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S1 Reduction of photo(physical)chemical mechanisms to a two-state exchange

In the following subsections, we show that various mechanisms involving light absorption can be reduced to

the two-state model (1) at an appropriate time scale.

S1.1 A photoswitchable probe

In a first step, we examine the behaviour of a photoswitchable probe. Light absorption is supposed to drive the

exchange between two ground singlet states of a probe denoted S0,i (i=1 or 2). In the considered scheme, the

state S0,1 is supposed to be thermodynamically more stable than the state S0,2. Mechanistically, this exchange

involves light absorption leading each ground state S0,i to its corresponding first singlet excited state S1,i. The

latter is then assumed to relax either by leading back to the S0,i state (for instance by emission of a photon

when the probe is a photoswitchable fluorophore) or by photoisomerization (yielding the other ground state).

The ground state S0,2 can also notably relax thermally toward the more stable S0,1 state. The overall scheme is

displayed in Figure S1.
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Figure S1: Mechanism accounting for the behaviour of a photoswitchable probe upon illuminating. The arrows
and the associated rate constants refer to the exchange processes. See Text.

Relying on the mechanism displayed in Figure S1, we write Eqs.(S1–S4) to describe the concentration

evolutions:

dS0,1

dt
= −k01,1S0,1 + k10,1S1,1 + k∆21S0,2 + k

′
10,2S1,2 (S1)

dS0,2

dt
= k

′
10,1S1,1 −

(
k01,2 + k∆21

)
S0,2 + k10,2S1,2 (S2)

dS1,1

dt
= k01,1S0,1 −

(
k10,1 + k

′
10,1

)
S1,1 (S3)

dS1,2

dt
= k01,2S0,2 −

(
k10,2 + k

′
10,2

)
S1,2. (S4)

In Figure S1, the rate constants k10,i and k
′
10,i are notably much larger than the rate constants k01,i and

k∆21. k10,i and k
′
10,i are typically larger than 109s−1.[1] In contrast, k01,i is in the 10 s−1 range under typical

illumination conditions.∗ Moreover k∆21 is at most in the 106 s−1 range. Thus it is possible to apply the steady-

state approximation to S1,1 and S1,2 beyond the nanosecond time scale. Under such conditions it is meaningful
∗Using k01,i = σ01,iI

0 by considering that the typical photon flux at the sample of an illumination setup is I0 = 1021

photons.m−2.s−1 and that the molecular cross section for light absorption σ01,i = 2.3ϵi/NA (NA is the Avogadro number) is in
the 10−20 m2/molecule range for the considered probes.
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to consider that the states S0,i and S1,i are in a fast exchange so as to introduce an average species i for which

S0,i and S1,i contribute in pS0,i and pS1,i respective proportions where

pS0,i =
1

1 +K01,i
(S5)

pS1,i =
K01,i

1 +K01,i
(S6)

with

K01,i =
k01,i

k10,i + k
′
10,i

. (S7)

Under the experimental conditions used in this study, the relative proportions in the excited and ground states

are typically pS1,i ∼ 10−8 and pS0,i ∼ 1.

Considering that the concentration in i, i, is equal to S0,i + S1,i, Eqs.(S1–S4) reduce to Eq.(S8) beyond the

time scale at which the steady-state approximation is valid.

d2

dt
= −d1

dt
=

(
K01,1

1 +K01,1
k

′
10,1

)
1−

(
K01,2

1 +K01,2
k

′
10,2 +

1

1 +K01,2
k∆21

)
2. (S8)

Considering that, far from saturation, K01,i is proportional to the photon flux I0 and much lower than 1,

one can write:

K01,1

1 +K01,1
k

′
10,1 ≃ K01,1k

′
10,1 =

k
′
10,1

k10,1 + k
′
10,1

σ01,1I
0 = khν12 (S9)

K01,2

1 +K01,2
k

′
10,2 ≃ K01,2k

′
10,2 =

k
′
10,2

k10,2 + k
′
10,2

σ01,2I
0 = khν21 (S10)

1

1 +K01,2
k∆21 ≃ k∆21. (S11)

Hence Eq.(S8) can be alternatively written

d2

dt
= −d1

dt
= khν12 1−

(
khν21 + k∆21

)
2 (S12)

in which we introduced the notations khν12 and khν21 to express that the corresponding terms are proportional to

the incident photon flux. Eq.(S12) is dynamically identical to Eqs.(S42–S43).

S1.2 A three-state electronic model

As a second relevant situation, we analyze the behavior of a chromophore, which light excitation yields its first

excited singlet state S1 from its ground singlet state S0. S1 can subsequently relax to the ground state S0 (for

instance by fluorescence emission) or be converted to its first triplet state T1. T1 then deexcites to give back

the ground state S0. The overall scheme is displayed in Figure S2.
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Figure S2: Mechanism accounting for the behaviour of a chromophore yielding its first singlet and triplet
excited states upon illuminating. The arrows and the associated rate constants refer to the exchange processes.
See Text.

Relying on the mechanism displayed in Figure S2, we write Eqs.(S13–S15) to describe the concentration

evolutions:

dS0

dt
= −k01S0 + k10S1 + kTT1 (S13)

dS1

dt
= k01S0 − (k10 + kISC)S1 (S14)

dT1

dt
= kISCS1 − kTT1. (S15)

In Figure S2, the rate constant k10 (typically larger than 109s−1;[1]) is notably much larger than the other

rate constants. Again k01,i would be in the 10 s−1 under typical illumination conditions. In addition kISC and

kT are usually in the 106 and 103–106 s−1 range.[1] Thus we can apply the steady-state approximation to S1

beyond the nanosecond time scale. Under such conditions it is meaningful to consider that the states S0 and

S1 are in a fast exchange so as to introduce an average species 1 for which S0 and S1 contribute in pS0 and pS1

respective proportions where

pS0 =
1

1 +K01
(S16)

pS1 =
K01

1 +K01
(S17)

with

K01 =
k01
k10

. (S18)

Under typical experimental conditions, the relative proportions in the excited and ground states are typically

pS1 ∼ 10−8 and pS0 ∼ 1.

Considering that the concentration in 1, 1, is equal to S0 + S1 and denoting T1 by 2 in the following,

Eqs.(S13–S15) reduce to Eq.(S19) beyond the time scale at which the steady-state approximation is valid.

d2

dt
= −d1

dt
=

(
K01

1 +K01
kISC

)
1− kT 2. (S19)

Considering that, far from saturation, K01 is proportional to the photon flux I0 and much lower than 1, one
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can write:

K01

1 +K01
kISC ≃ K01kISC =

1

k10
σ01I

0kISC = khν12 (S20)

k∆21 = kT . (S21)

Hence Eq.(S19) can be alternatively written

d2

dt
= −d1

dt
= khν12 1− k∆212 (S22)

in which we introduced the notations khν12 to express that the corresponding term is proportional to the incident

photon flux. Eq.(S22) is dynamically identical to Eqs.(S42–S43) upon noting that khν21 = 0.

S1.3 A four-state model associated to titration of an analyte A

In this last subsection, we reduce the dynamic behavior associated to a photoswitchable sensor. The generic

dynamic model is a four-state mechanism consisting of the two exchanging free states of a photoswitchable

probe, 1F and 2F, which can both bind an analyte A to yield the corresponding bound states, 1B and 2B.

This situation is relevant of a photoswitchable pH-indicator for instance. As in the previous subsections, 1

and 2 states interconvert by photoisomerization in both the bound and free states while only 2 to 1 conversion

may occur by thermally-driven exchange. The associated rate constants are presented in Figure S3, where the

superscripts hv and ∆ respectively denote photochemical and thermal contributions.

+

1B

1F 2F

2B

hν

A
k

k

+ A
12,F

+,1

hν ∆
k k

21,F 21,F
+

hν
k

k

12,B

-,1

hν ∆
k k

21,B 21,B
+

k
-,2

k
+,2

∆ ∆ ∆ ∆

Figure S3: Four-state mechanism accounting for the photochemical and probing behavior of a photoswitchable
sensor in the presence of an analyte A.

