filtration, washed with H₂O and n-hexane and then redissolved in acetone to be purified by column chromatography (Fluka silica gel 60, 0.040–0.063 mm; CH₂Cl₂:iPrOH 100:1). [Ir₂(Phppy)₄Cl₂] was isolated as a yellow solid (0.362 g, 0.263 mmol, 47%). ¹H NMR (500 MHz, acetone-d₆) δ / ppm 9.34 (ddd, *J* = 5.8, 1.5, 0.7 Hz, 4H, H^{B6}), 8.41 (d, *J* = 8.0 Hz, 4H, H^{B3}), 8.06 (ddd, *J* = 8.1, 7.6, 1.6 Hz, 4H, H^{B4}), 7.97 (d, *J* = 2.0 Hz, 4H^{A3}), 7.55 (m, 8H, H^{H2}), 7.33 (m, 8H, H^{H3}), 7.22 (m, 4H, H^{H4}), 7.11 (ddd, *J* = 7.3, 5.7, 1.4 Hz, H^{B5}), 6.86 (dd, *J* = 8.1, 2.0 Hz, 4H, H^{A5}), 6.03 (d, *J* = 8.1 Hz, 4H, H^{A6}). ¹³C NMR (126 MHz, acetone-d₆) δ /ppm 168.9 (C^{B2}), 152.3 (C^{B6}), 146.0 (C^{A2}), 145.8 (C^{A1}), 142.3 (C^{H1}), 138.3 (C^{B4}), 135.1 (C^{A4}), 131.8 (C^{A6}), 129.5 (C^{H3}), 128.3 (C^{A5}), 127.2 (C^{H4}), 127.1 (C^{H2}), 124.1 (C^{B5}), 123.0 (C^{A3}), 120.2 (C^{B3}). The complex was used in the next step without further characterization.

[Ir₂(Ph₂ppy)₄Cl₂]

A mixture of H₂O (5 mL) and 2-ethoxyethanol (15 mL) containing HPh₂ppy (0.50 g, 1.63 mmol) and IrCl₃:xH₂O (0.40 g, 0.707 mmol) was heated at 110 °C for 20 h under inert atmosphere. The reaction mixture was allowed to reach room temperature, and then the yellow precipitate was collected by filtration, washed with H₂O and Et₂O and then redissolved in CH₂Cl₂. It was purified by column chromatography (Fluka silica gel 60, CH₂Cl₂ changing to CH₂Cl₂ : MeOH 100 : 3). [Ir₂(Ph₂ppy)₄Cl₂] was isolated as a yellow solid (0.342 g, 0.203 mmol, 58 %). ¹H NMR (500 MHz, acetone-d₆) δ / ppm 8.02 (dd, *J* = 5.8, 1.1 Hz, 4H, H^{B6}), 7.66 (d, *J* = 2.0 Hz, 4H, H^{A3}), 7.60 (m, 8H, H^{H2}), 7.37 (m, 8H, H^{H3}), 7.34 (d, *J* = 8.1 Hz, 4H, H^{B3}),

7.26 (m, 4H, H^{H4}), 7.10 (ddd, J = 8.2, 7.4, 1.5 Hz, 4H, H^{B4}), 7.05 (m, 4H, H^{K2/K6}), 6.89 (d, J = 2.1 Hz, 4H, H^{A5}), 6.84 (broadened t, $J \approx 6.8$ Hz, 4H, H^{K3/K5}), 6.67 (tt, J = 7.3, 1.3 Hz, 4H, H^{K4}), 6.27 - 6.15 (m, 8H, H^{K2/K6+K3/K5}), 5.86 (ddd, J = 7.2, 5.8, 1.3 Hz, 4H, H^{B5}). ¹³C NMR (126 MHz, acetone-d₆) δ / ppm 167.2 (C^{B2}), 151.3 (C^{B6}), 148.7 (C^{A2}), 148.4 (C^{A6}), 145.0 (C^{K1}), 142.7 (C^{A1}), 141.4 (C^{H1}), 135.6 (C^{B4}), 134.7 (C^{A4}), 130.7 (C^{A5}), 128.7 (C^{H3}), 128.4 (C^{K2/K6}), 126.8 (C^{K3/K5}), 126.6 (C^{H2}), 125.2 (C^{H4}), 121.9 (C^{B5}), 120.9 (C^{A3}), 118.6 (C^{B3}). The complex was used in the next step without further characterization.

[Ir(Phppy)₂(MeOH)₂][PF₆]

A suspension of $[Ir_2(Phppy)_4Cl_2]$ (1.15 g, 0.838 mmol) and AgPF₆ (0.464 g, 1.84 mmol) in MeOH (70 mL) was stirred at room temperature for 2 h. The precipitated AgCl was removed by filtration over Celite. Evaporation of the yellow filtrate under reduced pressure gave $[Ir(Phppy)_2(MeOH)_2][PF_6]$ as a yellow solid (1.43 g, 1.66 mmol, 99%). ¹H NMR (500 MHz, CD₃OD) δ / ppm 8.92 (d, J = 5.0 Hz, 2H, H^{B6}), 8.28 (d, J = 8.1 Hz, 2H, H^{B3}), 8.07 (m, 2H, H^{B4}), 7.93 (d, 2H, H^{A3}), 7.59–7.46 (m, 6H, H^{B5+H2}), 7.35 (t, J = 7.7 Hz, 4H, H^{H3}), 7.24 (t, J = 7.4 Hz, 2H, H^{H4}), 6.96 (dd, J = 8.0, 1.9 Hz, 2H, H^{A5}), 6.18 (d, J = 7.9 Hz, 2H, H^{A6}), 3.35 (s, 6H, H^{Me}). ¹³C NMR (126 MHz, CD₃OD) δ / ppm 169.5 (C^{B2}), 150.2 (C^{B6}), 146.7 (C^{A2}), 142.4 (C^{H1}), 140.4 (C^{B4}), 138.2 (C^{A1}), 137.1 (C^{A4}), 134.5 (C^{A6}), 129.8 (C^{H3}), 129.4 (C^{A5}), 127.8 (C^{H4}), 127.6 (C^{H2}), 124.2 (C^{B5}), 123.8 (C^{A3}), 120.8 (C^{B3}), 49.9 (C^{Me}). ³¹P NMR (202 MHz, CD₃OD) δ / ppm –144.6 (septet, $J_{PF} = 707$ Hz). The complex was used immediately in the next step without further characterization.

