Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Competitive Formation of Homocircuit [3]Rotaxanes in Synthetically Useful Yields in the Bipyridine-Mediated Active Template CuAAC Reaction

Edward A. Neal^a and Stephen M. Goldup*^b

^aSchool of Biological and Chemical Sciences, Queen Mary, University of London, Mile End, London, UK E1 4NS. ^bSchool of Chemistry, University of Southampton, University Road, Southampton, UK SO17 1BJ.

Contents

General Experimental Information	S-3
Experimental Procedures	S-3
Lithiation Experiments (Scheme 4)	8-30
NMR Data for All Novel Compounds	8-31
References	S-141

General Experimental Information

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. All reactions were carried out under an atmosphere of N₂ using anhydrous solvents unless otherwise stated. Anhydrous THF, toluene, DMF, diethyl ether and methylene chloride were either obtained by passing the solvent through an activated alumina column on an MBRAUN MB SPS-800 solvent purification system or purchased from Acros, otherwise solvents were used without further purification. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. Microwave-assisted reactions were undertaken on a CEM Discover SP reactor. Flash column chromatography was performed using a Biotage Isolera 4 automated chromatography system, employing Biotage ZIP or SNAP KP-SIL cartridges. Analytical NMR spectra were recorded on Bruker AV400, AMX400 or AV600 instruments, at a constant temperature of 300 K, by the NMR service at Queen Mary, University of London. ¹³C-NMR were typically recorded as DEPT-Q135 experiments (phased spectrum including quaternary Cs). Chemical shifts are reported in parts per million from low to high field and referenced to residual solvent. Coupling constants (J) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint. = quintet, q = quartet, t = triplet, d = doublet, s = singlet, br = broad. All melting points were determined using a Sanyo Gallenkamp apparatus and are uncorrected. Low resolution mass spectrometry was carried out by the mass spectrometry service at Queen Mary, University of London using an Agilent SL Ion Trap MSD (5-8, S9-S16) or the EPSRC National Mass Spectrometry Service Centre in Swansea (10). High resolution mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre in Swansea.

Macrocycles **1a-d**,^{1,2} alkyne **2**,³ azide **3**,³ thread **S1**,^{1,3} 1-(4-(tri(4-*tert*-butylphenyl)methyl)phenoxy)hexyl bromide (**S2**),⁴ 4-(tri(4-*tert*-butylphenyl)methyl)phenol (**S3**),⁵ 6-tosyloxyhex-1-yne (**S4**),⁶ 11-tosyloxyundec-1-yne (**S5**),⁷ 6,6'-di(3-(4-hydroxyphenyl)propyl)-2,2'-bipyridine (**S18**)⁸ and macrocycle **9d**⁸ were synthesised according to literature procedures.

Experimental Procedures

General Procedure for Scheme 1 and Screening of Reaction Conditions

The desired macrocycle (1 eq.), azide (1 eq.), alkyne (1 eq.) and Cu(MeCN)₄.PF₆ (0.90 eq.) were weighed dry into an 8 mL CEM microwave vial. solvent was added to make a 0.01M solution (wrt. macrocycle), the vial sealed under N₂ and the mixture stirred at the desired temperature to react for the specified time. The solution was allowed to return to room temperature before dilution with CH₂Cl₂ (50 mL) and washing with 16% aqueous EDTA tetrasodium-saturated ammonia solution (50 mL). The organic layer was retained and the aqueous layer extracted twice further with CH₂Cl₂ (50 mL portions). The organic extracts were combined, dried over MgSO₄ and dried *in vacuo*.

Conditions A

A 0.05 M solution of the desired macrocycle (1 eq.), azide (1.20 eq.), alkyne (1.20 eq.), N^iPr_2Et (1.10 eq.) and $Cu(MeCN)_4.PF_6$ (0.10 eq.) in anhydrous THF was stirred at 30 °C for 6 hours (unless specified otherwise). The solution was allowed to return to room temperature before dilution with CH_2Cl_2 (50 mL) and washing with 16% aqueous EDTA tetrasodium-saturated ammonia solution (50 mL). The organic layer was retained and the aqueous layer extracted twice further with CH_2Cl_2 (50 mL portions). The organic extracts were combined, dried over $MgSO_4$ and dried *in vacuo*.

Conditions B

A 0.01M solution of the desired macrocycle (1 eq.), azide (1.20 eq.), alkyne (1.20 eq.) and Cu(MeCN)₄.PF₆ (0.96 eq.) in anhydrous CH_2Cl_2 was stirred at in an 8 mL CEM microwave vial at 100 °C with microwave heating (150W) for 20 minutes (unless specified otherwise). The solution was allowed to return to room temperature before dilution with further CH_2Cl_2 (50 mL) and washing with 16% aqueous EDTA tetrasodium-saturated ammonia solution (50 mL). The organic layer was retained and the aqueous layer extracted twice further with CH_2Cl_2 (50 mL portions). The organic extracts were combined, dried over MgSO₄ and dried *in vacuo*.

Selective Synthesis of [2]Rotaxanes 4

[2]Rotaxane **4a** was made according to conditions A, using macrocycle **1a** (14.1 mg, 0.025 mmol), alkyne **2** (16.3 mg, 0.030 mmol), azide **3** (17.6 mg, 0.030 mmol), NⁱPr₂Et (4.8 μ L, 0.028 mmol), and Cu(MeCN)₄.PF₆ (0.93 mg, 0.0025 mmol) in THF (0.5 mL) stirred at rt for 6 h. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 40.3 mg (95% yield) of [2]rotaxane 4a as a white foam: All analytical data was in accord with previously reported literature data.¹

[2]Rotaxane **4b** was made according to conditions A, using macrocycle **1b** (13.4 mg, 0.025 mmol), alkyne **2** (16.3 mg, 0.030 mmol), azide **3** (17.6 mg, 0.030 mmol), NⁱPr₂Et (4.8 μ L, 0.028 mmol), and Cu(MeCN)₄.PF₆ (0.93 mg, 0.0025 mmol) in THF (0.5 mL) stirred at rt for 6 h. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 39.3 mg (94% yield) of [2]rotaxane **4b** as a white foam. All analytical data was in accord with previously reported literature data.²

[2]Rotaxane **4c** was made according to conditions A, using macrocycle **1b** (12.7 mg, 0.025 mmol), alkyne **2** (16.3 mg, 0.030 mmol), azide **3** (17.6 mg, 0.030 mmol), N^{*i*}Pr₂Et (4.8 μ L, 0.028 mmol), and Cu(MeCN)₄.PF₆ (0.93 mg, 0.0025 mmol) in THF (0.5 mL) stirred at rt for 6 h. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 40.6 mg (99% yield) of [2]rotaxane **4c** as a white foam. All analytical data was in accord with previously reported literature data.²

[2]Rotaxane **4d** was made according to conditions A, using macrocycle **1d** (1.4 mg, 0.025 mmol), alkyne **2** (16.3 mg, 0.030 mmol), azide **3** (17.6 mg, 0.030 mmol), NⁱPr₂Et (4.8 μ L, 0.028 mmol), and Cu(MeCN)₄.PF₆ (0.93 mg, 0.0025 mmol) in THF (0.5 mL) stirred at rt for 6 h. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 39.9 mg (99% yield) of [2]rotaxane **4d** as a white foam: All analytical data was in accord with previously reported literature data.²