The theoretical framework closely mirrors that described in a previous work by Emond et al.[2] The con-
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centration profiles within the four state model are governed by the equations:

d1B

dt
= − (k1B→1F + k1B→2B) 1B + k2B→1B 2B + k1F→1B A 1F (S23)

d2B

dt
= k1B→2B 1B − (k2B→2F + k2B→1B) 2B + k2F→2B A 2F (S24)

d1F

dt
= k1B→1F1B − (k1F→1B A+ k1F→2F) 1F + k2F→1F 2F (S25)

d2F

dt
= k2B→2F2B + k1F→2F 1F − (k2F→2B A+ k2F→1F) 2F (S26)

The temporal dependence of concentrations cannot be obtained in the most general case. However, it can

be analyzed in asymptotic situations according to the nature of the rate-limiting steps, which are associated

to either the photochemical reactions or the complexation reactions.† In this account, we are interested to

examine the case in which the photochemical steps are rate limiting. Indeed it should be relevant in most

sensing situations.‡

In the corresponding “low”-illumination regime, it is meaningful to introduce the average species 1 and 2

(concentrations 1 = 1F + 1B and 2 = 2F + 2B). The “instantaneous” concentrations in 1F, 1B, 2F and 2B

then follow,

1F =
1

1 +K∆
1 A

1 (S27)

1B =
K∆

1 A

1 +K∆
1 A

1 (S28)

2F =
1

1 +K∆
2 A

2 (S29)

2B =
K∆

2 A

1 +K∆
2 A

2 (S30)

where

K∆
1 =

k∆+,1

k∆−,1

(S31)

K∆
2 =

k∆+,2

k∆−,2

. (S32)

Thus Eqs.(S23–S26) transform into Eq.(S33):

d1

dt
= −d2

dt
= −k12 1 + k21 2 (S33)

†Crossing between both kinetic regimes typically occurs when the relaxation times associated to the photoisomerization and the
complexation reactions are equal.

‡The rate constants associated to the photochemical steps adopt the expression khν
ij,S = σij,Sϕij,SI

0 (i and j are equal to 1 or 2 with
i ̸= j, S = F or B). By considering that the typical photon flux at the sample of an illumination setup is I0 = 1021 photons.m−2.s−1

and that the molecular cross section for light absorption σ01,i = 2.3ϵi/NA (NA is the Avogadro number) and the quantum yield ϕij,S

associated to photoisomerization are typically in the 10−20 m2/molecule and 0.1 ranges respectively for the considered probes, we
derive khν

ij,S ≃ 1 s−1. Hence the relaxation times associated to photoisomerizations would be typically in the 1 s range. Such a range
is above the order of magnitude of the relaxation times associated to titration reactions. For instance, diffusion-limited reactions (e. g.
most proton exchanges[3]) are associated with rate constants in the 1010 M−1s−1 range. They would give rise to relaxation times below
the millisecond for titrating reagents with 103 < K∆

i < 107 upon assuming K∆
i (i=1 or 2) to be tailored such that the concentration

in analyte A is in the range of 1/K∆
i to get the largest sensitivity.

6



with

k12 =
khν12,F + khν12,B K∆

1 A

1 +K∆
1 A

(S34)

k21 =

(
khν21,F + k∆21,F

)
+

(
khν21,B + k∆21,B

)
K∆

2 A

1 +K∆
2 A

. (S35)

In the most general case, Eq.(S33) has no analytical solution, because k12 and k21 are time-dependent as a

result of the A(t) term. However, a tractable temporal dependence of the concentrations upon light excitation

can be obtained in the most important sensing situation when the total concentration of the analyte (Atot) is

much larger than that of the photoswitchable sensor (Ptot): Atot ≫ Ptot.§ Introducing

k12 =
khν12,F + khν12,B K∆

1 Atot

1 +K∆
1 Atot

(S36)

khν21 =
khν21,F + khν21,B K∆

2 Atot

1 +K∆
2 Atot

(S37)

k∆21 =
k∆21,F + k∆21,B K∆

2 Atot

1 +K∆
2 Atot

, (S38)

Eq.(S33) can be alternatively written

d2

dt
= −d1

dt
= khν12 1−

(
khν21 + k∆21

)
2 (S39)

in which we introduced the notations khν12 and khν21 to express that the corresponding terms are proportional to

the incident photon flux. Eq.(S39) is dynamically identical to Eqs.(S42–S43).¶

§The most general case is made complex by the existence of the product of concentrations of the reactants in the dynamic law. In
principle, this law could be linearized around chemical equilibrium when light modulation is of small amplitude but it would yield
intricate resonance conditions. Moreover, to subsequently implement experimentally these resonance conditions would generally ne-
cessitate the knowledge of the overall concentrations of both the probe and the analyte. Whereas to have a guess about the concentration
of the analyte is classical in titration protocols (and our final protocol precisely integrates such a guess), we estimated that it would be
too demanding prior the titration experiment to have another guess about the concentration of the probe. In particular we had in mind
biological applications for which intra-cellular or intra-organism partition of an externally added molecule can be hardly predicted.
Therefore we deliberately favored the case where the concentration of the probe is much smaller than the one of the analyte. Classi-
cally encountered for titrations, this situation can be easily fulfilled when a sensitive observable such as fluorescence is experimentally
implemented.

¶In the corresponding regime, one can also derive the average brightnesses of the average states 1 and 2. Denoting Qi for the
individual brightness of the species 1F, 2F, 1B, and 2B, one has

Q2 =
Q2F +Q2BK

∆
2 Atot

1 +K∆
2 Atot

(S40)

Q1 =
Q1F +Q1BK

∆
1 Atot

1 +K∆
1 Atot

. (S41)
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S2 Kinetic analysis of the two-state model

S2.1 The model

We consider relaxation mechanisms which can be reduced to the two-state exchange displayed in Figure S4.

1 2

hν
k

12

hν ∆
k k

21 21
+

Figure S4: Reduced mechanism accounting for the photochemical behavior of a photoswitchable probe. The
most stable state of the probe is here assumed to be 1, which can switch to the less stable state 2 by photoiso-
merization. Back reaction from 2 to 1 can occur either by photoisomerization or thermally-driven exchange.

We assume that the system is either homogeneously illuminated or that it can be considered homogeneous

at any time of its evolution. Then we rely on the mechanism displayed in Figure S4 to write Eqs.(S42–S43)

describing the concentration evolutions:

d1

dt
= − (k1→2) 1 + k2→1 2 (S42)

d2

dt
= k1→2 1− (k2→1) 2 (S43)

where we make explicit the photochemical and thermal contributions to the rate constants by writing

k1→2 = khν12 (S44)

k2→1 = khν21 + k∆21 (S45)

where the exponent indicates the nature of the contribution.

In the following, we are interested to derive the theoretical expressions of (i) the concentrations in 1 and

2 (1 and 2 respectively), (ii) the overall observable originating from the photoswitchable probe, and (iii) the

convolution of the preceding overall observable with the light excitation (we chose fluorescence emission as a

representative example), upon applying either a jump or a periodic modulation of the illumination.

S2.2 Light-jump experiments

We here consider that the system is “suddenly”∥ illuminated, so that the incident surfacic photon flux varies

from 0 to I0:

I(t) = I0 (S46)

for t ≥ 0.
∥Note that “suddenly” here refers to a time interval such that Eqs.(S42,S43) can be considered valid.
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S2.2.1 Expression of the concentrations

Denoting σ12 and σ21 the excitation cross sections associated to the transitions from the state 1 to the state 2,

and from the state 2 to the state 1 respectively, the apparent rate constants k12 = khν12 = σ12I
0 and k21 =

khν21 + k∆21 = σ21I
0 + k∆21 can be considered constant and equal to k012 and k021. Upon introducing the total

concentration in photoswitchable probe P, Ptot = 1 + 2, Eqs.(S42,S43) yield:

−
d
(
2− 20

)
dt

=
(
k012 + k021

) (
2− 20

)
(S47)

from which we derive

2− 20 = 10 − 1 = −20 exp

(
− t

τ012

)
(S48)

where

20 =
K0

12

1 +K0
12

Ptot (S49)

10 =
1

1 +K0
12

Ptot (S50)

τ012 =
1

k012 + k021
(S51)

K0
12 =

k012
k021

(S52)

In Eqs.(S48–S52), 20, 10, τ012, and K0
12 respectively denote the steady-state value of the concentrations

in 2 and 1, the relaxation time associated to the exchange between the states 1 and 2, and the apparent pho-

toisomerization constant of the photoswitchable fluorophore P, in the presence of light at constant light flux

I0.