[Ir(Ph₂ppy)₂(MeOH)₂][PF₆]

The method was as for $[Ir(Phppy)_2(MeOH)_2][PF_6]$ starting with $[Ir_2(Ph_2ppy)_4Cl_2]$ (298 mg, 0.177 mmol) and AgPF₆ (98.2 mg, 0.388 mmol). $[Ir(Ph_2ppy)_2(MeOH)_2][PF_6]$ was isolated as a yellow-green solid (358 mg, 0.353 mmol, 99%). ¹H NMR (500 MHz, CD₃OD) δ / ppm 8.23 (ddd, J = 5.9, 1.4, 0.6 Hz, 2H, H^{B6}), 7.87 (d, J = 2.1 Hz, 2H, H^{A3}), 7.81 (d, J = 8.2 Hz, 2H, H^{B3}), 7.70–7.64 (m, 6H, H^{H2+B4}), 7.43 (m, 4H, H^{H3}), 7.31 (tt, J = 7.0, 1.2 Hz, 2H, H^{H4}), 7.07 (ddd, J = 7.3, 5.8, 1.3 Hz, 2H, H^{B5}), 6.98 (broadened d, $J \approx 6.8$ Hz, 2H, H^{K2/K6}), 6.94 (d, J = 2.1 Hz, 2H, H^{A5}), 6.91–6.82 (overlapping m, 4H, H^{K3+K5}), 6.55 (broadened t, $J \approx 6.8$ Hz, 2H, H^{K4}), 6.28 (broadened d, $J \approx 7.5$ Hz, 2H, H^{K2/K6}), 3.35 (s, 6H, H^{Me}). ¹³C NMR (126 MHz, CD₃OD) δ / ppm 168.6 (C^{B2}), 153.4 (C^{A6}), 151.0 (C^{B6}), 150.3 (C^{A2}), 146.3 (C^{K1}), 141.9 (C^{H1}), 139.4 (C^{B4}), 137.0 (C^{A4}), 132.0 (C^{A1}), 131.0 (C^{A5}), 130.0 (C^{K2/K6}), 130.0 (C^{H3}), 129.6 (C^{K2/K6}), 128.2 (C^{K3/K5}), 128.1 (C^{H4}), 127.7 (C^{K4}), 127.5 (C^{H2}), 127.1 (C^{K3/K5}), 122.8 (C^{B5}), 122.7 (C^{A3}), 120.8 (C^{B3}), 49.9 (C^{Me}). ³¹P NMR (202 MHz, CD₃OD) δ / ppm –144.6 (septet, $J_{PF} = 707$ Hz). The complex was used immediately in the next step.

[Ir(Phppy)₂(1)][PF₆]

A suspension of $[Ir(Phppy)_2(MeOH)_2][PF_6]$ (0.150 g, 0.174 mmol) and **1** (27.5 mg, 0.176 mmol) in MeOH (15 mL) was sonicated until all the solid had dissolved. An excess of solid NH₄PF₆ (10 eq) was added to the solution; this was then stirred for 1 h at room temperature.

The yellow precipitate was separated by filtration, washed with MeOH and Et_2O , and then purified by column chromatography (Fluka silica gel 60, CH₂Cl₂ changing to CH₂Cl₂ : MeOH 100 : 0.5). Orange, crystalline [Ir(Phppy)₂(1)][PF₆] was obtained from a CH_2Cl_2 solution of the product overlaid with EtOH : n-hexane 2 : 1 (154 mg 0.161 mmol, 93%). ¹H NMR (500 MHz, CD_2Cl_2) δ / ppm 8.54 (d, J = 8.1 Hz, 2H, H^{E3}), 8.19–8.11 (m, 4H, H^{E4+E6}), 8.09 (d, J = 8.3 Hz, 2H, H^{B3}), 7.98 (d, J = 2.0 Hz, 2H, H^{A3}), 7.85 (ddd, J = 8.4, 7.6, 1.5 Hz, 2H, H^{B4}), 7.61 (m, 4H, H¹²), 7.57 (dd, *J* = 5.5, 0.8 Hz, 2H, H^{B6}), 7.51 (ddd, *J* = 7.5, 5.4, 0.9 Hz, 2H, H^{E5}), 7.43 (m, 4H, H^{H3}), 7.33 (m, 2H, H^{H4}), 7.23 (dd, J = 7.9, 1.9 Hz, 2H, H^{A5}), 7.06 (ddd, J = 7.3, 5.8, 1.4 Hz, 2H, H^{B5}), 6.45 (d, J = 7.9 Hz, 2H, H^{A6}). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 168.1 (C^{B2}), 156.2 (C^{E2}), 151.4 (C^{E6}), 149.6 (C^{A1}), 149.2 (C^{B6}), 144.9 (C^{A2}), 141.6 (C^{H1}), 140.1 (C^{E4}), 138.9 (C^{B4}), 136.5 (C^{A4}), 132.7 (C^{A6}), 130.2 (C^{A5}), 129.4 (C^{H3}), 129.0 (C^{E5}), 127.5 (C^{H4}), 127.1 (C^{H2}), 125.2 (CE3), 124.2 (CB5), 124.0 (CA3), 120.6 (CB3). IR (solid, v / cm-1) 3028 (w), 1600 (w), 1563 (w), 1534 (w), 1479 (m), 1461 (w), 1447 (w), 1428 (m), 1313 (w), 1262 (w), 1165 (w), 1073 (w), 1027 (w), 878 (w), 837 (s), 826 (s), 773 (s), 760 (s), 744 (s), 734 (m), 720 (m), 705 (m), 693 (m), 637 (m), 608 (w), 556 (s), 518 (w), 489 (w), 475 (w). UV-Vis (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³) $\lambda / \text{nm} (\varepsilon / \text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}) 276 (100 000), 295 \text{sh} (69 000), 315 \text{sh} (32 000), 345 (13 000),$ 380 (8 000), 420 (5 000). Emission (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³, $\lambda_{exc} = 420$ nm) $\lambda_{em} = 600$ sh, 639 nm. ESI-MS *m/z* 809.6 [M–PF₆]⁺ (base peak, calc. 809.0). Found C 54.71, H 3.57, N 5.93; C₄₄H₃₂F₆IrN₄P·0.5 H₂O requires C 54.88, H 3.45, N 5.82%.