Synthesis of [3]Rotaxane 5a

[3]Rotaxane 5a was made according to conditions B, using macrocycle 1a (14.1 mg, 0.025 mmol), alkyne 2 (16.3 mg, 0.030 mmol), azide 3 (17.6 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol) in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 20 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 14.1 mg (49% yield) of [3]rotaxane 5a as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.97 (d, J=7.6, 2H, H₄), 7.96 (d, J=7.6, 2H, H₄), 7.43 (t, J=7.6, 2H, H_B), 7.40 (t, J=7.6, 2H, H_B·), 7.21 - 7.30 (m, 16H, H_C, H_C, H_b and H_n), 7.09 (d, J=8.7, 6H, H_c or H_m), 7.05 (d, J=8.7, 6H, H_c or H_m), 6.96 (d, $J=8.7, 4H, H_F$, 6.94 (s, 1H, H_a), 6.93 (d, $J=8.7, 4H, H_F$), 6.80 (d, $J=9.1, 2H, H_d$ or H_l), 6.74 (d, $J=9.1, 2H, H_d$ or H_l), 6.51 (d, J=8.7, 4H, H_G), 6.49 (d, J=8.7, 4H, H_G), 6.04 (d, J=9.1, 2H, H_e or H_l), 5.97 (d, J=9.1, 2H, H_e or H_l), 4.56 -4.58 (m, 8H, H_D and H_D), 4.52 – 4.56 (m, 8H, H_E and H_E), 3.58 - 3.76 (m, 10H, H_H, H_H and H_i), 2.99 (t, J=5.7, 2H, H_h), 1.52 – 1.60 (m, 8H, H_I and H_I), 1.39 – 1.46 (m, 2H, H_i), 1.28 – 1.37 (m, 54H, H_a and H_o), 1.17 – 1.28 (m, 8H, H_J and $H_{J'}$), 1.00 – 1.15 (m, 16H, H_K , H_K , H_L and $H_{L'}$); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.7 (C), 158.7 (C), 158.4 (C), 158.3 (C), 156.2 (C), 156.1 (C), 155.6 (C), 155.4 (C), 148.5 (C), 148.4 (C), 148.3 (C), 144.5 (2 x C), 139.4 (C), 139.3 (C), 137.3 (CH), 137.2 (CH), 131.9 (CH), 130.9 (2 x CH), 129.8 (CH), 129.8 (CH), 129.7 (C), 124.2 (CH), 124.2 (CH), 122.9 (CH), 121.6 (CH), 121.5 (CH), 120.0 (CH), 119.9 (CH), 114.5 (CH), 114.5 (CH), 112.8 (CH), 112.8 (CH), 72.6 (CH₂), 72.5 (2 x CH₂), 72.4 (CH₂), 67.8 (CH₂), 67.7 (CH₂), 64.0 (CH₂), 63.2 (C), 63.1 (C), 61.4 (CH₂), 47.0 (CH₂), 34.5 (2 x C), 31.6 (CH₃), 31.6 (CH₃), 29.8 (CH₂), 29.5 (2 x CH₂), 29.0 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 28.9 (CH₂), 25.9 (CH₂), 25.9 (CH₂); LRMS (ESI+) m/z 1154.7 [M+2Na]²⁺.

Synthesis of [3]Rotaxane 5b

[3]Rotaxane 5b was made according to conditions B, using macrocycle 1b (13.4 mg, 0.025 mmol), alkyne 2 (16.3 mg, 0.030 mmol), azide 3 (17.6 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol) in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 20 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 13.9 mg (50%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) & ppm 7.83 (d, J=7.8, 4H, H_A and H_A.), 7.48 (t, J=7.8, 2H, H_B or H_B.), 7.46 (t, J=7.8, 2H, H_B or H_B.), 7.36 (d, J=7.8, 2H, H_C or H_C), 7.35 (d, J=7.8, 2H, H_C or H_C), 7.21 - 7.33 (m, 20H, H_b and H_n), 7.14 (s, 1H, H_g), 7.10 (d, J=8.7, 6H, H_c or H_m), 7.06 (d, J=8.7, 6H, H_c or H_m), 6.99 (d, J=8.7, 4H, H_F or H_F'), 6.96 (d, J=8.7, 4H, H_F or H _{*F*}[']), 6.69 (d, *J*=8.7, 2H, H_d or H_l), 6.58 (d, *J*=8.7, 2H, H_d or H_l), 6.55 (d, *J*=8.7, 4H, H_G or H_G[']), 6.51 (d, *J*=8.7, 4H, H_G or H_G'), 5.79 (d, J=8.7, 2H, H_e or H_k), 5.78 (d, J=8.7, 2H, H_e or H_k), 4.49 - 4.62 (m, 16H, H_D, H_D', H_E and H_E'), 4.24 (s, 2H, H_f), 3.61 - 3.82 (m, 8H, H_H and H_H), 3.55 - 3.60 (m, 2H, H_f), 2.90 (t, J=5.7, 2H, H_h), 1.45 - 1.64 (m, 8H, H_I and H_I), 1.34 - 1.39 (m, 2H, H_i), 1.36 (s, 27H, H_a and H_o), 1.35 (s, 27H, H_a and H_o), 0.87 - 0.96 (m, 10H, H_J, H_J), H_K and H_K); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.8 (C), 158.8 (C), 158.6 (C), 158.6 (C), 156.0 (C), 156.0 (C), 155.7 (C), 155.5 (C), 148.4 (C), 148.3 (C), 148.2 (C), 144.6 (2 x C), 139.0 (C), 137.2 (CH), 137.1 (CH), 131.7 (CH), 131.6 (CH), 131.0 (CH), 131.0 (CH), 129.9 (2 x CH), 129.7 (C), 129.5 (C), 124.2 (CH), 124.2 (CH), 123.2 (CH), 120.9 (CH), 120.7 (CH), 120.1 (CH), 119.9 (CH), 114.7 (CH), 114.6 (CH), 112.8 (CH), 112.7 (CH), 72.6 (CH₂), 72.5 (CH₂), 71.8 (CH₂), 71.5 (CH₂), 67.8 (CH₂), 67.7 (CH₂), 63.9 (CH₂), 63.2 (C), 63.1 (C), 61.2 (CH₂), 47.0 (CH₂), 34.5 (2 x C), 31.6 (CH₃), 31.6 (CH₃), 29.7 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 25.9 (CH₂), 25.9 (CH₂); LRMS (ESI+) m/z 1104.5 [M+2H]²

Synthesis of [3]Rotaxane 5c

[3]Rotaxane 5c was made according to conditions B, using macrocycle 1a (12.7 mg, 0.025 mmol), alkyne 2 (16.3 mg, 0.030 mmol), azide 3 (17.6 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol) in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 20 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 5.2 mg (23%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.61 (d, J=7.6, 2H, H₄), 7.62 (d, J=7.6, 2H, H₄), 7.48 - 7.54 (m, 4H, H_B and H_B'), 7.39 (d, J=7.6, 2H, H_C), 7.38 (d, J=7.6, 2H, H_C), 7.25 - 7.29 (m, 6H, H_b or H_n), 7.29 (d, J=8.7, 6H, H_b or H_n), 7.17 (s, 1H, H_g), 7.10 (d, J=8.7, 6H, H_c or H_m), 7.05 (d, J=8.7, 6H, H_c or H_m), 6.97 (d, J=8.7, 2H, H_F or H_F), 6.93 (d, J=8.7, 2H, H_F or H_F), 6.60 (d, J=9.1, 2H, H_d or H_l), 6.54 (d, J=8.6, 2H, H_G or H_G), 6.51 (d, J=8.6, 2H, H_G or H_G), 5.58 - 5.66 (m, 4H, H_e and H_k), 4.36 - 4.61 (m, 16H, H_D, H_D, H_E and H_E), 4.22 (s, 2H, H_f), 3.74 - 3.87 (m, 4H, H_H or H_H[']), 3.70 (dt, J=9.7, 6.6, 2H, H_H or H_H), 3.69 (dt, J=9.7, 6.6, 2H, H_H or H_H), 3.50 (m, J=7.9, 2H, H_h), 2.83 (t, J=6.0, 2H, H_i), 1.48 - 1.58 (m, 8H, H_I and H_I), 1.35 (s, 27H, H_a), 1.35 (s, 27H, H_a), 1.25 – 1.29 (m, 2H, H_i), 0.87 – 0.96 (m, 8H, H_J and H_J); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.9 (C), 158.9 (C), 158.9 (C), 158.7 (C), 156.0 (C), 155.8 (C), 155.7 (C), 155.6 (C), 148.2 (C), 148.2 (C), 148.1 (C), 144.4 (2 x C), 138.5 (C), 137.0 (CH), 136.9 (CH), 131.4 (CH), 130.9 (CH), 130.8 (CH), 129.9 (2 x CH), 129.3 (C), 129.1 (C), 124.1 (CH), 124.0 (CH), 124.0 (CH), 124.0 (CH), 124.0 (CH), 120.2 (CH), 120.0 (CH), 119.9 (CH), 115.0 (CH), 114.9 (CH), 112.7 (CH), 112.7 (CH), 72.4 (CH₂), 72.4 (CH₂), 70.8 (CH₂), 70.5 (CH₂), 67.8 (CH₂), 63.8 (CH₂), 63.0 (C), 62.9 (C), 60.7 (CH₂), 46.7 (CH₂), 34.3 (2 x C), 31.5 (CH₃), 31.4 (CH₃), 29.7 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 25.3 (CH₂), 25.2 (CH₂); LRMS (ESI+) m/z 2152.5 $[M+H]^{+}$.