S2.2.2 Expression of the overall observable from the photoswitchable probe

The overall observable O from the photoswitchable probe results from the individual contributions of the states

1 and 2. Denoting Qi for the molecular brightness, one has

O(t) = Q11(t) +Q22(t). (S53)

Upon applying a light jump from 0 to I0, the overall observable evolves as

O(t) = O0 + (Q1 −Q2) 2
0 exp

(
− t

τ012

)
(S54)

where

O0 = Q11
0 +Q22

0. (S55)
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S2.2.3 Expression of the fluorescence intensity

We now consider the probe to be fluorescent. Fluorescence intensity IF (t) can be written

IF (t) = O(t)I(t) = [Q11(t) +Q22(t)] I(t) (S56)

where the expressions of I(t), 1 and 2 can be retrieved from Eqs.(S46,S48). Then one has:

IF =

[
O0 + (Q1 −Q2) 2

0 exp

(
− t

τ012

)]
I0. (S57)

S2.3 Light modulation experiments

In the following, we successively consider two different types of periodically modulated illumination: (i) a

sinusoidal modulation (Figure S5a); (ii) a square wave modulation modelled by its expansion as a Fourier series

(Figure S5b; vide infra). For each type of modulation, the corresponding cases of small and large modulation

are successively considered.

a

I
0(1− α)

I
0

I
0(1 + α)

0
π

ω

2π

ω

b

I
0(1− α)

I
0

I
0(1 + α)

0
π

ω

2π

ω

Figure S5: Periodically modulated illuminations, which have been considered in the present study. a: Si-
nusoidal modulation of amplitude α around the average value I0: I(t) = I0 [1 + α sin (ωt)]; b: Square
wave modulation of amplitude α: I(t) = I0

{
1 + 4α

π

∑∞
p=0

1
2p+1 sin [(2p+ 1)ωt]

}
at first- (p=1, dotted line),

second- (p = 2, dashed line) and third- (p = 3, dashed-dotted line) orders of the Fourier series expansion.

S2.3.1 Sinusoidal modulation of small amplitude

Expression of the concentrations We first consider that the system is submitted to a weak sinusoidal modu-

lation of illumination around the averaged value I0. We correspondingly adopt

I(t) = I0 [1 + ε sin (ωt)] (S58)
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with ε ≪ 1. One has

khν12 (t) = khν,012 [1 + ε sin (ωt)] (S59)

khν21 (t) = khν,021 [1 + ε sin (ωt)] . (S60)

The equations (S42,S43) are solved at first order of the light perturbation upon writing:

2 = 20 + ε21(t) = 20 − ε11(t) (S61)

1 = 10 − ε21(t) = 10 + ε11(t) (S62)

k12(t) = khν,012 [1 + ε sin (ωt)] (S63)

k21(t) = khν,021 [1 + ε sin (ωt)] + k∆21 (S64)

to yield

d21

dt
+

1

τ012
21 = ρ012p

∆
21 sin (ωt) (S65)

where

ρ012 = k0121
0 = k0212

0 (S66)

p∆21 =
k∆21

khν,021 + k∆21
. (S67)

ρ012 and p∆21 designate the steady-state rate of reaction (1) and the relative thermal contribution to 2 relaxation

upon illuminating at I0.

Beyond the relaxation time τ012, one enters into a permanent regime in which the respective contributions

of the in- and out-phase terms 21,in and 21,out such that 21(t) = 21,in sin (ωt) + 21,out cos (ωt) respectively

obey∗∗

21,in = −11,in = ρ012τ
0
12p

∆
21

1

1 +
(
ωτ012

)2 (S71)

21,out = −11,out = −ρ012τ
0
12p

∆
21

ωτ012

1 +
(
ωτ012

)2 . (S72)

Upon noting that

ρ012τ
0
12 =

K0
12(

1 +K0
12

)2Ptot, (S73)

∗∗Alternatively, one has

21(t) =
ρ012τ

0
12p

∆
21√

1 + (ωτ0
12)

2
sin (ωt− ϕ12) (S68)

with

cosϕ12 =
1√

1 + (ωτ0
12)

2
(S69)

sinϕ12 =
ωτ0

12√
1 + (ωτ0

12)
2
. (S70)
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Eqs.(S71,S72) become

21,in = −11,in = p∆21
K0

12(
1 +K0

12

)2 1

1 +
(
ωτ012

)2Ptot (S74)

21,out = −11,out = −p∆21
K0

12(
1 +K0

12

)2 ωτ012

1 +
(
ωτ012

)2Ptot (S75)

Expression of the overall observable from the photoswitchable probe In the case of a sinusoidal modu-

lation of light intensity obeying Eq.(S58), the temporal dependence of the overall observable O(t) originates

from the temporal dependence of 11(t) and 21(t) (given in Eqs.(S74,S75))

O(t) = Q11 +Q22 = O0 +O1,in sin (ωt) +O1,out cos (ωt) (S76)

with

O1,in = (Q2 −Q1) 2
1,inε (S77)

O1,out = (Q2 −Q1) 2
1,outε. (S78)

Expression of the fluorescence intensity Fluorescence emission IF (t) is extracted from Eq.(S56) by using

the temporal dependence (S58) of the exciting light source and the expressions of 1 and 2 from Eqs.(S49,S50)

and (S61,S62). Retaining only the terms up to the first order in the perturbation in the expression

IF (t) =
[
O0 +O1,in sin (ωt) +O1,out cos (ωt)

]
I0 [1 + ε sin (ωt)] (S79)

yields††

IF (t) = I0F + I1,inF sin (ωt) + I1,outF cos (ωt) (S83)

with

I0F =
(
Q11

0 +Q22
0
)
I0 (S84)

I1,inF = ε
[(
Q11

0 +Q22
0
)
+ (Q2 −Q1) 2

1,in
]
I0 = ε

[
I0F + (Q2 −Q1) 2

1,inI0
]

(S85)

I1,outF = ε (Q2 −Q1) 2
1,outI0. (S86)

††Similarly, using Eq.(S68), Eq.(S76) can be rewritten to explicit the phase delay between the fluorescence emission and the exciting
light :

Q11 +Q22 = O0 + ε (Q2 −Q1)
ρ012τ

0
12p

∆
21√

1 + (ωτ0
12)

2
sin (ωt− ϕ12) (S80)

Therefore, the temporal dependence of the fluorescence emission given in Eq.(S83) becomes :

IF (t) = I0F
[
1 + ε sin (ωt) + εR0

12 sin (ωt− ϕ12)
]

(S81)

with

R0
12 =

Q2 −Q1

Q110 +Q220
ρ012τ

0
12p

∆
21√

1 + (ωτ0
12)

2
(S82)
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S2.3.2 Square wave modulation of small amplitude

Expression of the concentrations We now consider that the system is submitted to a weak square wave

modulation of illumination around the averaged value I0. We correspondingly adopt

I(t) = I0

1 +
4ε

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

 (S87)

by choosing the starting time (t = 0) in this expansion halfway through the first pulse with ε ≪ 1. The

equations (S42,S43) are then solved at first order of the light perturbation upon introducing

k12(t) = khν,012

1 +
4ε

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

 (S88)

k21(t) = khν,021

1 +
4ε

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

+ k∆21 (S89)

2 = 20 + ε

∞∑
p=0

21(2p+1) (S90)

1 = 10 − ε
∞∑
p=0

21(2p+1) (S91)

to yield

∞∑
p=0

d21(2p+1)

dt
+

1

τ012

∞∑
p=0

21(2p+1) = ρ012p
∆
21

4

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt] . (S92)

Beyond the relaxation time τ012, one enters into a permanent regime in which the respective contribu-

tions of the in- and out-phase terms 21,in(2p+1) and 21,out(2p+1) such that 21(2p+1)(t) = 21,in(2p+1) sin [(2p+ 1)ωt] +

21,out(2p+1) cos [(2p+ 1)ωt] respectively obey

21,in(2p+1) = −11,in(2p+1) = ρ012τ
0
12p

∆
21

4

π

1

2p+ 1

1

1 + (2p+ 1)2
(
ωτ012

)2 (S93)

21,out(2p+1) = −11,out(2p+1) = −ρ012τ
0
12p

∆
21

4

π

1

2p+ 1

(2p+ 1)ωτ012

1 + (2p+ 1)2
(
ωτ012

)2 . (S94)

Expression of the overall observable from the photoswitchable probe In the case of a square wave mod-

ulation of light intensity obeying Eq.(S87), the temporal dependence of the overall observable O(t) originates

from the temporal dependence of 11(2p+1)(t) and 21(2p+1)(t) (given in Eqs.(S93,S94))

O(t) = Q11 +Q22 = O0 +

∞∑
p=0

{
O1,in

(2p+1) sin [(2p+ 1)ωt] +O1,out
(2p+1) cos [(2p+ 1)ωt]