[Ir(Phppy)₂(2)][PF₆]

The method was as for $[Ir(Phppy)_2(1)][PF_6]$ starting with $[Ir(Phppy)_2(MeOH)_2][PF_6]$ (0.150 g, 0.174 mmol) and 2 (40.8 mg, 0.176 mmol). $[Ir(Phppy)_2(2)][PF_6]$ was isolated as an orange solid (105 mg, 0.102 mmol, 59%). ¹H NMR (500 MHz, CD_2Cl_2) δ / ppm 8.56 (dd, J = 8.1, 1.1 Hz, 1H, H^{F3}), 8.53 (d, *J* = 8.2 Hz, 1H, H^{E3}), 8.24 (t, *J* = 7.9 Hz, 1H, H^{F4}), 8.14 (td, *J* = 8.0, 1.5 Hz, 1H, H^{E4}), 8.00 (dd, J = 5.5, 1.1 Hz, 1H, H^{E6}), 7.96 (m, 2H, H^{B3+D3}), 7.92 (m, 1H, H^{B4}), 7.82 (m, 1H, H 1H, H^{D4}), 7.78 (d, J = 2.0 Hz, 1H, H^{A3}), 7.75 (m, 1H, H^{B6}), 7.55 (m, 2H, H^{H2}), 7.50 (m, 3H, H^{J2+F5}), 7.46 (m, 1H, H^{D6}), 7.45–7.36 (m, 6H, $H^{C3+E5+H3+J3}$), 7.33–7.25 (m, 2H, H^{H4+J4}), 7.17– 7.07 (m, 3H, $H^{A5+B5+D5}$), 6.97 (tt, J = 7.5, 1.2 Hz, 1H, H^{G4}), 6.76 (broadened t, 2H, H^{G3}), 6.69 $(dd, J = 7.9, 1.9 Hz, 1H, H^{C5}), 6.57 (br, H^{G2}), 6.10 (d, J = 8.0 Hz, 1H, H^{A6}), 5.73 (d, J = 7.9 H$ 1H, H^{C6}). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 169.2 (C^{B2}), 167.5 (C^{D2}), 166.4 (C^{F6}), 157.5 (CE2), 157.3 (CF2), 150.9 (CE6), 150.6 (CC1), 149.5 (CB6), 149.5 (CD6), 146.1 (CA1), 144.2 (CA2), 144.0 (C²²), 142.2 (C^{J1}), 141.2 (C^{H1}), 140.3 (C^{F4}), 139.9 (C^{E4}), 138.9 (C^{D4}), 138.8 (C^{B4}), 138.5 (CG1), 136.5 (CA4), 134.3 (CC4), 132.5 (CC6), 131.3 (CA6), 130.7 (CF5), 130.2 (CA5), 129.4 (C^{H3/J3}), 129.3 (C^{H3/J3}), 129.2 (C^{C5}), 129.0 (C^{G4}), 128.5 (C^{G3}), 128.4 (C^{E5}), 128.1 (C^{G2}), 127.6 (C^{H4}), 127.1 (C^{J4}), 127.0 (C^{H2}), 126.9 (C^{J2}), 125.6 (C^{E3}), 124.3 (C^{D5}), 124.2 (C^{F3}), 123.8 (C^{C3}), 123.7 (C^{A3}), 123.3 (C^{B5}), 120.7 (C^{B3}), 120.5 (C^{D3}). IR (solid, $\tilde{\nu} / \text{cm}^{-1}$) 3027 (w), 1599 (m), 1562 (w), 1535 (w), 1478 (m), 1449 (m), 1428 (m), 1326 (w), 1296 (w), 1253 (w), 1224 (w), 1165 (w), 1113 (w), 1072 (w), 1031 (w), 877 (w), 835 (s), 781 (m), 760 (s), 718 (m), 696 (s), 639 (m), 624 (w), 608 (w), 556 (s), 487 (w). UV-Vis (CH₂Cl₂, 1.00 × 10⁻⁵ mol dm⁻³) λ / nm (ε / dm³ mol⁻¹ cm⁻¹) 277 (88 000), 295 sh, (69 000), 315 sh (33 000), 345 (13 000), 380 (6 000), 420 (5 000). Emission (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³, $\lambda_{exc} = 420$ nm) $\lambda_{em} = 611$, 639 sh nm. ESI-MS *m/z* 885.7 [M–PF₆]⁺ (base peak, calc. 885.1). Found C 58.00, H 3.90, N 5.37; C₅₀H₃₆F₆IrN₄P requires C 58.30, H 3.52, N 5.44%.

[Ir(Phppy)₂(3)][PF₆]

The method was as for $[Ir(Phppy)_2(1)][PF_6]$ starting with $[Ir(Phppy)_2(MeOH)_2][PF_6]$ (0.150 g, 0.174 mmol) and **3** (47.2 mg, 0.176 mmol). [Ir(Phppy)₂(**3**)][PF₆] was isolated as a yellow solid (148 mg, 0.139 mmol, 80%). ¹H NMR (500 MHz, CD₂Cl₂) δ / ppm 8.31 (d, J = 1.7 Hz, 2H, H^{E3}), 8.09 (d, *J* = 8.0 Hz, 2H, H^{B3}), 8.02 (d, *J* = 5.8 Hz, 2H, H^{E6}), 7.97 (d, *J* = 1.9 Hz, 2H, H^{A3}), 7.86 (ddd, J = 8.3, 7.6, 1.5 Hz, 2H, H^{B4}), 7.61 (m, 4H, H^{H2}), 7.58 (m, 2H, H^{B6}), 7.48 (dd, J =5.9, 1.9 Hz, 2H, H^{E5}), 7.44 (m, 4H, H^{H3}), 7.33 (m, 2H, H^{H4}), 7.22 (dd, *J* = 7.9, 2.0 Hz, 2H, H^{A5}), 7.08 (ddd, J = 7.3, 5.9, 1.3 Hz, 2H, H^{B5}), 6.44 (d, J = 7.9 Hz, 2H, H^{A6}), 1.44 (s, 18H, H^{tBu}). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 168.2 (C^{B2}), 164.7 (C^{E4}), 156.1 (C^{E2}), 151.0 (C^{E6}), 150.1 (C^{A1}), 149.3 (C^{B6}), 144.9 (C^{A2}), 141.7 (C^{H1}), 138.8 (C^{B4}), 136.3 (C^{A4}), 132.6 (C^{A6}), 130.1 (C^{A5}), 129.4 (C^{H3}), 127.5 (C^{H4}), 127.1 (C^{H2}), 126.3 (C^{E5}), 124.0 (C^{B5}), 123.9 (C^{A3}), 121.5 (C^{E3}), 120.5 (C^{B3}), 36.2 (C^{quat-tBu}), 30.6 (C^{tBu}). IR (solid, \tilde{v} / cm^{-1}) 2958 (w), 1610 (w), 1563 (w), 1478 (m), 1429 (w), 1415 (w), 1368 (w), 1253 (w), 1224 (w), 1166 (w), 1070 (w), 1030 (w), 914 (w), 895 (w), 877 (w), 832 (s), 824 (s), 784 (m), 761 (s), 741 (m), 720 (w), 698 (m), 639 (w), 607 (m), 556 (s), 483 (w). UV-Vis (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³) λ / nm (ε / dm³ mol⁻¹ cm⁻¹) 276 (107 000), 295 sh (73 000), 310 sh (41 000), 345 (14 000), 375 (8 000), 420 (5 000). Emission $(CH_2Cl_2, 1.00 \times 10^{-5} \text{ mol dm}^{-3}, \lambda_{exc} = 420 \text{ nm}) \lambda_{em} = 577, 639 \text{ sh nm}$. ESI-MS *m/z* 921.8 [M– PF₆]⁺ (base peak, calc. 921.2). Found C 58.32, H 4.88, N 5.42; C₅₂H₄₈F₆IrN₄P requires C 58.58, H 4.54, N 5.26%.