Synthesis of 6-(4-(Tri(4-tert-butylphenyl)methyl)phenoxy)hexyl azide (6)

A solution of 6-(4-(tri(4-*tert*-butylphenyl)methyl)phenoxy)hexyl bromide (**S2**) (725 mg, 1.086 mmol) and NaN₃ (141.2 mg, 2.172 mmol) in dry NMP (16 mL) was stirred at 80 °C for 18 hours. Water was added (50 mL) and the reaction mixture extracted twice with CH₂Cl₂ (50 mL). The organic layers were then combined, dried over MgSO₄ and reduced *in vacuo* to afford a cream solid (CAUTION: Care should be taken with azides under reduced pressure). Recrystallisation from hot MeCN/CHCl₃ afforded 253.2 mg (38%) of the target material as a white solid: m.p. 200-202 °C (dec.); ¹H NMR (600 MHz, CDCl₃) δ ppm 7.26 (d, *J*=8.7, 6H, H_{*j*}), 7.06 - 7.14 (m, 8H, H_{*i*} and H_{*g*} or H_{*h*}), 6.78 (d, *J*=8.9, 2H, H_{*g*} or H_{*h*}), 3.96 (t, *J*=6.3, 2H, H_{*a*}), 3.31 (t, *J*=6.9, 2H, H_{*f*}), 1.77 - 1.85 (m, 2H, H_{*b*}), 1.66 (m, 2H, H_{*e*}), 1.44 - 1.55 (m, 4H, H_{*c*} and H_{*d*}), 1.33 (s, 27H, H_{*k*}); ¹³C NMR (150 MHz, CDCl₃) δ 157.0 (C), 148.5 (C), 144.3 (C), 139.6 (C), 132.4 (CH), 130.9 (CH), 124.2 (CH), 113.1 (CH), 67.7 (CH₂), 63.2 (C), 52.0 (CH₂), 34.4 (C), 31.5 (CH₃), 29.4 (CH₂), 29.0 (CH₂), 26.7 (CH₂), 25.9 (CH₂); HRMS (APCI+) m/z 647.4691 [M+NH₄]⁺ (calc. for C₄₃H₅₉N₄O 647.4683).

Synthesis of 6-(4-(Tri(4-tert-butylphenyl)methyl)phenoxy)hex-1-yne (7)

A solution of 4-(tri(4-*tert*-butylphenyl)methyl)phenol (**S3**) (510 mg, 1.01 mmol), 6-tosyloxyhex-1-yne (**S4**) (255 mg, 1.01 mmol) and K₂CO₃ (698 mg, 5.05 mmol) in acetone (10 mL) was refluxed with stirring for 18 hours. The reaction mixture was filtered, dried (MgSO₄) then reduced *in vacuo* to afford a beige solid. Recrystallisation from hot MeCN/CHCl₃ afforded 94.3 mg (16%) of the target material as a white solid: m.p. 231-233 °C; ¹H NMR (600 MHz, CDCl₃) δ ppm 7.24 (d, *J*=8.7, 6H, H_h or H_i), 6.99 - 7.16 (m, 8H, H_f or H_g and H_h or H_i), 6.76 (d, *J*=8.9, 2H, H_f or H_g), 3.97 (t, *J*=6.2, 2H, H_e), 2.28 (td, *J*=7.1, 2.6, 2H, H_b), 1.97 (t, *J*=2.6 Hz, 1H, H_a), 1.86 - 1.95 (m, 2H, H_d), 1.73 (m, 2H, H_c), 1.31 (s, 27H, H_j); ¹³C NMR (150 MHz, CDCl₃) δ ppm 157.0 (C), 148.5 (C), 144.3 (C), 139.7 (C), 132.4 (CH), 130.9 (CH), 124.2 (CH), 113.1 (CH), 68.7 (C), 67.3 (CH₂), 63.2 (C), 34.4 (C), 31.5 (CH₃), 28.5 (CH₂), 25.3 (CH₂), 18.3 (CH₂); HRMS (APCI+) m/z 585.4092 [M+H]⁺ (calc. for C₄₃H₅₃O 585.4091).

Synthesis of 11-(4-(Tri(4-tert-butylphenyl)methyl)phenoxy)undec-1-yne (8)

A solution of 4-(tri(4-*tert*-butylphenyl)methyl)phenol (**S3**) (252 mg, 0.05 mmol), 11-tosyloxyundec-1-yne (**S5**) (161 mg, 0.05 mmol) and K_2CO_3 (276 mg, 2 mmol) in acetone (5 mL) was refluxed with stirring for 18 hours. The reaction mixture was filtered, dried (MgSO₄) then reduced *in vacuo* to afford a beige solid. Column chromatography

(0-10% CH₂Cl₂/petrol) afforded 111.7 mg (34%) of the target material as a white solid: m.p. 155-159 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.24 (d, *J*=8.6, 6H, H_m or H_n), 7.10 (d, *J*=8.6, 6H, H_m or H_n), 7.09 (d, *J*=8.8, 2H, H_k or H_l), 6.77 (d, *J*=8.8, 2H, H_k or H_l), 3.94 (t, *J*=6.5, 2H, H_j), 2.19 (td, *J*=7.0, 2.5, 2H, H_b), 1.94 (t, *J*=2.5, 1H, H_a), 1.77 (m, 2H, H_l), 1.12 - 1.60 (m, 12H, H_c, H_d, H_e, H_f, H_g and H_h), 1.31 (s, 27H, H_o); ¹³C NMR (150 MHz, CDCl₃) δ ppm 157.1 (C), 148.4 (C), 144.4 (C), 139.5 (C), 132.4 (CH), 130.9 (CH), 124.2 (CH), 113.1 (CH), 68.2 (C), 68.0 (CH₂), 63.2 (C), 34.4 (3 x C), 31.5 (9 x CH₃), 29.6 (CH₂), 29.5 (2 x CH₂), 29.2 (CH₂), 28.9 (CH₂), 28.6 (CH₂), 26.2 (CH₂), 18.5 (CH₂); HRMS (APCI+) m/z 672.5136 [M+NH₄]⁺ (calc. for C₄₃H₅₃O 672.5139).

Synthesis of [3]Rotaxane S6

[3]Rotaxane S6 was made according to conditions B, using macrocycle 1a (14.2 mg, 0.025 mmol), alkyne 7 (17.5 mg, 0.030 mmol), azide 3 (17.6 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol) in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 1 hour. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 9.4 mg (32%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.98 (d, J=8.1, 2H, H₄ or H₄), 8.00 (d, J=8.1, 2H, H₄ or H₄), 7.44 (t, J=8.1, 2H, H₈ or H₈), 7.47 (t, J=8.1, 2H, H_B or H_B), 7.27 (d, J=8.6, 6H, H_b or H_a), 7.25 (d, J=8.6, 6H, H_b or H_a), 7.21-7.31 (m, 4H, H_c and H_c), 7.10 (d, J=8.2, 6H, H_c or H_p), 7.08 (d, J=8.5, 6H, H_c or H_p), 6.99 (d, J=8.6, 4H, H_F or H_F), 6.97 (d, J=8.6, 4H, H_F or H_{*F*}), 6.84 (d, *J*=8.8, 2H, H_d), 6.79 (d, *J*=8.8, 2H, H_o), 6.67 (s, 1H, H_j), 6.55 (d, *J*=8.6, 4H, H_G or H_G), 6.54 (d, *J*=8.6, 4H, H_G or H_G), 6.06 (d, J=8.8, 2H, H_e), 6.05 (d, J=8.8, 2H, H_n), 4.57 (s, 8H, H_D and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.56 (s, 8H, H_D) and H_D or H_E and H_E), 4.57 (s, 8H, H_D) and H_D or H_E and H_E), 4.58 (s, 8H, H_D) and H_D or H_E and H_E). H_D and $H_{D'}$ or H_F and $H_{E'}$, 3.64 - 3.79 (m, 10H, H_H), 3.10 (t, J=6.1, 2H, H_f), 3.06 (t, J=5.7, 2H, H_m), 2.26 (t, J=7.2, 2H), 3.06 (t, J=7.2, 2H) 2H, H_i), 1.47 - 1.66 (m, 10H, H_I, H_I and H_i), 1.19 - 1.39 (m, 12H, H_J, H_J, H_J, H_g and H_h), 1.33 (s, 27H, H_a or H_r), 1.33 (s, 27H, H_a or H_r), 1.03 - 1.18 (m, 16H, H_K, H_K', H_L and H_L'); ¹³C NMR (150 MHz, CDCl₃) δ ppm 158.7 (C), 158.7 (C), 158.4 (2 x C), 156.7 (C), 156.2 (C), 155.6 (C), 155.4 (C), 148.4 (C), 148.3 (C), 147.4 (C), 144.5 (C), 144.4 (C), 139.4 (C), 138.8 (C), 137.3 (CH), 137.2 (CH), 131.9 (CH), 131.8 (CH), 130.9 (CH), 130.9 (CH), 129.8 (2 x C), 129.8 (CH), 129.8 (CH), 124.2 (CH), 124.2 (CH), 121.6 (CH), 121.5 (CH), 120.8 (CH), 120.0 (CH), 119.8 (CH), 114.5 (CH), 114.5 (CH), 112.9 (CH), 72.6 (CH₂), 72.5 (CH₂), 72.5 (CH₂), 72.4 (CH₂), 67.8 (CH₂), 67.8 (CH₂), 66.9 (CH₂), 63.9 (CH₂), 63.2 (C), 63.2 (C), 46.8 (CH₂), 34.5 (C), 34.5 (C), 31.6 (2 x CH₃), 29.9 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.1 (2 x CH₂), 29.0 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 26.0 (CH₂), 26.0 (CH₂), 25.7 (CH₂), 25.4 (CH₂); LRMS (ESI+) 1153.2 m/z [M+2H]²⁺.