}
(S95)

with

O1,in
(2p+1) = (Q2 −Q1) 2

1,in
(2p+1)ε (S96)

O1,out
(2p+1) = (Q2 −Q1) 2

1,out
(2p+1)ε. (S97)

13



Expression of the fluorescence intensity Fluorescence emission IF (t) is extracted from Eq.(S56) by using

the temporal dependence (S87) of the exciting light source and the expressions of 1 and 2 from Eqs.(S49,S50)

and (S90,S91). Retaining only the terms up to the first order in the perturbation in the expression

IF (t) = I0

O0 +
∞∑
p=0

[
O1,in

(2p+1) sin [(2p+ 1)ωt] +O1,out
(2p+1) cos [(2p+ 1)ωt]

]×

1 + 4ε

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

 (S98)

yields

IF (t) = I0F +

∞∑
p=0

[
I1,inF,(2p+1) sin [(2p+ 1)ωt] + I1,outF,(2p+1) cos [(2p+ 1)ωt]

]
(S99)

with

I1,inF,(2p+1) = ε

[
4

π

1

2p+ 1
I0F + (Q2 −Q1) 2

1,in
(2p+1)I

0

]
(S100)

I1,outF,(2p+1) = ε (Q2 −Q1) 2
1,out
(2p+1)I

0. (S101)

S2.3.3 Sinusoidal modulation of large amplitude

Expression of the concentrations We now consider that the system is submitted to a large sinusoidal modu-

lation of illumination around the averaged value I0. We adopt

I(t) = I0 [1 + α sin (ωt)] . (S102)

Then one has

khν12 (t) = khν,012 [1 + α sin (ωt)] (S103)

khν21 (t) = khν,021 [1 + α sin (ωt)] . (S104)

The equations (S42,S43) are solved upon introducing:

2 = 20 + αf(t) (S105)

1 = 10 − αf(t) (S106)

k12(t) = khν,012 [1 + α sin (ωt)] (S107)

k21(t) = khν,021 [1 + α sin (ωt)] + k∆21 (S108)

to yield

df(t)

dt
= − 1

τ012
f(t) + ρ012p

∆
21 sin (ωt)− α

(
khν,012 + khν,021

)
f(t) sin (ωt) . (S109)
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Upon introducing

x =
t

τ012
(S110)

a = ρ012p
∆
21τ

0
12 (S111)

b = α
(
khν,012 + khν,021

)
τ012 (S112)

θ = ωτ012 (S113)

Eq.(S109) becomes

df(θx)

dx
= −f(θx) + [a− bf(θx)] sin (θx) . (S114)

Beyond the relaxation time τ012, one enters into a permanent regime in which f(θx) is a continuous periodic

function. Then f(θx) can be expressed as a Fourier series

f(θx) = a0 +

+∞∑
n=1

[an cos (nθx) + bn sin (nθx)] (S115)

where an and bn designate the amplitudes of the n-th components of the Fourier series. The an and bn terms

can be extracted from Eq.(S114) upon identifying the amplitudes of the components of the same order. We

derived

• Zeroth order:

a0 = −b
b1
2

(S116)

• First order:

−a1θ = −b1 + a− a0b+ b
a2
2

(S117)

b1θ = −a1 − b
b2
2

(S118)

• Order n > 1:

annθ = bn − b

2
(an+1 − an−1) (S119)

bnnθ = −an − b

2
(bn+1 − bn−1) (S120)

from which we obtained the following expressions of the concentrations in 1 and 2:

2 = 20 + α

{
a0 +

+∞∑
n=1

[an cos (nθx) + bn sin (nθx)]

}
(S121)

1 = 10 − α

{
a0 +

+∞∑
n=1

[an cos (nθx) + bn sin (nθx)]

}
. (S122)

Hence, at steady-state, a large sinusoidal modulation of illumination causes modulation of the concentrations

in 1 and 2 at an infinite number of radial frequencies.
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Eqs.(S121,S122) can be transformed to explicit the amplitudes of the concentration modulations at all radial

frequencies. Thus we write

2 = 20 + α

+∞∑
n=1

[
2n,in sin (nωt) + 2n,out cos (nωt)

]
(S123)

1 = 10 − α

+∞∑
n=1

[
2n,in sin (nωt) + 2n,out cos (nωt)

]
(S124)

and conversely

2 = 20 − α

+∞∑
n=1

[
1n,in sin (nωt) + 1n,out cos (nωt)

]
(S125)

1 = 10 + α
+∞∑
n=1

[
1n,in sin (nωt) + 1n,out cos (nωt)

]
(S126)

where

20 = 20 + αa0 (S127)

10 = 10 − αa0 (S128)

2n,in = −1n,in = bn (S129)

2n,out = −1n,out = an. (S130)

In the case of sinusoidal light modulation of small amplitude, 21,out is optimal when the resonance con-

ditions (14,15) are fulfilled. In the absence of analytical expressions for 21,out, such conclusions cannot be

directly derived in the case of a sinusoidal modulation of large amplitude, so we evaluated their relevance by

means of numerical calculations.

We first analyzed the dependence of 11,out = −21,out = −a1 on the control parameters ω and I0. To do so,

we analytically retrieved the 2n+ 1 unknown parameters (a0,. . . ,an,bn) upon truncating the Fourier expansion

(30) at increasing orders n. Figure S6 displays representative results, which have been obtained with n = 5.

Figure S7 displays the dependence of the normalized amplitude, | 11,outnorm |=| 11,out/Ptot |, on the light flux

I0 and the adimensional radial frequency ωτ012 when α = 1. Truncation of the Fourier expansion of the f(θx)

function at the fifth order (n = 5) is definitively sufficient to observe convergence: the dependence of | 11,outnorm |

on I0 and ω does not significantly evolve beyond n = 3. | 11,outnorm | exhibits an optimum in the space (I0,ω),

which position and amplitude are very close to those observed with a sinusoidal modulation of small amplitude

(Table S1).

Note that the error done when taking the analytical expression of the resonance conditions, valid only for a

modulation of small amplitude, is always less than 20 %, no matter which amplitude α is used. Such an error

would be of the order of magnitude of the experimental errors done when fixing the average light intensity and

radial frequency to their values at resonance, I0,R and ωR.
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Figure S6: Computation of the amplitudes of the Fourier terms, | an | (a) and bn (b), from a solution of a
photoswitchable fluorophore 1 
 2 submitted to light harmonic forcing in the regime of large (α = 1) amplitude
modulation. The numerical computation has been performed upon truncating the Fourier f expansion at the
fifth order (n = 5). σ12 = 73 m2.mol−1, σ21 = 84 m2.mol−1, k∆21 = 1.5 × 10−2 s−1, I0 = 9.6 × 10−5

ein·s−1·m−2 and ωτ012 = 1.
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Figure S7: Theoretical dependence of the normalized amplitude of the out-of-phase oscillations in 1 concen-
tration, | 11,outnorm |=| 11,out/Ptot |, of a photoswitchable fluorophore 1 
 2 submitted to light harmonic forcing
in the regime of large amplitude modulation (α = 1) on the light flux I0 (in ein·s−1·m−2) and the adimensional
radial frequency ωτ012. The numerical computation has been performed upon truncating the Fourier f(θx)
expansion at various orders n (a: 1, b: 2, c: 3, d: 4, e: 5). The dependence observed in a regime of small
amplitude modulation, | 11,outnorm |, is shown in f. σ12 = 73 m2.mol−1, σ21 = 84 m2.mol−1, k∆21 = 1.5 × 10−2

s−1. The markers correspond to isodensity curves : 0.01 (dot dashed), 0.03 (dot) and 0.05 (dashed).

Expression of the overall observable from the photoswitchable probe In the case of a sinusoidal modula-

tion of large amplitude obeying Eq.(S102), the temporal dependence of the overall observable O(t) originates

from the temporal dependence of 11(t) and 21(t) (given in Eqs.(S123,S124))

O(t) = Q11 +Q22 = O0 +
∞∑
n=1

[
On,in sin (nωt) +On,out cos (nωt)

]
, (S131)
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Amplitude n 104 × I0,R 102 × ωR 102× | 11,outnorm |
(ein·s−1·m−2) (rad·s−1)

Small – 0.96 3.02 5.81
Large 1 1.12 3.02 6.25
Large 2 1.19 2.82 6.38
Large 3 1.19 2.82 6.38
Large 4 1.19 2.82 6.38
Large 5 1.19 2.82 6.38

Table S1: Coordinates and amplitude of the | 11,outnorm | extremum from a photoswitchable fluorophore 1 
 2
submitted to light harmonic forcing in the regime of large amplitude modulation (α = 1) as a function of the
truncation order n of the Fourier expansion of the f(θx) function. The Table also provides the coordinates and
the amplitude of | 11,outnorm | extremum observed in a regime of small amplitude modulation.

with

O0 = Q11
0 +Q22

0 = Q11
0 +Q22

0 + (Q2 −Q1)αa0 (S132)

On,in = (Q2 −Q1)αbn (S133)

On,out = (Q2 −Q1)αan (S134)

for n > 0.