[Ir(Phppy)₂(4)][PF₆]

The method was as for [Ir(Phppy)₂(1)][PF₆] starting with [Ir(Phppy)₂(MeOH)₂][PF₆] (0.150 g, 0.174 mmol) and 4 (60.6 mg, 0.176 mmol). [Ir(Phppy)₂(4)][PF₆] was isolated as a yellow solid (145 mg, 0.127 mmol, 73%). ¹H NMR (500 MHz, CD_2Cl_2) δ / ppm 8.35 (d, J = 2.0 Hz, 1H, H^{F3}), 8.32 (d, *J* = 1.9 Hz, 1H, H^{E3}), 7.96 (d, *J* = 8.1 Hz, 2H, H^{D3+B3}), 7.92 (m, 1H, H^{B4}), 7.88 (d, J = 5.9 Hz, 1H, H^{E6}), 7.83 (ddd, J = 8.2, 7.6, 1.5 Hz, 1H, H^{D4}), 7.78 (d, J = 2.0 Hz, 1H, H^{A3}), 7.75 (d, J = 5.7 Hz, 1H, H^{B6}), 7.54 (m, 2H, H^{H2}), 7.50 (m, 2H, H^{J2+J6}), 7.47–7.37 (m, 8H, $H^{C3+D6+E5+F5+H3+J3+J5}$, 7.33–7.27 (m, 2H, H^{H4+J4}), 7.15–7.09 (m, 3H, $H^{A5+B5+D5}$), 6.97 (tt, J = 7.6, 1.2 Hz, 1H, H^{G4}), 6.76 (broadened t, 2H, H^{G3}), 6.68 (dd, J = 8.0, 1.9 Hz, 1H, H^{C5}), 6.58 (br, 2H, H^{G2}), 6.11 (d, J = 8.0 Hz, 1H, H^{A6}), 5.72 (d, J = 7.9 Hz, 1H, H^{C6}), 1.49 (s, 9H, H^{tBu-F}), 1.44 (s, 9H, H^{tBu-E}). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 169.2 (C^{B2}), 167.7 (C^{D2}), 166.1 (C^{F6}), 164.9 (C^{F4}), 164.5 (C^{E4}), 157.4 (C^{F2}), 157.3 (C^{E2}), 151.0 (C^{C1}), 150.4 (C^{E6}), 149.6 (C^{D6}), 149.5 (C^{B6}), 146.6 (CA1), 144.2 (CA2), 144.0 (CC2), 142.2 (CI1), 141.3 (CH1), 138.9 (CG1), 138.8 (CD4), 138.7 (C^{B4}), 136.3 (C^{A4}), 134.2 (C^{C4}), 132.5 (C^{C6}), 131.4 (C^{A6}), 130.2 (C^{A5}), 129.4 (C^{H3}), 129.3 (C^{J3+J5}), 129.1 (C^{C5}), 128.9 (C^{G4}), 128.4 (C^{G3}), 128.2 (C^{G2}), 127.6 (C^{F5}), 127.5 (C^{H4}), 127.0 (C^{H2}), 126.9 (C^{12+J6}), 125.8 (C^{E5}), 124.1 (C^{D5}), 123.7 (C^{C3}), 123.6 (C^{A3}), 123.2 (C^{B5}), 122.0 (CE3), 120.8 (CF3), 120.6 (CB3/D3), 120.5 (CB3/D3), 36.2 (Cquat-tBu-E/F), 36.1 (Cquat-tBu-E/F), 30.6 (CtBu^F), 30.5 (C^{tBu-E}). IR (solid, $\tilde{v} / \text{cm}^{-1}$) 2959 (w), 1610 (m), 1600 (m), 1563 (w), 1544 (w), 1477 (m), 1427 (m), 1387 (w), 1369 (w), 1252 (w), 1224 (w), 1166 (w), 1068 (w), 1030 (w), 908 (w), 876 (w), 840 (s), 824 (s), 785 (m), 758 (s), 718 (w), 696 (s), 638 (w), 609 (w), 598 (w), 584 (w), 557 (s), 523 (w), 484 (w). UV-Vis (CH₂Cl₂, 1.00 × 10⁻⁵ mol dm⁻³) λ / nm ($\varepsilon / \text{dm}^3 \text{ mol}^{-1}$ cm⁻¹) 278 (97 000), 295 sh (71 000), 315 sh (37 000), 345 (15 000), 375 (7 000), 420 nm (5 000). Emission (CH₂Cl₂, 1.00 × 10⁻⁵ mol dm⁻³, $\lambda_{\text{exc}} = 420 \text{ nm}$) $\lambda_{\text{em}} = 590$, 639 sh nm. ESI-MS *m/z* 997.9 [M–PF₆]⁺ (base peak, calc. 997.3). Found C 60.61, H 4.94, N 4.95; C₅₈H₅₂F₆IrN₄P requires C 60.99, H 4.59, N 4.90%.

[Ir(Ph₂ppy)₂(1)][PF₆]