[2]Rotaxane **S7** was also isolated (17.9 mg, 41%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.97 (d, *J*=7.8, 2H, H_{*A*}), 7.49 (t, *J*=7.8, 2H, H_B), 7.29 (d, *J*=7.8, 2H, H_C), 7.25 (d, *J*=8.7, 6H, H_b or H_q), 7.24 (d, *J*=8.6, 6H, H_b or H_q), 7.10 (d, *J*=8.6, 6H, H_c or H_p), 7.11 (d, *J*=8.7, 6H, H_c or H_p), 6.97 - 7.05 (m, 8H, H_F, H_d and H_o), 6.78 (s, 1H, H_j), 6.58 (d, *J*=9.0, 2H, H_e), 6.59 (d, *J*=8.7, 4H, H_G), 6.42 (d, *J*=9.0, 2H H_n), 4.57 (s, 4H, H_D or H_E), 4.55 (s, 4H, H_D or H_E), 3.90 (t, *J*=7.3, 2H, H_k), 3.76 (t, *J*=6.5, 4H, H_H), 3.66 (t, *J*=5.8, 2H, H_f), 3.40 (t, *J*=5.7, 2H, H_m), 2.45 (t, *J*=7.1, 2H, H_i), 1.73 - 1.82 (tt, *J*=7.3, 5.7, 2H, H_l), 1.45 - 1.65 (m, 8H, H_L, H_g and H_k), 1.22 - 1.37 (m, 4H, H_J), 1.32 (s, 27H, H_g or H_r), 1.31 (s, 27H, H_g or H_r), 1.09 - 1.21 (m, 8H, H_K and H_L); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.6 (C), 158.2 (C), 156.8 (C), 156.2 (C), 155.5 (C), 148.3 (C), 148.3 (C), 147.4 (C), 144.3 (C), 144.2 (C), 139.7 (C), 139.3 (C), 137.1 (CH), 132.1 (CH), 130.8 (CH), 130.7 (CH), 129.7 (C), 129.7 (CH), 124.1 (CH), 124.0 (CH), 121.5 (CH), 121.0 (CH), 119.9 (CH), 114.4 (CH), 112.9 (CH), 112.9 (CH), 72.5 (CH₂), 72.3 (CH₂), 67.7 (CH₂), 67.2 (CH₂), 63.9 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 25.2 (CH₂); LRMS (ESI+) m/z 870.1 [M+2H]⁺.

Synthesis of [3]Rotaxane S8

[3]Rotaxane S8 was made according to conditions B, using macrocycle 1a (14.2 mg, 0.025 mmol), alkyne 2 (16.3 mg, 0.030 mmol), azide 6 (18.9 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol) in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 1 hour. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 13.7 mg (48%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 8.01 (d, J=7.7, 2H, H_A or H_{A'}), 7.96 (d, J=7.7, 2H, H_A or H_{A'}), 7.47 (t, J=7.7, 2H, H_B or H_{B'}), 7.46 (t, J=7.7, 2H, H_B or H_B), 7.31 – 7.22 (m, 4H, H_C and H_C), 7.25 (d, J=8.7, 6H, H_b or H_q), 7.25 (d, J=8.7, 6H, H_b or H_q), 7.09 (d, J=8.7, 6H, H_c or H_p), 7.07 (d, J=8.7, 6H, H_c or H_p), 7.06 (s, 1H, H_g), 7.00 (d, J=8.7, 4H, H_F or H_F), 6.97 (d, J=8.8, 4H, H_F or H_F), 6.84 (d, J=8.8, 2H, H_d), 6.85 (d, J=8.8, 2H, H_o), 6.54 (d, J=8.7, 4H, H_G or H_G), 6.56 $(d, J=8.8, 4H, H_G \text{ or } H_G)$, 6.26 $(d, J=8.8, 2H, H_e)$, 6.14 $(d, J=8.8, 2H, H_n)$, 4.45 - 4.62 $(m, 16H, H_D, H_D, H_E \text{ and} H_E)$ H_E·), 4.49 (s, 2H, H_f), 3.66 - 3.78 (m, 8H, H_H and H_H·), 3.52 (t, J=7.7, 2H, H_h), 3.06 (t, J=6.5, 2H, H_m), 1.51 - 1.66 (m, 8H, H₁ and H₁), 1.32 (s, 54H, H_a and H_r), 1.19 - 1.37 (m, 8H, H_J and H_J), 1.12 (d, J=7.7, 18H, H_K, H_K, H_L, H_L, and H_i), 0.55 - 0.76 (m, 4H, H_k and H_j); ¹³C NMR (150 MHz, CDCl₃) δ ppm 158.7 (C), 158.7 (C), 158.4 (C), 158.4 (C), 156.8 (C), 156.2 (C), 155.5 (2 x C), 148.3 (2 x C), 147.4 (C), 144.5 (C), 144.4 (C), 139.6 (C), 139.0 (C), 137.2 (CH), 137.2 (CH), 132.0 (CH), 131.9 (CH), 130.9 (2 x CH), 129.8 (2 x C), 129.8 (CH), 129.8 (CH), 124.2 (CH), 124.2 (CH), 122.9 (CH), 121.5 (CH), 121.5 (CH), 120.0 (CH), 119.9 (CH), 114.5 (CH), 114.5 (CH), 113.0 (CH), 112.9 (2 x CH), 72.6 (CH₂), 72.5 (CH₂), 72.4 (CH₂), 72.4 (CH₂), 67.8 (CH₂), 67.7 (CH₂), 67.0 (CH₂), 63.2 (2 x C), 61.6 (CH₂), 49.7 (CH₂), 34.5 (2 x C), 31.6 (2 x CH₃), 29.8 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.1 (CH₂), 29.0 (2 x CH₂), 28.9 (CH₂), 28.9 (CH₂), 26.2 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 25.2 (CH₂); LRMS (ESI+) 1153.2 m/z $[M+2H]^{2+}$.

[2]Rotaxane **S9** was also isolated (19.6 mg, 45%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.97 (d, *J*=7.8, 2H, H_{*A*}), 7.52 (t, *J*=7.8, 2H, H_{*B*}), 7.31 (d, *J*=7.8, 2H, H_{*C*}), 7.25 (d, *J*=8.6, 6H, H_b or H_q), 7.24 (d, *J*=8.6, 6H, H_b or H_q), 7.12 (d, *J*=8.6, 6H, H_c or H_p), 7.09 (d, *J*=8.6, 6H, H_c or H_p), 7.04 (d, *J*=8.6, 4H, H_F), 7.00 - 7.16 (m, 4H H_g, H_d and H_o), 6.74 (d, *J*=9.0, 2H, H_e), 6.61 (d, *J*=8.6, 4H, H_G), 6.59 (d, *J*=9.1, 2H, H_n), 4.94 (s, 2H, H_f), 4.57 (s, 4H, H_D or H_E), 4.56 (s, 4H, H_D or H_E), 3.79 (t, *J*=6.4, 4H, H_H), 3.61 (t, *J*=7.6, 2H, H_h), 3.51 (t, *J*=6.4, 2H, H_m), 1.62 (tt, *J*=7.2, 6.4, 4H, H_I), 1.06 - 1.37 (m, 16H, H_J, H_K, H_L, H_i and H_l), 1.32 (s, 27H, H_a), 1.31 (s, 27H, H_r), 0.90 (m, 2H, H_f), 0.74 (m, 2H, H_k); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.8 (C), 158.4 (C), 157.0 (C), 156.4 (C), 155.7 (C), 148.5 (C), 148.4 (C), 144.4 (C), 144.3 (C), 143.8 (C), 140.1 (C), 139.4 (C), 137.2 (CH), 132.4 (CH), 132.3 (CH), 130.9 (2 x CH), 129.8 (CH), 129.8 (CH), 124.2 (2 x CH), 122.9 (CH), 121.6 (CH), 120.0 (CH), 114.5 (CH), 113.3 (CH), 113.1 (CH), 72.6 (CH₂), 72.3 (CH₂), 67.8 (CH₂), 67.3 (CH₂), 63.2 (2 x C), 62.0 (CH₂), 49.8 (CH₂), 34.4 (2 x C), 31.5 (2 x CH₃), 29.7 (CH₂), 29.5 (CH₂), 29.1 (CH₂), 28.9 (CH₂), 28.9 (CH₂), 26.0 (CH₂), 26.0 (CH₂), 25.2 (CH₂); LRMS (ESI+) 869.9 m/z [M+2H]²⁺.