Expression of the fluorescence intensity Fluorescence emission IF (t) is extracted from Eq.(S56) by using

the temporal dependence (S102) of the exciting light source and the expression of O(t) given in Eq.(S131).

Then writing

IF (t) = I0F +
∞∑
n=1

[
In,inF sin (nωt) + In,outF cos (nωt)

]
(S135)

we derive

I0F =

(
O0 +

1

2
αO1,in

)
I0 (S136)

I1,inF =

(
αO0 +O1,in − 1

2
αO2,out

)
I0 (S137)

I1,outF =

(
O1,out +

1

2
αO2,in

)
I0 (S138)

In,inF =

[
On,in +

1

2
α
(
On−1,out −On+1,out

)]
I0 (S139)

In,outF =

[
On,out +

1

2
α
(
On+1,in −On−1,in

)]
I0 (S140)

for n > 1. As shown in Eqs.(S136–S140), a large sinusoidal modulation of illumination is expected to cause

modulation of the fluorescence intensity at an infinite number of radial frequencies, which are integer multiples

of ω.

The zeroth order term I0F can be expressed using Eqs.(S84,S112,S116,S129,S133,S136). We obtained

I0F = I0F +
1

2
α2 (Q2 −Q1)

[
1−

(
khν,012 + khν,021

)
τ012

]
21,inI0. (S141)
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In contrast to the out-of-phase first-order response, Eq.(S141) shows that the zeroth order response of the

fluorescence emission upon sinusoidal light modulation of large amplitude significantly departs from I0F , which

is observed in the case of a same type of modulation but in a regime of small amplitude.

The first order terms can be expressed using Eqs.(S84, S129, S130, S133, S134, S137) and (S129, S130,

S133, S134, S138) to write

I1,inF = αI0F + α (Q2 −Q1) 2
1,inI0

[
1− 1

2
α2

(
khν,012 + khν,021

)
τ012

]
− 1

2
α2 (Q2 −Q1) 2

2,outI0(S142)

I1,outF = α (Q2 −Q1) 2
1,outI0 +

1

2
α2 (Q2 −Q1) 2

2,inI0. (S143)

In reference to the g
(
2n,in, 2n,out

)
function introduced in the Main Text, one has thus

g
(
2n,in, 2n,out

)
=

1

2
α22,in. (S144)

To evaluate the possible interference originating from the second order term g
(
2n,in, 2n,out

)
, we used

Eq.(40) to numerically compute the dependence of I1,outF on ω and I0. Figure S8 compares the absolute value

of the normalized out-of-phase first-order amplitude | I1,outF,norm |=| I1,outF /(Q2 − Q1)I
0αPtot | obtained in the

case of the largest amplitude modulation (α = 1) with that obtained for a modulation of small amplitude. The

position and the amplitude of the optimum are similar in both cases: we found I0,R = 1.03×10−4 ein·s−1·m−2,

ωR = 3.09× 10−2rad·s−1, and | I1,outF,norm |= 5.82× 10−2 in the case of a sinusoidal modulation of large ampli-

tude, and I0,R = 0.96 × 10−4 ein·s−1·m−2, ωR = 3.02 × 10−2rad·s−1, and | I1,outF,norm |= 5.81 × 10−2 in the

case of a sinusoidal modulation of small amplitude.
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Figure S8: Theoretical dependence of the absolute value of the normalized amplitude of the out-of-phase oscil-
lations of fluorescence intensity, | I1,outF,norm |=| I1,outF /(Q2−Q1)I

0αPtot |, from a solution of a photoswitchable
fluorophore 1 
 2 submitted to light harmonic forcing in the regime of small (a) or large (b; α = 1) amplitude
modulation on the light flux I0 (in ein·s−1·m−2) and the adimensional radial frequency ωτ012. The numerical
computation has been performed upon truncating the Fourier f expansion at the fifth order (n = 5). σ12 = 73
m2.mol−1, σ21 = 84 m2.mol−1, k∆21 = 1.5×10−2 s−1. The markers correspond to isodensity curves : 0.01 (dot
dashed), 0.03 (dot) and 0.05 (dashed).
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S2.3.4 Square wave modulation of large amplitude

Expression of the concentrations We eventually consider that the system is submitted to a square wave

modulation of illumination of large amplitude. We correspondingly adopt

I(t) = I0

1 +
4α

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

 (S145)

by choosing the starting time (t = 0) in this expansion halfway through the first pulse.

The equations (S42,S43) are then solved upon introducing

2 = 20 + αf(t) (S146)

1 = 10 − αf(t) (S147)

k12(t) = khν,012

1 +
4α

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

 (S148)

k21(t) = khν,021

1 +
4α

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt]

+ k∆21 (S149)

to yield

df(t)

dt
= −f(t)

τ012
+

[
ρ012p

∆
21 − α

(
khν,012 + khν,021

)
f(t)

] 4

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1)ωt] . (S150)

Upon introducing x, a, b, and θ given in Eqs.(S110–S113), Eq.(S150) becomes

df(θx)

dx
= −f(θx) + [a− bf(θx)]

4

π

∞∑
p=0

1

2p+ 1
sin [(2p+ 1) θx] (S151)

Beyond the relaxation time τ012, one enters into a permanent regime in which f(θx) is a continuous periodic

function. Adopting again Eq.(S115) for its Fourier series, the an and bn terms can be extracted from Eq.(S151)

upon identifying the amplitudes of the components of the same order. We derived

• Zeroth order:

a0 = −b
2

π
b1 (S152)

• First order:

−a1θ = −b1 +
4

π
(a− a0b) + b

2

π

∞∑
p=1

a2p
2p− 1

(S153)

b1θ = −a1 − b
2

π

∞∑
p=1

b2p
2p− 1

(S154)
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• Even order n = 2k with k ∈ N⋆:

a2k2kθ = b2k + b
2

π

k−1∑
p=0

a2k−(2p+1)

2p+ 1
−

∞∑
p=0

a2k+2p+1

2p+ 1

 (S155)

b2k2kθ = −a2k − b
2

π

 ∞∑
p=0

b2k+2p+1

2p+ 1
−

k−1∑
p=0

b2k−(2p+1)

2p+ 1

 (S156)

• Odd order n = 2k + 1 with k ∈ N⋆:

a2k+1 (2k + 1) θ = b2k+1 +
4

π (2k + 1)
(a0b− a) + b

2

π

k−1∑
p=0

a2(k−p)

2p+ 1
−

∞∑
p=0

a2(k+p+1)

2p+ 1

(S157)

b2k+1 (2k + 1) θ = −a2k+1 − b
2

π

 ∞∑
p=0

b2(k+p+1)

2p+ 1
−

k−1∑
p=0

b2(k−p)

2p+ 1

 (S158)

from which we can retrieve the expressions of the concentrations in 1 and 2 using Eqs.(S121,S122). At

steady-state, as for the sinusoidal modulation of large amplitude, square wave modulation causes modulation

of the concentrations in 1 and 2 at an infinite number of radial frequencies. Eqs.(S121,S122) can be subse-

quently transformed to explicit the amplitudes of the concentration modulations at all radial frequencies using

Eqs.(S123–S130).

We showed that, in the case of sinusoidal light modulation of small amplitude, 21,out is optimal when the

resonance conditions (14,15) are fulfilled. In the absence of analytical expressions for 21,out, such conclusions

cannot be directly derived in the case of a square wave modulation of large amplitude, so we evaluated their

relevance by means of numerical calculations. Compared to the sinusoidal modulation, square wave modula-

tion introduces harmonics at higher frequencies, which could interfere with resonance of the radial frequency.

We therefore analyzed the dependence of 11,out = −21,out = −a1 on the control parameters, ω and I0 by

analytically retrieving the 2n + 1 unknown parameters (a0,. . . ,an,bn) upon truncating at the orders p and n in

the expansions of the light excitation in Eq.(21) and the f(θx) function in Eq.(30). Figure S9 displays repre-

sentative results, which have been obtained upon truncating at the 3rd and 4th orders the expansions of the light

excitation and the f(θx) function.