[Ir₂(Ph₂ppy)₄Cl₂] (200 mg, 0.197 mmol) and 1 (31.1 mg, 0.199 mmol) were dissolved in MeOH (30 mL). An excess of solid NH_4PF_6 (10 eq) was added and the reaction mixture was stirred for 1 h at room temperature. The yellow precipitate that formed was separated by filtration, washed with MeOH and Et₂O and then purified by column chromatography (Fluka silica gel 60, CH₂Cl₂ changing to CH₂Cl₂:MeOH 100:0.5). After crystallization from a CH₂Cl₂ solution overlaid with EtOH : n-hexane (2:1), $[Ir(Ph_2ppy)_2(1)][PF_6]$ was obtained as an orange solid (142 mg 0.128 mmol, 65%). ¹H NMR (500 MHz, CD₂Cl₂) δ / ppm 8.27 (d, J = 8.1 Hz, 2H, H^{E3}), 8.03 (td, *J* = 7.9, 1.6 Hz, 2H, H^{E4}), 7.95-7.90 (m, 4H, H^{A3+E6}), 7.78 (m, 4H, H^{H2}), 7.53 (d, J = 8.3 Hz, 2H, H^{B3}), 7.51–7.45 (m, 6H^{H3+E5}), 7.38 (m, 2H, H^{H4}), 7.31 (m, 2H, H^{B4}), 7.21 (d, J = 2.1 Hz, 2H, H^{A5}), 6.95 (m, 2H, H^{K2/K6}), 6.85 (m, 2H, H^{B6}), 6.84-6.78 (m, 4H, H^{K3+K5}), 6.60 (m, 2H, H^{K4}), 6.50-6.44 (m, 4H, H^{B5+K2/K6}). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 167.2 (C^{B2}), 156.0 (C^{E2}), 152.0 (C^{A6}), 150.2 (C^{E6}), 148.9 (C^{B6}), 147.7 (C^{A2}), 145.5 (C^{K1}), 144.3 (C^{A1}), 141.2 (C^{H1}), 140.3 (C^{E4}), 137.8 (C^{B4}), 135.9 (C^{A4}), 132.0 (C^{A5}), 129.5 (C^{H3}), 129.4 (C^{K2/K6}), 129.2 (C^{K2/K6}), 129.0 (C^{E5}), 127.7 (C^{H4}), 127.6 (C^{K3/K5}), 127.3 (C^{K4}), 127.1 (C^{H2}), 126.6 (C^{K3/K5}), 125.0 (CE3), 122.9 (CA3), 122.8 (CB5), 120.5 (CB3). IR (solid, v/cm-1) 3044 (w), 1600 (m), 1565 (w), 1480 (m), 1445 (w), 1408 (w), 1381 (w), 1345 (w), 1313 (w), 1295 (w), 1243 (w), 1177 (w), 1165 (w), 1103 (w), 1072 (w), 1031 (w), 1020 (w), 908 (w), 880 (w), 834 (s), 774 (m), 760 (s), 716 (m), 699 (s), 636 (m), 612 (w), 600 (m), 557 (s), 525 (m), 495 (w). UV-Vis (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³) λ / nm (ε / dm³ mol⁻¹ cm⁻¹) 255 (72 000), 282 (72 000), 299 (68 000), 325 (sh, 23 000), 345 (12 000), 400 (8 000), 420 nm (sh, 5 000 dm³ mol⁻¹ cm⁻¹). Emission $(CH_2Cl_2, 1.00 \times 10^{-5} \text{ mol } dm^{-3}, \lambda_{exc} = 420 \text{ nm}) \lambda_{em} = 611, 638 \text{ sh nm}$. ESI-MS *m/z* 961.8 [M-PF₆]⁺ (base peak, calc. 961.2). Found C 60.50, H 3.88, N 5.17; C₅₆H₄₀F₆IrN₄P requires C 60.81, H 3.64, N 5.07%.

[Ir(Ph₂ppy)₂(2)][PF₆]

The method was as for $[Ir(Ph_2ppy)_2(1)][PF_6]$ starting from $[Ir(Ph_2ppy)_4Cl_2]$ (200 mg, 0.197 mmol) and **2** (46.3 mg, 0.199 mmol). $[Ir(Ph_2ppy)_2(2)][PF_6]$ was isolated as an orange solid (152 mg, 0.129 mmol, 65%). ¹H NMR (500 MHz, CD₂Cl₂) δ / ppm 8.36 (m, 2H, H^{E3+F3}), 8.12–8.03 (overlapping m, 3H, H^{E4+F4+E6}), 7.68 (d, J = 5.7 Hz, 1H, H^{B6}), 7.65 (m, 2H, H^{H2}), 7.57 (m, 3H, H^{A3+J2}), 7.45 (m, 4H, H^{H3+J3}), 7.40–7.31 (overlapping m, 7H, H^{B3+B4+D4+E5+F5+H4+J4}), 7.18 (d, J = 8.1 Hz, 1H, H^{D3}), 7.15 (dd, J = 5.9, 0.7 Hz, 1H, H^{D6}), 7.06 (d, J = 2.1 Hz, 1H, H^{C3}), 6.98 (m,

1H, H^{G4}), 6.92 (m, 3H, H^{G3+L6}), 6.88 (d, J = 2.1 Hz, 1H, H^{A5}), 6.84 (m, 3H, H^{G2+L4}), 6.79–6.71 (overlapping m, 3H, H^{B5+K4+L3}), 6.67–6.58 (overlapping m, 3H, H^{D5+K3+L5}), 6.56 (d, J = 2.1 Hz, 1H, H^{C5}), 6.52 (m, 2H, H^{K5+ K6}), 6.05 (dt, J = 7.5, 1.3 Hz, 1H, H^{L2}), 5.98 (m, 1H, H^{K2}). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 169.3 (C^{D2}), 166.7 (C^{B2}), 165.2 (C^{F6}), 157.8 (C^{E2}), 157.1 (CF2), 151.2 (CA6), 150.5 (CC6), 149.9 (CE4), 149.5 (CB6), 148.3 (CD6), 147.7 (CC2), 147.3 (CA2), 146.0 (C^{L1}), 144.4 (C^{K1}), 141.9 (C^{J1}), 141.4 (C^{C1}), 140.9 (C^{H1}), 140.3 (C^{F4}), 140.1 (C^{E6}), 137.9 (C^{B4}), 137.6 (C^{G1}), 137.5 (C^{D4}), 135.7 (C^{A4}), 134.4 (C^{A1}), 134.1 (C^{C4}), 132.4 (C^{A5}), 131.7 (C^{C5}), 131.2 (C^{F5}), 130.6 (C^{L2}), 129.7 (C^{K6}), 129.5 (C^{K2}), 129.5 (C^{G4}), 129.4 (C^{H3/J3}), 129.3 (C^{H3/J3}), 129.0 (C^{G2}), 128.3 (C^{L6}), 128.3 (C^{E5}), 128.3 (C^{G3}), 127.7 (C^{H4}), 127.2 (C^{J4}), 127.0 (C^{H2/J2}), 127.0 (C^{H2/J2}), 127.0 (C^{K3+L3}), 126.5 (C^{K4}), 126.5 (C^{K5}), 126.4 (C^{L5}), 126.1 (C^{L4}), 125.8 (C^{E3}), 125.0 (CF3), 123.6 (CC3), 123.2 (CB5), 122.9 (CA3), 122.1 (CD5), 120.8 (CD3), 120.7 (CB3). IR (solid, $\tilde{v} / \text{cm}^{-1}$) 3031 (w), 1598 (m), 1563 (w), 1481 (m), 1444 (m), 1411 (w), 1379 (w), 1346 (w), 1294 (w), 1233 (w), 1170 (w), 1071 (w), 1026 (w), 996 (w), 905 (w), 887 (w), 834 (s), 787 (m), 757 (s), 717 (w), 702 (s), 693 (s), 630 (m), 599 (m), 555 (s), 526 (m), 506 (w), 488 (w). UV-Vis (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³) λ / nm (ε / dm³ mol⁻¹ cm⁻¹) 261 (70 000), 280 (69 000), 294 (67 000), 325 sh (23 000), 345 (14 000), 400 (6 000), 420 sh (4 000). Emission (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³, $\lambda_{exc} = 420$ nm) $\lambda_{em} = 615$ sh, 645 nm. ESI-MS *m/z* 1037.8 [M–PF₆]⁺ (base peak, calc. 1037.3). Found C 61.92, H 4.02, N 4.75; C₆₂H₄₄F₆IrN₄P·H₂O requires C 62.04, H 3.86, N 4.67%.