Synthesis of [3]Rotaxane S10a

[3]Rotaxane S10a was made according to conditions B, using macrocycle 1a (14.2 mg, 0.025 mmol), alkyne 7 (17.5 mg, 0.030 mmol), azide 6 (18.9 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol), in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 45 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 11.3 mg (35%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 8.01 (d, J=7.8, 2H, H₄ or H₄), 8.00 (d, J=7.8, 2H, H₄ or H₄), 7.51 (t, J=7.8, 2H, H₈ or H₈), 7.48 (t, J=7.8, 2H, H_B or H_B), 7.31 (d, J=7.8, 2H, H_C or H_C), 7.29 (d, J=7.8, 2H, H_C or H_C), 7.25 (d, J=8.5, 12H, H_b and H_t), 7.10 (d, J=8.5, 6H, H_c or H_s), 7.09 (d, J=8.5, 6H, H_c or H_s), 7.02 (d, J=8.7, 4H, H_F or H_F), 6.99 (d, J=8.7, 4H, H_F or H_F), 6.90 (d, J=8.8, 2H, H_d), 6.85 (d, J=8.8, 2H, H_r), 6.80 (s, 1H, H_i), 6.59 (d, J=8.7, 4H, H_G or H_G), 6.57 $(d, J=8.7, 4H, H_G \text{ or } H_G)$, 6.25 $(d, J=8.8, 2H, H_e)$, 6.17 $(d, J=8.8, 2H, H_d)$, 4.54 - 4.61 (m, 16H, H_D, H_D, H_E and H_E.), 3.70 - 3.81 (m, 8H, H_H), 3.65 (m, J=7.7, 2H, H_p), 3.21 (t, J=5.8, 2H, H_d), 3.16 (t, J=6.5, 2H, H_k), 2.32 (t, J=7.1, 2H, H_l), 1.51 - 1.68 (m, 6H, H_h, H_l), 1.08 - 1.37 (m, 14H, H_g, H_l, H_o, H_J and H_K), 1.32 (s, 54H, H_a and H_u), 0.80 -0.96 (m, 4H, H_L), 0.62 - 0.80 (m, 4H, H_m and H_n); ¹³C NMR (150 MHz, CDCl₃) δ ppm 158.7 (2 x C), 158.4 (2 x C), 156.8 (C), 156.8 (C), 155.6 (C), 155.5 (C), 148.4 (C), 148.3 (C), 147.4 (C), 144.5 (C), 144.5 (C), 139.1 (C), 139.0 (C), 137.2 (CH), 137.2 (CH), 132.0 (CH), 131.9 (CH), 130.9 (2 x CH), 129.9 (2 x C), 129.8 (CH), 129.8 (CH), 124.2 (CH), 124.2 (CH), 121.5 (2 x CH), 120.6 (CH), 119.9 (CH), 119.9 (CH), 114.5 (CH), 114.5 (CH), 113.0 (CH), 112.9 (CH), 72.5 (2 x CH₂), 72.4 (CH₂), 72.3 (CH₂), 67.8 (CH₂), 67.8 (CH₂), 67.1 (CH₂), 67.0 (CH₂), 63.2 (2 x C), 49.7 (CH₂), 34.5 (2 x C), 31.6 (2 x CH₃), 30.0 (CH₂), 29.8 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.1 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 26.2 (CH₂), 26.0 (CH₂), 26.0 (CH₂), 25.8 (CH₂), 25.5 (CH₂), 25.2 (CH₂); LRMS $(ESI+) m/z 1185.7 [M+Na+H]^{2+}$.

S-15

[2]Rotaxane **S11a** was also isolated (27.5 mg, 55%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.99 (d, *J*=7.7, 2H, H_{*A*}), 7.55 (t, *J*=7.7, 2H, H_B), 7.33 (d, *J*=7.7, 2H, H_C), 7.21 - 7.26 (m, 12H, H_b and H_t), 7.10 (t, *J*=8.2, 12H, H_c and H_s), 7.00 - 7.06 (m, 8H, H_F, H_d and H_r), 6.93 (s, 1H, H_j), 6.62 (d, *J*=8.5, 4H, H_G), 6.59 (d, *J*=9.1, 2H, H_e), 6.57 (d, *J*=8.9, 2H, H_q), 4.57 (s, 4H, H_D or H_E), 4.56 (s, 4H, H_D or H_E), 3.74 - 3.81 (m, 6H, H_H and H_k), 3.71 (t, *J*=5.8, 2H, H_f), 3.53 (t, *J*=6.4, 2H, H_q), 2.54 (t, *J*=7.1, 2H, H_a or H_u), 1.11 - 1.22 (m, 8H, H_K and H_L), 1.00 (m, 2H, H_n), 0.80 - 0.96 (m, 2H, H_m); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.8 (C), 158.5 (C), 156.9 (2 x C), 155.7 (C), 148.4 (C), 148.4 (C), 147.6 (C), 144.4 (C), 144.2 (C), 139.4 (C), 139.4 (C), 137.2 (CH), 132.2 (CH), 130.9 (2 x CH), 129.8 (CH₂), 67.8 (CH₂), 67.3 (CH₂), 63.2 (2 x C), 49.8 (CH₂), 34.4 (2 x C), 31.5 (2 x CH₃), 30.0 (CH₂), 29.6 (CH₂), 29.1 (CH₂), 29.0 (CH₂), 29.0 (2 x CH₂), 26.2 (CH₂), 26.0 (CH₂), 26.0 (2 x CH₂), 25.5 (CH₂), 25.4 (CH₂); LRMS (ESI+) 891.0 m/z [M+2H]²⁺

Bruker Daltonics DataAnalysis 3.4 printed: 02/08/2013 15:38:05 Page 1 of 1

Synthesis of [3]Rotaxane S12

[3]Rotaxane S12 was made according to conditions B, using macrocycle 1a (14.2 mg, 0.025 mmol), alkyne 8 (19.7 mg, 0.030 mmol), azide 3 (17.6 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol) in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 2 hours. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 10.3 mg (34%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) & ppm 8.05 (d, J=7.8, 2H, H_A or H_A.), 7.99 (d, J=7.8, 2H, H_A or H_A.), 7.52 (t, J=7.8, 3H, H_B or H_B.), 7.51 (t, J=7.8, 2H, H_B or H_B), 7.31 (d, J=7.8, 4H, H_C and H_C), 7.21 - 7.29 (m, 12H, H_b and H_v), 7.11 (d, J=8.4, 6H, H_c or H_u), 7.10 (d, J=8.4, 6H, H_c or H_u), 7.04 (d, J=8.7, 4H, H_F or H_F), 7.02 (d, J=8.7, 4H, H_F or H_F), 6.91 (d, J=8.8, 2H, H_d or H_t), 6.89 (d, J=8.8, 2H, H_d or H_t), 6.75 (s, 1H, H_o), 6.61 (d, J=8.7, 4H, H_G or H_G), 6.58 (d, J=8.7, 4H, H_G or H_{G'}), 6.26 (d, J=8.8, 2H, H_e or H_s), 6.20 (d, J=8.8, 2H, H_e or H_s), 4.53 – 4.63 (m, 16H, H_D, H_{D'}, H_E and H_{E'}), 3.68 – 3.83 (m, 10H, H_H, H_{H'} and H_p), 3.20 (t, J=6.7, 2H, H_f), 3.16 (t, J=5.6, 2H, H_r), 2.38 – 2.46 (m, 2H, H_n), 1.52 – 1.69 and H_w); ¹³C NMR (150 MHz, CDCl₃) δ ppm 158.8 (C), 158.8 (C), 158.4 (2 x C), 156.9 (C), 156.3 (C), 155.6 (C), 155.5 (C), 148.4 (C), 148.3 (C), 148.0 (C), 144.5 (C), 144.4 (C), 139.6 (C), 138.9 (C), 137.3 (CH), 137.1 (CH), 132.0 (CH), 132.0 (CH), 130.9 (CH), 130.9 (CH), 129.9 (C), 129.8 (C), 129.8 (CH), 129.8 (CH), 124.2 (CH), 124.2 (CH), 121.6 (CH), 121.3 (CH), 120.8 (CH), 120.0 (CH), 119.7 (CH), 114.5 (2 x CH), 113.0 (CH), 112.9 (CH), 72.6 (CH₂), 72.4 (2 x CH₂), 72.2 (CH₂), 67.8 (2 x CH₂), 67.4 (CH₂), 64.0 (C), 63.2 (C), 46.7 (CH₂), 34.5 (2 x C), 31.6 (2 x CH₃), 29.9 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 29.7 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.2 (CH₂), 29.1 (2 x CH₂), 29.0 (CH₂), 29.0 (CH₂), 26.0 (CH₂), 26.0 (CH₂), 25.9 (2 x CH₂), 25.9 (CH₂); LRMS (ESI+) m/z 1188.3 [M+2H]²⁺