Figure S10 displays the dependence of the normalized amplitude, | 11,outnorm |=| 11,out/Ptot |, on the light flux

I0 and the adimensional radial frequency ωτ012 when α = 0.8 (see also Figure S11 showing that | 11,outnorm | is

essentially independent on α).

Truncation in the expansions of the light excitation in Eq.(21) and the f(θx) function in Eq.(30) at the

3rd and 4th orders respectively is sufficient to observe convergence: the dependence of | 11,outnorm | on I0 and

ω does not significantly evolve beyond p = 1 and n = 4. As in the case of sinusoidal modulation of large

amplitude, | 11,outnorm | exhibits an optimum in the space (I0,ω), which position and amplitude are very close

to those observed with a sinusoidal modulation of small amplitude (Table S2). Note that the amplitudes are

respectively | 11,outnorm |= 8.16 × 10−2 for the square wave modulation of large amplitude and 4
π | 11,outnorm |=

7.40× 10−2 for the modulation of small amplitude ( 4π is a correcting term resulting from Eq.(21)) (Table S2).
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Figure S9: Computation of the normalized amplitude | an | (a) and bn (b) from a solution of a photoswitchable
fluorophore 1 
 2 submitted to square wave forcing (α = 0.8). The numerical computation has been performed
upon truncating at the 3rd and 4th truncation orders the expansions of the light excitation and the f(x) function.
σ12 = 73 m2.mol−1, σ21 = 84 m2.mol−1, k∆21 = 1.5× 10−2 s−1, I0 = 9.6× 10−5 ein·s−1·m−2 and ωτ012 = 1.
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Figure S10: Theoretical dependence of the normalized amplitude of the out-of-phase oscillations in 1 concen-
tration, | 11,outnorm |=| 11,out/Ptot |, of a photoswitchable fluorophore 1 
 2 submitted to light square wave forcing
(α = 0.8) on the light flux I0 (in ein·s−1·m−2) and the adimensional radial frequency ωτ012. The numerical
computation has been performed upon adopting various values of p and n for the truncation of the orders in the
expansions of the light excitation in Eq.(21) and the f(θx) function in Eq.(30). p = 1 and n = 4 (a); p = 2
and n = 6 (b); p = 3 and n = 8 (c). The corresponding theoretical dependence of the normalized amplitude
of the out-of-phase oscillations of in 1 concentration from a solution of a photoswitchable fluorophore 1 
 2
submitted to light harmonic forcing in the regime of small amplitude modulation is displayed in d as a refer-
ence. σ12 = 73 m2.mol−1, σ21 = 84 m2.mol−1, k∆21 = 1.5 × 10−2 s−1. The markers correspond to isodensity
curves : 0.01 (dot small dashed), 0.03 (dot large dashed), 0.05 (dot) and 0.07 (dashed).

Expression of the overall observable from the photoswitchable probe The expression of the overall ob-

servable in the case of a square wave modulation obeying Eq.(S145) is identical to the one derived for a sinu-

soidal modulation. Then Eqs.(S131,S132,S133,S134) are here also valid.
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Figure S11: Theoretical dependence of the normalized amplitude of the out-of-phase oscillations in 1 con-
centration, | 11,outnorm =| 11,out/Ptot |, of a photoswitchable fluorophore 1 
 2 submitted to light square wave
forcing on the light flux I0 (in ein·s−1·m−2) and the adimensional radial frequency ωτ012 for various values of
the amplitude modulation α. The numerical computation has been performed upon adopting p = 1 and n = 4
for the truncation of the orders in the expansions of the light excitation in Eq.(S145) and the f(x) function in
Eq.(S115). α = 0.2 (a); α = 0.4 (b); α = 0.6 (c); α = 0.8 (d). σ12 = 73 m2.mol−1, σ21 = 84 m2.mol−1,
k∆21 = 1.5× 10−2 s−1. The markers correspond to isodensity curves : 0.01 (dot small dashed), 0.03 (dot large
dashed), 0.05 (dot) and 0.07 (dashed). In contrast to the sinusoidal modulation of large amplitude, we could
not numerically compute the behavior at the largest modulation amplitude α = 1. This behavior probably orig-
inates from the truncation of the expansion of light excitation in Eq.(21). As shown in Figure S5, one observes
significant oscillations close to the discontinuity of the square wave function. They most probably generate
singularities (e.g. negative values of the concentrations) at too large α values. This explains why we checked
that the behavior of the | 11,outnorm | did not significantly depend on the α value. We correspondingly adopted
α = 0.8 above.

Expression of the fluorescence intensity Fluorescence emission IF (t) is extracted from Eq.(S56) by using

the temporal dependence (S145) of the exciting light source and the expression of O(t) given in Eq.(S131).

Adopting again the expression (S135), we derive

• Zeroth order:

I0F =

O0 +
2α

π

∞∑
p=0

O2p+1,in

2p+ 1

 I0 (S159)

• First order:

I1,inF =

O1,in +
4α

π
O0 − 2α

π

 ∞∑
p=0

O2(p+1),out

2p+ 1

 I0 (S160)

I1,outF =

O1,out +
2α

π

 ∞∑
p=0

O2(p+1),in

2p+ 1

 I0 (S161)
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Modulation p n 104 × I0,R 102 × ωR 102× | 11,outnorm |
(ein·s−1·m−2) (rad·s−1)

Sinusoidal – – 0.96 3.02 5.81
Square wave 1 4 1.20 2.82 8.16
Square wave 2 6 1.20 2.82 8.16
Square wave 3 8 1.20 2.82 8.16

Table S2: Coordinates and amplitude of the | 11,outnorm | extremum from a photoswitchable fluorophore 1 
 2
submitted to light square wave forcing (α = 0.8) as a function of the truncation orders p and n in the expansions
of the light excitation in Eq.(21) and the f(θx) function in Eq.(30). The Table also provides the coordinates
and amplitude of | 11,outnorm | extremum observed in a regime of sinusoidal modulation of small amplitude.

• Even order n = 2k with k ∈ N⋆:

I2k,inF =

O2k,in +
2α

π

k−1∑
p=0

O2k−(2p+1),out

2p+ 1
−

∞∑
p=0

O2k+2p+1,out

2p+ 1

 I0 (S162)

I2k,outF =

O2k,out +
2α

π

 ∞∑
p=0

O2k+2p+1,in

2p+ 1
−

k−1∑
p=0

O2k−(2p+1),in

2p+ 1

 I0 (S163)

• Odd order n = 2k + 1 with k ∈ N⋆:

I2k+1,in
F =

O2k+1,in +
4α

(2k + 1)π
O0 +

2α

π

k−1∑
p=0

O2(k−p),out

2p+ 1
−

∞∑
p=0

O2(k+p+1),out

2p+ 1

 I0(S164)

I2k+1,out
F =

O2k+1,out +
2α

π

 ∞∑
p=0

O2(k+p+1),in

2p+ 1
−

k−1∑
p=0

O2(k−p),in

2p+ 1

 I0 (S165)

As for the sinusoidal modulation of large amplitude, a square wave modulation of illumination is expected to

cause modulation of the fluorescence intensity at an infinite number of radial frequencies, which are integer

multiples of ω.

The zeroth order term I0F can be expressed using Eqs.(S84,S112,S116,S129,S133,S136). We obtained

I0F − I0F
(Q2 −Q1)α2I0

=
2

π

[
1−

(
khν,012 + khν,021

)
τ012

]
21,in +

2

π

∞∑
p=1

22p+1,in

2p+ 1
. (S166)

In contrast to the out-of-phase first-order response, Eq.(S166) shows that the zeroth order response of the

fluorescence emission upon square wave light modulation of large amplitude significantly departs from I0F ,

which is observed for a sinusoidal light modulation of small amplitude.