[Ir(Ph₂ppy)₂(3)][PF₆]

The method was as for [Ir(Ph₂ppy)₂(1)][PF₆] starting from [Ir(Ph₂ppy)₄Cl₂] (200 mg, 0.197 mmol) and 3 (53.5 mg, 0.199 mmol) in MeOH (10 mL). [Ir(Ph₂ppy)₂(3)][PF₆] was isolated as an orange solid (131 mg, 0.108 mmol, 55%). ¹H NMR (500 MHz, CD₂Cl₂) δ / ppm 8.01 (d, J = 1.9 Hz, 2H, H^{E3}), 7.94 (d, J = 2.1 Hz, 2H, H^{A3}), 7.82–7.74 (m, 6H, H^{H2+E6}), 7.53 (d, J = 8.3 Hz, 2H, H^{B3}), 7.50 (m, 4H, H^{H3}), 7.44 (dd, J = 6.0, 1.9 Hz, 2H, H^{E5}), 7.39 (m, 2H, H^{H4}), 7.32 (ddd, J = 8.4, 7.4, 1.5 Hz, 2H, H^{B4}), 7.22 (d, J = 2.1 Hz, 2H, H^{A5}), 6.99 (m, 2H, H^{K2/K6}), 6.85 (ddd, J = 5.9, 1.4, 0.7 Hz, 2H, H^{B6}), 6.82 (m, 4H, H^{K3+K5}), 6.59 (m, 2H, H^{K4}), 6.50-6.45 (m, 4H, H^{B5+K2/K6}), 1.34 (s, 18H, H^{tBu}).¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 167.3 (C^{B2}), 164.9 (C^{E4}), 155.8 (CE2), 152.0 (CA6), 149.8 (CE6), 149.0 (CB6), 147.7 (CA2), 145.6 (CK1), 145.0 (CA1), 141.2 (C^{H1}), 137.7 (C^{B4}), 135.8 (C^{A4}), 132.0 (C^{A5}), 129.5 (C^{H3}), 129.4 (C^{K2/K6}), 129.1 (C^{K2/K6}), 127.7 (C^{H4+K3/K5}), 127.4 (C^{K4}), 127.1 (C^{H2}), 126.5 (C^{K3/K5}), 126.2 (C^{E5}), 122.8 (C^{A3}), 122.6 (C^{B5}), 121.2 (CE3), 120.4 (CB3), 36.1 (Cquat-tBu), 30.5 (CtBu). IR (solid, v / cm⁻¹) 2965 (w), 1609 (w), 1567 (w), 1541 (w), 1481 (m), 1411 (m), 1382 (w), 1296 (w), 1246 (w), 1169 (w), 1155 (w), 1070 (w), 1019 (w), 895 (w), 878 (w), 835 (s), 782 (m), 772 (m), 758 (s), 737 (w), 704 (s), 637 (w), 610 (w), 599 (w), 556 (s), 525 (w), 498 (w). UV-Vis (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³) λ / nm (ε / dm³ mol⁻¹ cm⁻¹) 256 (79 000), 280 (79 000), 300 (71 000), 325 sh (27 000), 345 (14 000), 400 (8 000), 420 sh (5 000). Emission (CH₂Cl₂, 1.00 × 10⁻⁵ mol dm⁻³, λ_{exc} = 420 nm) λ_{em} = 588, 639 sh nm. ESI-MS m/z 1073.9 [M-PF₆]⁺ (base peak, calc. 1073.4). Found C 62.96, H 4.80, N 4.88; C₆₄H₅₆F₆IrN₄P requires C 63.09, H 4.63, N 4.60%.

$[Ir(Ph_2ppy)_2(4)][PF_6]$

The method was as for $[Ir(Ph_2ppy)_2(1)][PF_6]$ starting from $[Ir(Ph_2ppy)_4Cl_2]$ (150 mg, 0.148 mmol) and 4 (51.5 mg, 0.149 mmol). $[Ir(Ph_2ppy)_2(4)][PF_6]$ was isolated as a yellow solid (106 mg, 0.082 mmol, 55%). ¹H NMR (500 MHz, CD₂Cl₂) δ / ppm 8.12 (d, J = 1.8 Hz, 1H, H^{E3}), 8.11 (d, J = 2.0 Hz, 1H, H^{F3}), 7.96 (d, J = 6.0 Hz, 1H, H^{E6}), 7.67–7.62 (m, 3H, H^{B6+H2}), 7.58 (d, J = 2.1 Hz, 1H, H^{A3}), 7.58–7.55 (m, 2H, H^{J2}), 7.44 (m, 4H, H^{H3+J3}), 7.38–7.31 (overlapping m, 6H, H^{B3+B4+D4+E5+H4+J4}), 7.28 (d, J = 2.0 Hz, 1H, H^{F5}), 7.19 (d, J = 8.1 Hz, 1H, H^{D3}), 7.14 (dd, J $= 5.9, 0.7 \text{ Hz}, 1\text{H}, \text{H}^{\text{D6}}), 7.07 \text{ (d, } J = 2.1 \text{ Hz}, 1\text{H}, \text{H}^{\text{C3}}), 6.98 \text{ (m, 1H, H}^{\text{G4}}), 6.93 \text{ (m, 2H, H}^{\text{G3}}),$ 6.89 (m, 1H, H^{L6}), 6.87 (d, J = 2.1 Hz, 1H, H^{A5}), 6.84 (m, 3H, H^{G2+L4}), 6.78–6.71 (overlapping) m, 3H, $H^{B5+K4+L3}$), 6.67–6.58 (overlapping m, 3H, $H^{D5+K3+L5}$), 6.55 (d, J = 2.1 Hz, 1H, H^{C5}), 6.53 (m, 2H, H^{K5+ K6}), 6.05 (dt, J = 7.5, 1.3 Hz, 1H, H^{L2}), 5.98 (m, 1H, H^{K2}), 1.39 (s, 9H, H^{tBu-} F), 1.37 (s, 9H, HtBu-E). ¹³C NMR (126 MHz, CD₂Cl₂) δ / ppm 169.4 (C^{D2}), 166.8 (C^{B2}), 165.1 (CF6), 164.8 (CE4+F4), 157.7 (CE2), 157.3 (CF2), 151.3 (CA6), 150.5 (CC6), 149.5 (CE6), 149.5 (C^{B6}), 148.4 (C^{D6}), 147.7 (C^{C2}), 147.3 (C^{A2}), 146.0 (C^{L1}), 144.4 (C^{K1}), 141.9 (C^{J1}), 141.7 (C^{C1}), 141.0 (C^{H1}), 138.0 (C^{G1}), 137.7 (C^{B4}), 137.4 (C^{D4}), 135.6 (C^{A4}), 134.9 (C^{A1}), 134.0 (C^{C4}), 132.3 (C^{A5}), 131.6 (C^{C5}), 130.6 (C^{L2}), 129.6 (C^{K6}), 129.5 (C^{K2}), 129.4 (C^{H3}), 129.4 (C^{G4}), 129.3 (C^{J3}), 129.0 (C^{G2}), 128.4 (C^{L6}), 128.3 (C^{G3}), 128.1 (C^{F5}), 127.7 (C^{H4}), 127.1 (C^{J4}), 127.0 (C^{H2+J2}), 127.0 (CK3), 126.9 (CL3), 126.5 (CK5), 126.4 (CK4), 126.4 (CL5), 126.1 (CL4), 125.6 (CE5), 123.5 (C^{C3}), 123.0 (C^{B5}), 122.8 (C^{A3}), 122.0 (C^{E3}), 121.9 (C^{D5}), 121.7 (C^{F3}), 120.8 (C^{D3}), 120.7 (C^{B3}), 36.1 (Cquat-tBu-E), 36.0 (Cquat-tBu-F), 30.5 (CtBu-F), 30.4 (CtBu-E). IR (solid, v / cm⁻¹) 3596 (w), 3031 (w), 1598 (m), 1563 (w), 1481 (m), 1444 (m), 1411 (w), 1379 (w), 1346 (w), 1294 (w), 1233 (w), 1170 (w), 1071 (w), 1026 (w), 996 (w), 905 (w), 887 (w), 834 (s), 787 (m), 757 (s), 717 (w), 702 (s), 693 (s), 630 (m), 599 (m), 555 (s), 526 (m), 506 (w), 488 (w). UV-Vis (CH₂Cl₂, 1.00×10^{-5} mol dm⁻³) λ / nm (ε / dm³ mol⁻¹ cm⁻¹) 261 (74 000), 280 (72 000), 298 (69 000), 325 sh (29 000), 345 (14 000), 400 (6 000), 420 nm (4 000). Emission (CH₂Cl₂, × 10⁻⁵ mol dm⁻ ³, $\lambda_{\text{exc}} = 420 \text{ nm}$) $\lambda_{\text{em}} = 609$, 636 sh nm. ESI-MS m/z 1149.9 [M–PF₆]⁺ (base peak, calc. 1149.5). Found C 64.54, H 4.88, N 4.61; C₇₀H₆₀F₆IrN₄P·0.5H₂O requires C 64.50, H 4.72, N 4.30%.