[2]Rotaxane **S13** was also isolated (21.4 mg, 47%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 8.01 (d, *J*=7.8, 2H, H_{*A*}), 7.53 (t, *J*=7.8, 2H, H_{*B*}), 7.32 (d, *J*=7.7, 2H, H_{*C*}), 7.25 (d, *J*=8.5, 6H, H_b or H_v), 7.24 (d, *J*=8.4, 6H, H_b or H_v), 7.10 (d, *J*=8.4, 6H, H_c or H_u), 7.10 (d, *J*=8.4, 6H, H_c or H_u), 7.10 (d, *J*=8.4, 6H, H_c or H_u), 7.10 (d, *J*=8.4, 4H, H_G), 6.60 (d, *J*=8.5, 6H, H_c or H_u), 6.98 - 7.07 (m, 8H, H_F, H_d and H_t), 6.92 (s, 1H, H_o), 6.61 (d, *J*=8.4, 4H, H_G), 6.60 (d, *J*=8.8, 2H, H_e), 6.46 (d, *J*=8.8, 2H, H_s), 4.58 (s, 4H, H_D or H_E), 4.58 (s, 4H, H_D), 3.78 (t, *J*=6.5, 4H, H_H), 3.67 (t, *J*=6.5, 2H, H_f), 3.49 (t, *J*=5.7, 2H, H_r), 2.50 (t, *J*=7.8, 2H, H_n), 1.84 - 1.93 (m, 2H, H_q), 1.39 - 1.66 (m, 8H, H_g, H_t, H_m), 1.04 - 1.39 (m, 20H, H_h, H_t, H_h, H_h, H_h, H_h, H_L, H_L), 1.32 (s, 54H, H_w); ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.8 (C), 158.4 (C), 157.1 (C), 156.4 (C), 155.6 (C), 148.5 (C), 148.4 (C), 148.2 (C), 144.4 (C), 144.3 (C), 139.9 (C), 139.3 (C), 137.2 (CH), 132.3 (CH), 132.2 (CH), 130.9 (CH), 130.9 (CH), 129.9 (C), 129.8 (CH), 124.3 (CH), 124.2 (CH), 121.5 (CH), 121.0 (CH), 119.9 (CH), 114.5 (CH), 113.1 (CH), 113.0 (CH), 72.5 (CH₂), 72.3 (CH₂), 67.8 (CH₂), 29.5 (CH₂), 29.4 (2 x CH₂), 29.1 (CH₂), 29.0 (CH₂), 26.1 (CH₂), 26.0 (2 x CH₂), 25.8 (CH₂); LRMS (ESI+) 905.1 m/z [M+2H]²⁺.

Synthesis of [2]Rotaxane S11d

[2]Rotaxane S11d was made according to conditions B, using macrocycle 1d (12.1 mg, 0.025 mmol), alkyne 7 (17.5 mg, 0.030 mmol), azide 6 (18.9 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol), in CH₂Cl₂ (2.5 mL) stirred at 100°C in a 150W microwave reactor for 1 hour. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 42.9 mg (93%) of the target material as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.62 (t, J=7.7, 2H, H_B), 7.63 (s, 1H, H_i), 7.44 (app. t, J=7.8, 4H, H_A and H_C), 7.22 - 7.26 (m, 12H, H_b and H_t), 7.03 - 7.14 (m, 16H, H_c, H_s, H_d and H_r), 6.97 (d, J=8.7, 4H, H_D), 6.63 - 6.72 (m, 8H, H_E, H_e and H_a , 4.42 - 4.60 (m, 4H, four of H_D/H_E), 4.27 - 4.35 (m, 2H, two of H_H), 4.19 - 4.27 (m, 4H, four of H_D/H_E), 4.02 -4.09 (m, 2H, two of H_H), 3.79 (t, J=6.3, 2H, H_f), 3.62 (t, J=6.5, 2H, H_k), 3.16 - 3.23 (m, 2H, H_p), 2.56 (t, J=7.6, 2H, H_i , 1.97 - 2.11 (m, 2H, two of H_i), 1.82 - 1.97 (m, 2H, two of H_i), 1.63 - 1.71 (m, 2H, H_r), 1.52 - 1.64 (m, 2H, H_h), 1.31 (s, 27H, H_a or H_u), 1.31 (s, 27H, H_a or H_u), 0.78 - 0.86 (m, 2H, H_m), 0.65 - 0.74 (m, 2H, H_o), 0.52 - 0.59 (m, 2H, H_n); ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.3 (C), 159.0 (C), 157.1 (C), 157.0 (C), 156.5 (C), 148.4 (2 x C), 146.6 (C), 144.4 (C), 144.4 (C), 139.5 (C), 139.4 (C), 137.3 (CH), 132.3 (CH), 130.9 (2 x CH), 130.3 (CH), 129.1 (C), 124.2 (2 x CH), 122.1 (CH), 121.1 (CH), 121.0 (CH), 115.1 (CH), 113.1 (CH), 113.1 (CH), 72.9 (CH₂), 70.9 (CH₂), 67.5 (CH₂), 67.5 (CH₂), 66.6 (CH₂), 63.2 (C), 63.2 (C), 49.2 (CH₂), 34.4 (2 x C), 31.5 (2 x CH₃), 29.0 (CH₂), 28.8 (CH₂), 28.8 (CH₂), 25.9 (CH₂), 25.9 (CH₂), 25.5 (CH₂), 25.2 (CH₂), 24.8 (CH₂); LRMS (ESI+) m/z 848.9 $[M+2H]^{2+}$

Synthesis of Thread Triazole S14

An analytical sample of triazole **S14** was isolated as a by-product of [3]rotaxane **S10** (*vide supra*). Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded triazole **S14** as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.30 (s, 1H, H_j), 7.23 (d, *J*=8.8, 6H, H_b or H_q), 7.23 (d, *J*=8.8, 6H, H_b or H_q), 7.10 (d, *J*=8.8, 2H, H_d or H_o), 7.08 (d, *J*=8.6, 6H, H_c or H_p), 7.08 (d, *J*=8.6, 6H, H_c or H_p), 7.08 (d, *J*=8.6, 6H, H_c or H_p), 7.06 (d, *J*=8.8, 2H, H_d or H_o), 6.74 (d, *J*=8.8, 2H, H_e or H_p), 6.72 (d, *J*=8.8, 2H, H_e or H_p), 4.54 (t, *J*=6.9, 2H, H_k), 3.94 (t, *J*=5.6, 2H, H_m), 3.94 (t, *J*=5.8, 2H, H_f), 2.79 (t, *J*=7.0, 2H, H_i), 2.36 (tt, *J*=6.9, 5.6, 2H, H_i), 1.78 - 1.90 (m, 4H, H_g and H_h), 1.30 (s, 27H, H_a or H_r), 1.30 (s, 27H, H_a or H_r); ¹³C NMR (150 MHz, CDCl₃) δ ppm 156.9 (C), 156.4 (C), 148.5 (C), 148.4 (C), 148.0 (C), 144.3 (C), 144.2 (C), 140.3 (C), 139.6 (C), 132.5 (CH), 132.4 (CH), 130.9 (CH), 130.9 (CH), 124.2 (CH), 124.2 (CH), 121.4 (CH), 113.1 (CH), 67.5 (CH₂), 64.1 (CH₂), 63.2 (2 x C), 47.1 (CH₂), 34.4 (2 x C), 31.5 (2 x CH₃), 30.2 (CH₂), 29.0 (CH₂), 26.2 (CH₂), 25.5 (CH₂); LRMS (ESI+) m/z 1172.8 [M+H]⁺.

Synthesis of Thread Triazole S15

An analytical sample of triazole **S15** was isolated as a by-product of [3]rotaxane **S11** (*vide supra*). Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded triazole **S15** as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59 (s, 1H, H_g), 7.24 (d, *J*=8.7, 6H, H_b or H_q), 7.23 (d, *J*=8.7, 6H, H_b or H_q), 7.08 (d, *J*=8.7, 6H, H_c or H_p), 7.03 - 7.14 (m, 4H, H_d and H_o), 6.85 (d, *J*=9.0, 2H, H_e or H_n), 6.74 (d, *J*=9.0, 2H, H_e or H_n), 5.18 (s, 2H, H_f), 4.38 (t, *J*=7.2, 2H, H_h), 3.92 (t, *J*=6.3, 2H, H_m), 1.96 (tt, *J*=7.2, 7.6, 2H, H_i), 1.72 - 1.81 (m, 2H, H_l), 1.48 - 1.59 (m, 2H, H_j), 1.37 - 1.47 (m, 2H, H_k), 1.31 (s, 27H, H_a or H_r), 1.28 (s, 27H, H_a or H_r); ¹³C NMR (150 MHz, CDCl₃) δ ppm 157.0 (C), 156.3 (C), 148.5 (C), 148.5 (C), 144.6 (C), 144.3 (C), 144.2 (C), 140.3 (C), 139.7 (C), 132.5 (CH), 132.4 (CH), 130.9 (2 x CH), 124.2 (CH), 124.2 (CH), 122.5 (CH), 113.4 (CH), 113.1 (CH), 67.5 (CH₂), 63.2 (2 x C), 62.3 (CH₂), 50.5 (CH₂), 34.4 (2 x C), 31.5 (2 x CH₃), 30.4 (CH₂), 29.2 (CH₂), 26.4 (CH₂), 25.8 (CH₂); LRMS (ESI+) m/z 1194.8 [M+Na]⁺.