The first order terms can be expressed using Eqs.(S129, S130, S133, S134, S137) and (S129, S130, S133,

S134, S138) to write

I1,inF − 4
παI

0
F

α (Q2 −Q1) I0
= 21,in

[
1− 8

π2
α2

(
khν,012 + khν,021

)
τ012

]
− 2

π
α

∞∑
p=0

22(p+1),out

2p+ 1
(S167)

I1,outF = α (Q2 −Q1) I
0

21,out + 2

π
α

∞∑
p=0

22(p+1),in

2p+ 1

 . (S168)
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In reference to the g
(
2n,in, 2n,out

)
function introduced in the Main Text, one has thus

g
(
2n,in, 2n,out

)
=

2

π
α

∞∑
p=0

22(p+1),in

2p+ 1
. (S169)

To evaluate the possible interference originating from this second order term g
(
2n,in, 2n,out

)
, we used

Eq.(40) to numerically compute the dependence of I1,outF on ω and I0. Figure S12 compares the absolute

value of the normalized out-of-phase first order amplitude | I1,outF,norm |=| I1,outF /(Q2 − Q1)I
0αPtot | obtained

in the case of the square wave light modulation (α = 0.8) with that obtained for a modulation of small ampli-

tude. The position of the optimum is similar in both cases: we found I0,R = 1.04 × 10−4 ein·s−1·m−2 and

ωR = 3.09× 10−2rad·s−1 in the case of a square wave modulation, and I0,R = 0.96× 10−4 ein·s−1·m−2 and

ωR = 3.02 × 10−2rad·s−1 in the case of a modulation of small amplitude. The amplitudes of the optimum

fairly compare as well: we computed | I1,outF,norm |= 7.43 × 10−2 in the case of square wave modulation, and
4
π | I1,outF,norm |= 7.40× 10−2 in the case of a sinusoidal modulation of small amplitude.
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Figure S12: Theoretical dependence of the absolute value of the normalized amplitude of the out-of-phase
oscillations of fluorescence intensity, | I1,outF,norm |, from a solution of a photoswitchable fluorophore 1 
 2
submitted to square wave forcing (b; α = 0.8) on the light flux I0 (in ein·s−1·m−2) and the adimensional radial
frequency ωτ012. The numerical computation has been performed upon truncating at the 3rd and 4th truncation
orders the expansions of the light excitation and the f(x) function. The corresponding dependence in the
regime of small amplitude sinusoidal modulation is displayed in a. σ12 = 73 m2.mol−1, σ21 = 84 m2.mol−1,
k∆21 = 1.5× 10−2 s−1. The markers correspond to isodensity curves : 0.01 (dot small dashed), 0.03 (dot large
dashed), 0.05 (dot) and 0.07 (dashed).
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S3 Retrieval of concentrations from the observables

In the following section, we assume that, upon modulating light, the observable associated to the photoswitch-

able probe adopts the expression

S(t) = S0 +

∞∑
n=1

[
Sn,in sin (nωt) +Sn,out cos (nωt)

]
, (S170)

which includes both contributions originating from the exchanging states 1 and 2. In the absence of convolution

with the exciting light intensity, the {S0,Sn,in,Sn,out} set identifies to the {O0,On,in,On,out} one in reference

to Eq.(S131). In contrast, when one observes convolution of the concentrations with light intensity like for

fluorescence emission, the {S0,Sn,in,Sn,out} terms correspond to the {I0F,In,inF ,In,outF } ones in Eq.(S135).

S3.1 Extraction of S0, Sn,in, and Sn,out from the overall signal S(t)

S0, S1,in, and S1,out can be easily retrieved from the experimental trace of the observed signal S(t) (either

global or from each analyzed pixel).

As shown in Eq.(S170), S0 can be obtained upon averaging S(t) over an integer number m of periods of

the modulated illumination

Int0 =
1

mT

∫ mT

0
S(t)dt = S0. (S171)

In particular, upon observing fluorescence emission in a regime of sinusoidal light modulation of small ampli-

tude, one has Int0 = I0F .

The n-th order amplitudes Sn,in and Sn,out can be extracted from the fluorescence signal upon computing

the integrals Intn,in and Intn,out

Intn,in =
2

mT

∫ mT

0
S(t) sin (nωt) dt = Sn,in (S172)

Intn,out =
2

mT

∫ mT

0
S(t) cos (nωt) dt = Sn,out. (S173)

In particular

Int1,in =
2

mT

∫ mT

0
S(t) sin (ωt) dt = S1,in (S174)

Int1,out =
2

mT

∫ mT

0
S(t) cos (ωt) dt = S1,out. (S175)

Upon observing fluorescence emission in a regime of sinusoidal light modulation of small amplitude, one has

Int1,in = I1,inF and Int1,out = I1,outF , and Intn,in = In,inF = 0 and Intn,out = In,outF = 0 for n > 1.

S3.2 Quantifying a targeted component

In this subsection, we show how the observables S0 and S1,out can be used to retrieve the concentration of a

targeted component in two cases. In the first case, we consider that the photoswitchable probe is used for ana-

lyte labelling and that one aims at measuring Ptot, which quantifies the labelled analyte. This situation typically
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refers to the dynamic schemes, which have been introduced in the subsections S1.1 (the label is a photoswitch-

able fluorophore) and S1.2 (the label is a fluorophore engaged in relaxation from both singlet and triplet excited

states). In a second case, we consider that the photoswitchable probe is used for titrating an analyte A and

that one aims at measuring the concentration of the titrated analyte Atot. This situation has been addressed

with the dynamic scheme introduced in subsection S1.3. As in subsection S1.3, we restrict our analysis to the

specific case of (i) an analyte in excess (Atot ≫ Ptot) in a kinetic regime where (ii) photochemical reactions

are rate-limiting with respect to reactions involving the analyte.

S3.2.1 Measuring the total concentration of the photoswitchable probe

The expressions of S0 and S1,out identify to the ones of O0 and On,out or to I0F and In,outF (when one observes

convolution of the concentrations with light intensity like for fluorescence emission).

In the absence of light modulation or in a regime of sinusoidal light modulation of small amplitude, the

expression of S0 can be deduced from Eqs.(S49,S50,S55,S84)

O0 =
I0F
I0

= Q1
1

1 +K0
12

Ptot +Q2
K0

12

1 +K0
12

Ptot (S176)

where

K0
12 =

σ12I
0

σ21I0 + k∆21
. (S177)

In the presence of light modulation, we showed in the Main Text that S1,out can be reliably evaluated

from its expression in the case of a sinusoidal light modulation of small amplitude. We correspondingly used

Eqs.(S75,S78,S86) to yield

O1,out =
I1,outF

I0
= ε (Q1 −Q2) p

∆
21

K0
12(

1 +K0
12

)2 ωτ012

1 +
(
ωτ012

)2Ptot (S178)

where K0
12 is given in Eq.(S177) and where

p∆21 =
k∆21

σ21I0 + k∆21
(S179)

τ012 =
1

(σ12 + σ21) I0 + k∆21
(S180)

from Eqs.(S51,S67).

The theoretical expressions (S176,S178) make possible to directly retrieve the concentrations of the photo-

switchable probe from the observed signal. However this approach requires the effort to acquire the values of all

parameters involved in these expressions. Alternatively, quantification can proceed by calibration with the pure

photoswitchable probe at a reference concentration. Eqs.(S176,S178) show that S0 and S1,out are proportional

to the overall concentration in photoswitchable probe. Thus quantification can be simply achieved by recording

the observable from a calibrating solution of the photoswitchable probe at a known concentration P cal
tot . The
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concentrations of the photoswitchable probe, which are retrieved at zeroth- and first-order, are respectively

P 0
tot =

S0

S0,cal
P cal
tot (S181)

P 1,out
tot =

S1,out

S1,out,cal
P cal
tot . (S182)

S3.2.2 Measuring the concentration of an analyte reacting with a photoswitchable probe

The expressions of S0 and S1,out again identify to the ones of O0 and On,out or to I0F and In,outF (when one

observes convolution of the concentrations with light intensity like for fluorescence emission).

In the absence of light modulation or in a regime of sinusoidal light modulation of small amplitude, the

expression of S0 is again given in Eq.(S176) but with

Q1 =
Q1F +Q1BK

∆
1 Atot

1 +K∆
1 Atot

(S183)

Q2 =
Q2F +Q2BK

∆
2 Atot

1 +K∆
2 Atot

(S184)

K0
12 =

1 +K∆
2 Atot

1 +K∆
1 Atot

σ12,F I
0 + σ12,BI

0 K∆
1 Atot(

σ21,F I0 + k∆21,F

)
+

(
σ21,BI0 + k∆21,B

)
K∆

2 Atot

, (S185)

which originate from Eqs.(S34,S35,S40,S41,S49,S50,S52,S55,S84).