Crystallography

Single crystal data were collected on a Bruker APEX-II diffractometer with data reduction, solution and refinement using the programs APEX³ and CRYSTALS⁴ or SHELX-13.⁵ ORTEP diagrams and structure analysis used Mercury v. 3.0.1 and v. 3.3.^{6,7}

HPh₂ppy

 $C_{23}H_{17}N$, M = 307.38, colourless block, orthorhombic, space group $Pna2_1$, a = 7.4701(2), b = 19.7919(5), c = 11.1894(3) Å, U = 1654.32(8) Å³, Z = 4, $D_c = 1.234$ Mg m⁻³, μ (Cu-K α) = 0.544 mm⁻¹, T = 296 K. Total 11157 reflections, 2874 unique, $R_{int} = 0.0255$. Refinement of 2734 reflections (217 parameters) with $I > 2\sigma$ (I) converged at final R1 = 0.0343 (R1 all data = 0.0360), wR2 = 0.0966 (wR2 all data = 0.0986), gof = 1.052. CCDC 1019226.

[Ir(Phppy)₂(1)][PF₆]

 $C_{44}H_{32}F_6IrN_4P$, M = 953.93, orange block, monoclinic, space group $P2_1/n$, a = 15.0877(10), b = 13.1747(9), c = 18.0930(12) Å, $\beta = 96.094(2)^\circ$, U = 3576.1(4) Å³, Z = 4, $D_c = 1.772$ Mg m⁻³, μ (Cu-K α) = 8.270 mm⁻¹, T = 123 K. Total 63369 reflections, 6470 unique, $R_{int} = 0.0329$. Refinement of 6256 reflections (505 parameters) with $I > 2\sigma$ (I) converged at final R1 = 0.0192(R1 all data = 0.0199), wR2 = 0.0487 (wR2 all data = 0.0492), gof = 1.054. CCDC 1019228.

[Ir(Ph₂ppy)₂(1)][PF₆]·EtOH

 $C_{58}H_{46}F_6IrN_4OP$, M = 1152.18, orange block, orthorhombic, space group $Pna2_1$, a = 13.1280(6), b = 37.8916(17), c = 10.2900(5) Å, U = 5118.7(4) Å³, Z = 4, $D_c = 1.495$ Mg m⁻³, μ (Cu-K α) = 5.901 mm⁻¹, T = 123 K. Total 48035 reflections, 9189 unique, $R_{int} = 0.0435$. Refinement of 8655 reflections (670 parameters) with $I > 2\sigma$ (I) converged at final R1 = 0.0467 (R1 all data = 0.0493), wR2 = 0.1210 (wR2 all data = 0.1228), gof = 1.117. CCDC 1019227.

$[Ir(Ph_2ppy)_2(2)][PF_6] \cdot 2C_6H_5Me$

 $C_{76}H_{60}F_6IrN_4P$, M = 1366.52, yellow block, triclinic, space group P-1, a = 10.8073(6), b = 13.5065(8), c = 20.8777(12) Å, $\alpha = 80.953(3)$, $\beta = 86.577(3)$, $\gamma = 78.797(3)^\circ$, U = 2950.90(17) Å³, Z = 2, $D_c = 1.538$ Mg m⁻³, μ (Cu-K α) = 5.207 mm⁻¹, T = 123 K. Total 50598 reflections, 10694 unique, $R_{int} = 0.037$. Refinement of 10647 reflections (793 parameters) with $I > 2\sigma$ (I) converged at final R1 = 0.0204 (R1 all data = 0.0243), wR2 = 0.0474 (wR2 all data = 0.0492), gof = 0.9016. CCDC 1019229.