Synthesis of Thread Triazole S16

A solution of alkyne 7 (14.6 mg, 0.025 mmol), azide 6 (15.7 mg, 0.025 mmol) and Cu(MeCN)₄.PF₆ (8.4 mg, 0.0225 mmol), in CH₂Cl₂ (2.5 mL) was stirred at 25 °C for 72 hours in the absence of macrocycle. The solution was diluted with further CH₂Cl₂ (50 mL) and washed with 16% aqueous EDTA tetrasodium-saturated ammonia solution (50 mL). The organic layer was retained and the aqueous layer extracted twice further with CH₂Cl₂ (50 mL portions). The organic extracts were combined, dried over MgSO₄ and dried *in vacuo*. Flash column chromatography (0-50% CH₂Cl₂/petrol) afforded 23.0 mg (76%) of triazole **S16** as a white foam: ¹H NMR (600 MHz, CDCl₃) δ ppm 7.28 (s, 1H, H_i), 7.21 - 7.25 (d, *J*=8.7, 12H, H_b and H_i), 7.06 - 7.11 (m, 16H, H_c, H_s, H_d and H_r), 6.75 (d, *J*=9.1, 2H, H_e or H_q), 6.74 (d, *J*=9.1, 2H, H_e or H_q), 4.32 (t, *J*=7.2, 2H, H_k), 3.96 (t, *J*=5.9, 2H, H_f), 3.92 (t, *J*=6.3, 2H, H_p), 2.80 (t, *J*=7.1, 2H, H_i), 1.93 (tt, *J*=7.8, 7.2, 2H, H_l), 1.81 - 1.89 (m, 4H, H_g and H_h), 1.73 - 1.81 (m, 2H, H_o), 1.48 - 1.56 (m, 2H, H_n), 1.34 - 1.43 (m, 2H, H_m), 1.31 (s, 54H, H_a and H_u); ¹³C NMR (150 MHz, CDCl₃) δ ppm 157.0 (C), 148.4 (C), 148.1 (C), 144.3 (2 x C), 139.7 (C), 139.6 (C), 132.4 (2 x CH), 130.9 (2 x CH), 124.2 (2 x CH), 120.6 (CH), 113.1 (2 x CH), 67.6 (CH₂), 67.5 (CH₂), 63.2 (2 x C), 50.2 (CH₂), 34.4 (2 x C), 31.5 (2 x CH₃), 30.4 (CH₂), 29.0 (CH₂), 26.5 (CH₂), 26.5 (CH₂), 25.8 (CH₂), 25.6 (CH₂); LRMS (ESI+) m/z 1236.8 [M+Na]⁺.

Synthesis of Thread Triazole S17

An analytical sample of triazole **S17** was isolated as a by-product of [3]rotaxane **S13** (*vide supra*). Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded triazole **S17** as a white foam: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.27 (s, 1H, H₀), 7.24 (d, *J*=8.5, 6H, H_b or H_v), 7.24 (d, *J*=8.7, 6H, H_b or H_v), 7.09 (m, 16H, H_c, H_v, H_d and H_l), 6.75 (d, *J*=8.8, 4H, H_e and H_s), 4.54 (t, *J*=6.8, 2H, H_p), 3.95 (t, *J*=5.4, 2H, H_r), 3.92 (t, *J*=6.4, 2H, H_f), 2.71 (t, *J*=7.7, 2H, H_n), 2.37 (tt, *J*=6.8, 5.4, 2H, H_q), 1.76 (tt, *J*=7.7, 6.7, 2H, H_m), 1.66 (m, 2H, H_g), 1.13 - 1.49 (m, 10H, H_h, H_i, H_k and H_l), 1.31 (s, 54H, H_a and H_w); ¹³C NMR (100 MHz, CDCl₃) δ ppm 157.1 (C), 156.5 (C), 148.6 (C), 148.5 (C), 148.4 (C), 144.4 (C), 144.2 (C), 140.3 (C), 139.5 (C), 132.5 (CH), 132.4 (2 x CH), 130.9 (CH), 130.9 (CH), 124.2 (CH), 121.2 (CH), 113.1 (2 x CH), 68.0 (CH₂), 64.1 (CH₂), 63.2 (C), 63.2 (C), 47.1 (CH₂), 34.4 (6 x C), 31.5 (18 x CH₃), 30.2 (CH₂), 29.6 (CH₂), 29.5 (CH₂

Synthesis of Macrocycle 9a

To a solution of bisphenol **S18** (1 g, 2.36 mmol) in DMF (1 L) were added 1,10-dibromodecane (0.707 g, 2.36 mmol) and K₂CO₃ (1.628 g, 11.8 mmol, 5 eq). The solution was stirred at 60 °C for 72 hours and dried *in vacuo*. The residue was twice extracted with Et₂O in 250 mL portions, with the extracts dried over MgSO₄ and dried *in vacuo*. Flash column chromatography (0-10% MeCN/1:1 petrol:CH₂Cl₂; 0-20% Et₂O/petrol) afforded 164 mg (12%) of macrocycle **9a** as a white solid: m.p. 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.02 (d, *J* = 7.7, 2H, H_{*A*}), 7.64 (t, *J* = 7.7, 2H, H_{*B*}), 7.08 (d, *J* = 7.7, 2H, H_{*C*}), 6.99 (d, *J* = 7.9, 4H, H_{*G*}), 6.71 (d, *J* = 7.9, 4H, H_{*H*}), 3.91 (t, *J* = 5.9, 4H, H_{*I*}), 2.91 (t, *J* = 6.8, 4H, H_{*D*}), 2.62 (t, *J* = 7.5, 4H, H_{*F*}), 2.09 (tt, *J* = 7.5, 6.8, 4H, H_{*E*}), 1.68 (tt, *J* = 7.1, 5.9, 4H, H_{*J*}), 1.37 (br. s., 4H, H_{*K*}), 1.24 (br. s., 8H, H_{*L*} and H_{*M*}); ¹³C NMR δ ppm (100 MHz, CDCl₃) δ 161.7 (C), 157.1 (C), 156.7 (C), 136.8 (CH), 134.6 (C), 129.4 (CH), 122.6 (CH), 118.8 (CH), 114.8 (CH), 68.0 (CH₂), 38.1 (CH₂), 34.6 (CH₂), 32.1 (CH₂), 29.4 (CH₂), 28.9 (CH₂), 25.9 (CH₂); HRMS (ESI+) m/z 563.3624 [M+H]⁺ (calc. for C₃₈H₄₇N₂O₂ 563.3632).

Synthesis of Macrocycle 9b

Macrocycle **9b** was made using the same method as macrocycle **9a** except using 1,8-dibromooctane (0.641 g, 0.45 mL, 2.36 mmol) to afford 187 mg (15%) of macrocycle **9b** as a white solid: m.p. 120-123 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 (d, $J = 7.7, 2H, H_A$), 7.62 (t, $J = 7.7, 2H, H_B$), 7.07 (d, $J = 7.7, 2H, H_C$), 6.98 (d, $J = 8.6, 4H, H_G$), 6.69 (d, $J = 8.6, 4H, H_H$), 3.91 (t, $J = 6.3, 4H, H_I$), 2.91 (t, $J = 7.2, 4H, H_D$), 2.62 (dd, $J = 8.2, 7.4, 4H, H_F$), 2.08 (ddt, $J = 8.2, 7.4, 7.2, 4H, H_E$), 1.66 (tt, $J = 7.3, 6.3, 4H, H_J$), 1.37 (tt, $J = 7.3, 6.4H, H_K$), 1.20 - 1.32 (m, 4H, H_L); ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.8 (C), 157.0 (C), 157.0 (C), 136.8 (CH), 134.6 (C), 129.4 (CH), 122.5 (CH), 119.0 (CH), 114.8 (CH), 67.9 (CH₂), 38.1 (CH₂), 34.5 (CH₂), 32.1 (CH₂), 28.9 (CH₂), 28.8 (CH₂), 25.7 (CH₂); HRMS (ESI+) m/z 535.3312 [M+H]⁺ (calc. for C₃₆H₄₃N₂O₂ 535.3319).