In the presence of light modulation, we again adopted the expression (S178) obtained in the case of a

sinusoidal light modulation of small amplitude. The dependence on Atot is now explicited in Eqs.(S183–S190)

p∆21 =
k∆21

σ21,F+σ21,B K∆
2 Atot

1+K∆
2 Atot

I0 + k∆21

(S186)

σ12 =
σ12,F + σ12,B K∆

1 Atot

1 +K∆
1 Atot

(S187)

σ21 =

(
σ21,F I

0 + k∆21,F

)
+

(
σ21,BI

0 + k∆21,B

)
K∆

2 Atot

1 +K∆
2 Atot

(S188)

k∆21 =
k∆21,F + k∆21,B K∆

2 Atot

1 +K∆
2 Atot

(S189)

τ012 =
1

σ12,F I0+σ12,BI0 K∆
1 Atot

1+K∆
1 Atot

+
(σ21,F I0+k∆21,F )+(σ21,BI0+k∆21,B) K∆

2 Atot

1+K∆
2 Atot

(S190)

obtained from Eqs.(S36–S38,S51,S67).

Eqs.(S187–S189) first show that the values of I0 and ω at resonance depend on Atot. As classically prac-

ticed in any titration protocol, one should preliminarily have a guess of the concentration Atot. Using this guess

would permit to fix an initial set of resonance conditions (I0,ω) and proceed as indicated below to extract a first

evaluation of Atot. This estimate would be subsequently used to fix a refined resonant (I0,ω) set and extract a

second evaluation of Atot. This iteration should be performed until reaching convergence.

As shown in Eqs.(S183–S190), direct extraction of the concentration Atot sought for requires a considerable

amount of information about the dynamic system (1F,1B,2F,2B). In contrast, one can proceed by calibration
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as proposed above. The information to be extracted from S0 or S1,out is now contained in the amplitude of

the P response to the light modulation, normalized by its concentration. Hence to retrieve the A concentration

from a calibrating experiment requires to normalize S0 or S1,out by the total concentration of P. Then the most

classical protocol is to proceed by a ratiometric analysis, where one collects the signal S(t) upon adopting a

same illumination but under two conditions of observation (for instance by recording the fluorescence emission

at two different wavelengths), yielding to two sets of brightness, {Q1,1, Q2,1} and {Q1,2, Q2,2}. The analyzed

observables are now

ρ0 =

Q1F,1+Q1B,1K
∆
1 Atot

1+K∆
1 Atot

+
Q2F,1+Q2B,1K

∆
2 Atot

1+K∆
2 Atot

K0
12

Q1F,2+Q1B,2K
∆
1 Atot

1+K∆
1 Atot

+
Q2F,2+Q2B,2K

∆
2 Atot

1+K∆
2 Atot

K0
12

(S191)

ρ1,out =

Q1F,1+Q1B,1K
∆
1 Atot

1+K∆
1 Atot

− Q2F,1+Q2B,1K
∆
2 Atot

1+K∆
2 Atot

Q1F,2+Q1B,2K
∆
1 Atot

1+K∆
1 Atot

− Q2F,2+Q2B,2K
∆
2 Atot

1+K∆
2 Atot

(S192)

Calibration requires to preliminarily investigate the dependence of ρ0 and ρ1,out on Atot. Then quantifica-

tion can be simply achieved by recording the observable from a calibrating solution where the photoswitchable

probe is used to sense a known concentration Acal
tot . The concentrations of the analyte, which are retrieved at

zeroth- and first-order, are respectively

A0
tot =

ρ0

ρ0,cal
Acal

tot (S193)

A1,out
tot =

ρ1,out

ρ1,out,cal
Acal

tot . (S194)
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S4 Improvement of the spatial resolution

The light intensity-dependence of the first-order response of the concentration in photoswitchable fluorophore

to the illumination modulation allows us for improving the spatial resolution of the out-of-phase fluorescence

imaging protocol with respect to usual fluorescence imaging at zeroth-order. To evaluate the corresponding im-

provement, we computed the spatial profile of the fluorescence emission resulting from focusing a sinusoidally

modulated light beam of wavelength λ (regime of small amplitude modulation) in a solution of photoswitchable

fluorophore upon using both types of imaging protocols.

We assumed the light beam to be Gaussian and correspondingly adopted

I0 (r, z) = I0,R (0, 0)

[
w (0)

w (z)

]2
exp

[
−2r2

w2 (z)

]
(S195)

with

w (z) = w (0)

√
1 +

(
z

zR

)2

(S196)

for the spatial dependence of light intensity. In Eq.(S195), r and z respectively correspond to the radial distance

from the center axis of the beam and the axial distance from the beam’s narrowest point (the “waist”), w(z) is

the radius at which light intensity drop to 1/e2 of its axial value, and I0,R (0, 0) is the intensity at the center

of the beam at its waist, which is supposed to satisfy the resonance condition (14). In Eq.(S196), zR = πw2(0)
λ

designates the Rayleigh range.

S4.1 Fluorescence imaging at zeroth order

The fluorescence emission at zeroth order of the light modulation, I0F , is given in Eq.(S84), where 10, 20, and

I0 depend on the coordinates (r, z). Using Eqs.(S49,S50,S52) and introducing the average light intensity at

resonance, I0,R =
k∆21

(σ12+σ21)
, one obtains

I0F = Q1

[
1 +

(
Q2

Q1
− 1

)
σ12

(σ12 + σ21)

I0

I0,R

I0

I0,R
+ 1

]
I0Ptot. (S197)

Upon introducing the fluorescence emission at zeroth order of the light modulation at resonance, I0,RF , one

eventually derives

I0F

I0,RF

=

1 +
(
Q2

Q1
− 1

)
σ12

(σ12+σ21)

I0

I0,R

I0

I0,R
+1

1 + 1
2

(
Q2

Q1
− 1

)
σ12

(σ12+σ21)

I0

I0,R
. (S198)

In a homogeneous solution, one has thus

I0F (r, z)

I0,RF (0, 0)
=

1 +
(
Q2

Q1
− 1

)
σ12

(σ12+σ21)

I0(r,z)

I0,R(0,0)

I0(r,z)

I0,R(0,0)
+1

1 + 1
2

(
Q2

Q1
− 1

)
σ12

(σ12+σ21)

I0(r, z)

I0,R(0, 0)
. (S199)
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S4.2 Out-of-Phase Fluorescence imaging at first order

The out-of-phase fluorescence emission at first order of the light modulation, I1,outF , is given in Eq.(S86), where

21,out, and I0 depend on the coordinates (r, z). Assuming light modulation to occur at resonance (ωR = 2k∆21),

we use Eqs.(S51,S52,S67,S75) to extract

I1,outF = −εQ1

(
Q2

Q1
− 1

)
2σ12

I0

I0,R

(σ12 + σ21)
(
1 + I0

I0,R

)[(
1 + I0

I0,R

)2
+ 4

]I0Ptot. (S200)

Upon introducing the out-of-phase fluorescence emission at first order of the light modulation at resonance,

I1,out,RF , one eventually derives

I1,outF

I1,out,RF

=
16 I0

I0,R(
1 + I0

I0,R

)[(
1 + I0

I0,R

)2
+ 4

] I0

I0,R
. (S201)

In a homogeneous solution, one has thus

I1,outF (r, z)

I1,out,RF (0, 0)
=

16 I0(r,z)
I0,R(0,0)(

1 + I0(r,z)
I0,R(0,0)

)[(
1 + I0(r,z)

I0,R(0,0)

)2
+ 4

] I0(r, z)

I0,R(0, 0)
. (S202)

S4.3 Comparison of the spatial resolutions from the fluorescence imaging protocols at zeroth-
and first-order

Figure S13 displays the results from Eqs.(S199,S202). One can notice that the width of the fluorescence profile

is larger with the zeroth-order protocol than with the out-of-phase first-order one. More specifically, the gain

in spatial resolution is more pronounced along the optical axis (Figure S13a) than in the focal plane (Figure

S13b).
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Figure S13: Normalized fluorescence intensity profiles resulting from applying a sinusoidally modulated Gaus-
sian light beam (regime of small amplitude modulation) in a solution of photoswitchable fluorophore 1 
 2.
The longitudinal (along the optical axis: r = 0; a) and lateral (in the focal plane: z = 0; b) profiles have been
calculated with Eqs.(S199) and (S202) using adimensional units involving the Rayleigh range zR and the beam
waist at z = 0, w (0). Dashed line: zeroth-order fluorescence imaging; Solid line: out-of-phase first-order
fluorescence imaging. The numerical computation has been performed with σ12 = 73 m2.mol−1, σ21 = 84
m2.mol−1, Q2/Q1 = 0.
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