Device preparation

Glass substrates partially coated with indium-tin-oxide (ITO) (www.naranjosubstrates.com) were cleaned by 5 mins sonication in soapy water, deionized water, isopropanol and thereafter left under an UV-O₃ lamp for 20 minutes. A 60 nm thick PEDOT/PSS film was spincoated on top of the glass substrate at 1000 rpm, and then dried at 150°C for 15 minutes. On top of this a blend of the iridium complex and the ionic liquid [BMIM][PF₆] (1-butyl-3-methyl-imidazolium hexafluoridophosphate) (molar ratio 4:1) was spin coated from an acetonitrile solution (20 mg/ml) at 1000 rpm, leading to a 100 nm thick active layer. Finally 70 nm of aluminum thermally evaporated on top of the device to serve as the cathode contact

Crystal structure of HPh₂ppy

Although the synthesis of HPh₂ppy has been described, the crystal structure of the compound has not been reported. Single crystals of HPh₂ppy were grown from a CH₂Cl₂ solution of the compound layered with n-hexane and Fig. S1 depicts the molecular structure. Bond distances and angles are as expected, as is the twisted arrangement of the rings containing N1, C12 and C18 with respect to the central arene ring (angles between the planes of the rings containing C6/N1, C6/C12 and C6/C18 are 32.2, 39.1 and 31.1°). HPh₂ppy crystallizes in the orthorhombic space group *Pna*2₁ and is isostructural with 1,3,5-triphenylbenzene,^{8,9} indicating that exchange of one phenyl for a 2-pyridyl group has little influence on the molecular packing. However, on going to 1,3,5-tris(2-pyridyl)benzene (which also crystallizes in the space group *Pna*2₁),¹⁰ the inter-ring twist angles are smaller (16.0–24.6°) than in HPh₂ppy and and 1,3,5triphenylbenzene and the molecular packing is modified, although Williams and coworkers report the CH...N contacts (the factor that might be expected to be responible for the modification) to be very weak.¹⁰

Fig. S1. Structure of HPh₂ppy with ellipsoids plotted at 40% probability level. Selected bond distances: N1–C5 = 1.364(3), N1–C1 = 1.366(3), C5–C6 = 1.485(3), C8–C12 = 1.489(3), C10–C18 = 1.488(3) Å.

8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 3.4 3.3

Fig. S2. 500 MHz ¹H NMR spectrum (295 K) of $[Ir(Ph_2ppy)_2(MeOH)_2][PF_6]$ in CD₃OD. * = residual solvent peak. Chemical shifts in δ / ppm.

Fig. S3. The structure of the Λ -[Ir(Ph₂ppy)₂(**2**)]⁺ cation in racemic [Ir(Ph₂ppy)₂(**2**)][PF₆]·2C₆H₅Me (H atoms omitted, ellipsoids plotted at 40% probability). Selected bond metrics: Ir1–N2 = 2.0479(18), Ir1–C9 = 2.031(2), Ir1–N26 = 2.2610(18), Ir1–N33 = 2.1454(19), Ir1–N44 = 2.0549(18), Ir1–C47 = 2.047(2) Å; N26–Ir1–N33 = 76.14(7), N2–Ir1–C9 = 80.64(8), N44–Ir1–C47 = 80.11(8)°.

Fig. S4. ¹H NMR spectra of (a) $[Ir(Phppy)_2(1)][PF_6]$ (500 MHz, 298 K, CD_2Cl_2) and (b) $[Ir(Phppy)_2(2)][PF_6]$ (600 MHz, 298 K, CD_2Cl_2). See Scheme 2 for atom labelling. Chemical shifts in δ / ppm.

Fig. S5. The 600 MHz variable temperature ¹H NMR spectra of a CD_2Cl_2 solution of $[Ir(Phppy)_2(2)][PF_6]$. An expanded region is shown in Fig. 5a in the main paper.

Fig. S6. π -Stacking of pyridine ring B and pendant phenyl ring K in the $[Ir(Ph_2ppy)_2(1)]^+$ cation which is consistent with the low-frequency ¹H NMR spectroscopic signals in Table S1. The diagram is the crystallographically determined structure.

Fig. S7. Part of the 500 MHz variable temperature ¹H NMR spectra of a CD₂Cl₂ solution of $[Ir(Ph_2ppy)_2(2)][PF_6]$. Changes in signal integrals on cooling are consistent with the collapse of signals at $\delta 6.92$ ppm (H^{G3}) and $\delta 6.84$ ppm (H^{G2}). At 205 K, a broad peak (FWHM \approx 70 Hz) appears at $\delta 6.33$ ppm and is attributed to either H^{G2} or H^{G6}. Further cooling was not possible with available solvents. We propose that the distortion in the coordination sphere of the iridium atom caused by the π -stacking of rings B and L, and of D and K (and observed in the solid-state structure of [Ir(Ph_2ppy)_2(2)][PF_6]) is responsible for the less hindered rotation of ring G.

Fig. S8. Expansion of the 500 MHz ¹H NMR spectrum at 205 K of a CD_2Cl_2 solution of $[Ir(Ph_2ppy)_2(2)][PF_6]$, showing the broad signal (FWHM \approx 70 Hz) assigned to H^{G2} or H^{G6}.

(b)

(c)

Fig. S9. Voltage vs time (a) at 300 A/m², (b) at 100 A/m² and (c) at 50 A/m², at a frequency of 1 kHz and duty cycles of 50% for all devices.

Fig. S10. Electroluminescence of the iridium compounds, measured at 50 A/m² at a frequency of 1 kHz and duty cycles of 50% for all devices.

Table S1. ¹H NMR spectrscopic data (CD₂Cl₂, 298 K) for rings B and K in the C_2 -symmetric complexes [Ir(Phppy)₂(N^N)][PF₆] and [Ir(Ph₂ppy)₂(N^N)][PF₆] (N^N = 1 or 3).

Cation	H ^{B3}	H ^{B4}	H ^{B5}	H ^{B6}
$[Ir(Phppy)_2(1)]^+$	8.09	7.85	7.06	7.56
$[Ir(Phppy)_2(3)]^+$	8.09	7.86	7.08	7.58
$[Ir(Ph_2ppy)_2(1)]^+$	7.53	7.31	6.48ª	6.85
$[Ir(Ph_2ppy)_2(3)]^+$	7.53	7.32	6.48ª	6.85
	H ^{K2} , H ^{K6}	$\mathbf{H}^{\mathbf{K3}} + \mathbf{H}^{\mathbf{K5}}$	H ^{K4}	
$[Ir(Ph_2ppy)_2(1)]^+$	6.95, 6.45 ^a	6.82	6.60	
$[Ir(Ph_2ppy)_2(3)]^+$	6.99, 6.47 ^a	6.82	6.59	

^a Values determined from HMQC spectra

¹ P. G. Bomben, B. D. Kolvisto and C. P. Berlinguette, Inorg. Chem., 2010, 49, 4960.

² J. D. Kehlbeck, E. J. Dimise, S. M. Sparks, S. Ferrara, J. M. Tanski and C. M. Anderson, *Synthesis*, 2007, 1979.

³ Bruker Analytical X-ray Systems, Inc., 2006, APEX2, version 2 User Manual, M86-E01078, Madison, WI.

⁴ P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, J. Appl. Cryst., 2003, 36, 1487.

⁵ G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.

⁶ I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., Sect. B 2002, 58, 389.

⁷ C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466.

⁸ Y. C. Lin and D. E. Williams, Acta Crystallogr., Sect. B, 1975, 31, 318.

⁹ D. Prasad, A. Preetam and M. Nath, Compt. Rend. Chim., 2013, 16, 252.

¹⁰ S. J. Farley, D. L. Rochester, A. L. Thompson, J. A. K. Howard and J. G. Williams, Inorg. Chem., 2005, 44, 9690.