Synthesis of Macrocycle 9c

Macrocycle **9c** was made using the same method as macrocycle **9a** except using 1,6-dibromohexane (0.575 g, 0.36 mL, 2.36 mmol) to afford 120 mg (10%) of macrocycle **9c** as a white solid: m.p. 121-125 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75 (d, J = 7.8, 2H, H_{*A*}), 7.61 (t, J = 7.8, 2H, H_{*B*}), 7.07 (d, J = 7.8, 2H, H_{*C*}), 6.98 (d, J = 8.4, 4H, H_{*G*}), 6.68 (d, J = 8.4, 4H, H_{*H*}), 3.94 (t, J = 6.1, 4H, H_{*I*}), 2.91 (t, J = 7.5, 4H, H_{*D*}), 2.64 (t, J = 7.5, 4H, H_{*F*}), 2.12 (app. quin, J = 7.5, 4H, H_{*E*}), 1.72 (app. quin, J = 6.1, 4H, H_{*J*}), 1.48 (m, 4H, H_{*K*}); ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.1 (C), 157.2 (C), 157.2 (C), 136.7 (CH), 134.5 (C), 129.5 (CH), 122.4 (CH), 119.2 (CH), 114.9 (CH), 67.9 (CH₂), 37.9 (CH₂), 34.6 (CH₂), 31.6 (CH₂), 28.5 (CH₂), 25.2 (CH₂); HRMS (ESI+) m/z 507.3000 [M+H]⁺ (calc. for C₃₄H₃₉N₂O₂ 507.3006).

Synthesis of [2]Rotaxane 10a

[2]Rotaxane 10a was made according to condition B (except at 0.05 M), using macrocycle 9a (14.1 mg, 0.025 mmol), azide 3 (17.6 mg, 0.030 mmol), alkyne 2 (16.3 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol), in CH₂Cl₂ (0.5 mL) stirred at 100°C in a 150W microwave reactor for 15 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 40.5 mg (96%) of [2]rotaxane **10a** as a white solid: m.p. 114-116 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94 (d, J = 7.8, 2H, H₄), 7.40 (t, J = 7.8, 2H, H_B), 7.26 (d, J = 8.7, 6H, H_b or H_n), 7.24 (d, J = 8.7, 6H, H_b or H_n), 7.10 (d, J = 8.7, 6H, H_c or H_m), 7.08 (d, J = 8.7, 6H, H_c or H_m), 7.04 $(d, J = 8.9, 2H, H_d), 7.00 (s, 1H, H_e), 6.92 (d, J = 8.8, 2H, H_l), 6.92 (d, J = 7.8, 2H, H_c), 6.72 (d, J = 8.6, 4H, H_c), 6.72 (d, J = 8$ $6.70 (d, J = 8.9, 2H, H_e), 6.50 (d, J = 8.6, 4H, H_H), 6.26 (d, J = 8.8, 2H, H_k), 4.88 (s, 2H, H_f), 3.79 (t, J = 7.3, 2H, H_f), 3.79 (t,$ H_h , 3.76 (t, $J = 6.7, 4H, H_I$), 3.24 (t, $J = 5.7, 2H, H_i$), 2.80 (t, $J = 7.6, 4H, H_D$), 2.48 (t, $J = 7.6, 4H, H_F$), 1.87 (quin., $J = 7.6, 4H, H_E$, 1.65 (tt, $J = 7.3, 5.7, 2H, H_i$), 1.57 (tt, $J = 7.1, 6.7, 4H, H_J$), 1.33 (s, 27H, H_a or H_a), 1.31 (s, 27H, H_a or H_o), 1.22 - 1.28 (m, 4H, H_K), 1.08 - 1.19 (m, 8H, H_L and H_M); ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.6 (C), 157.0 (C), 156.7 (C), 156.4 (C), 156.2 (C), 148.4 (2 x C), 144.4 (C), 144.3 (C), 143.8 (C), 140.0 (C), 139.7 (C), 137.0 (CH), 134.2 (C), 132.3 (CH), 132.1 (CH), 130.9 (2 x CH), 129.2 (CH), 124.2 (CH), 124.2 (CH), 123.1 (CH), 122.7 (CH), 118.9 (CH), 114.6 (CH), 113.3 (CH), 112.9 (CH), 67.8 (CH₂), 63.6 (CH₂), 63.2 (C), 63.2 (C), 61.8 (CH₂), 46.9 (CH₂), 38.0 (CH₂), 34.5 (C), 34.4 (C), 34.4 (CH₂), 32.3 (CH₂), 31.6 (CH₃), 31.5 (CH₃), 29.7 (CH₂), 29.6 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 25.7 (CH₂); LRMS (ESI+) 1693 m/z [M+H]⁺.

Synthesis of [2]Rotaxane 10b

[2]Rotaxane **10b** was made according to condition B (except at 0.05 M), using macrocycle **9b** (13.4 mg, 0.025 mmol), azide **3** (17.6 mg, 0.030 mmol), alkyne **2** (16.3 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol), in CH₂Cl₂ (0.5 mL) stirred at 100°C in a 150W microwave reactor for 15 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 39.2 mg (95%) of the target material as a white solid: m.p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (d, *J* = 7.8, 2H, H_{*A*}), 7.40 (t, *J* = 7.8, 2H, H_{*B*}), 7.27 (d, *J* = 8.3, 6H, H_{*b*} or H_{*n*}), 7.23 (d, *J* = 8.6, 6H, H_{*b*} or H_{*n*}), 7.11 (d, *J* = 8.8, 6H, H_{*m*} or H_{*c*}), 7.09 (d, *J* = 8.8, 6H, H_{*m*</sup> or H_{*c*}), 6.69 (d, *J* = 8.6, 4H, H_{*G*}), 6.94 (d, *J* = 8.6, 2H, H_{*c*}), 6.89 (d, *J* = 8.8, 2H, H_{*l*}), 6.70 (d, *J* = 8.8, 2H, H_{*k*}), 3.64 (t, *J* = 7.2, 2H, H_{*h*}), 3.10 (t, *J* = 5.7, 2H, H_{*j*}), 2.78 (t, *J* = 7.5, 4H, H_{*b*}), 2.45 (t, *J* = 7.8, 4H, H_{*F*}), 1.79 (ttd, *J* = 7.8, 7.5, 3.7, 4H, H_{*E*}), 1.55 (m, 4H, H_{*L*}), ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.8 (C), 157.2 (C), 156.9 (C), 156.4 (C), 156.1 (C), 148.4 (C), 148.4 (C), 144.4 (C), 144.3 (2 x C), 143.7 (CH), 140.0 (C), 139.5 (C), 136.9 (CH), 134.1 (C), 132.3 (CH), 132.0 (CH), 130.9 (2 x CH), 129.1 (CH), 124.0 (CH), 124.0 (CH), 123.2 (CH), 122.4 (CH), 119.3 (CH), 114.7 (CH), 113.3 (CH), 112.9 (CH), 67.7 (CH₂), 63.5 (CH₂), 63.2 (C) 63.2 (C), 61.8 (CH₂), 46.8 (CH₂), 38.0 (CH₂), 34.5 (C), 34.4 (C), 34.4 (CH₂), 32.6 (CH₂), 31.6 (CH₃), 31.5 (CH₃), 29.4 (CH₂), 29.3 (CH₂), 28.9 (CH₂), 26.0 (CH₂); LRMS (ESI+) 1665 m/z [M+H]⁺.}

Synthesis of [2]Rotaxane 10c

[2]Rotaxane 10c was made according to conditions B (except at 0.05 M), using macrocycle 9c (12.7 mg, 0.025 mmol), azide 3 (17.6 mg, 0.030 mmol), alkyne 2 (16.3 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol), in CH₂Cl₂ (0.5 mL) stirred at 100°C in a 150W microwave reactor for 15 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 40.2 mg (95%) of the target material as a white solid: m.p. 135-139 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 (s, 1H, H_g), 7.52 (d, J = 7.8, 2H, H_A), 7.43 (t, J = 7.8, 2H, H_{B}), 7.28 (d, J = 8.6, 6H, H_{b} or H_{n}), 7.23 (d, J = 8.6, 6H, H_{b} or H_{n}), 7.13 (d, J = 8.6, 6H, H_{c} or H_{m}), 7.09 (d, J = 8.6, 6H, H_{m}), 7.09 (d, J = 8.6, 7.00 (d 6H, H_c or H_m), 7.04 (d, J = 8.9, 2H, H_d), 6.97 (d, J = 7.8, 2H, H_c), 6.90 (d, J = 8.9, 2H, H_l), 6.72 (d, J = 8.9, 2H, H_e), 6.66 (d, J = 8.5, 4H, H_G), 6.49 (d, J = 8.5, 4H, H_H), 6.21 (d, J = 8.9, 2H, H_k), 4.89 (s, 2H, H_f), 3.86 (dtt, J = 11.3, 10.2, 6.4, 4H, H_I), 3.44 (t, J = 7.5, 2H, H_h), 3.03 (t, J = 5.8, 2H, H_j), 2.69 (t, J = 7.8, 4H, H_D), 2.46 (t, J = 7.5, 4H, H_F), 1.68 (tt, $J = 7.8, 7.5, 4H, H_E$), 1.63 (m, 4H, H_J), 1.33 (s, 27H, H_a or H_o), 1.31 (s, 27H, H_a or H_o), 1.25 - 1.29 (m, 6H, H_K and H_i); ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.2 (C), 158.0 (C), 157.1 (C), 156.4 (C), 156.2 (C), 148.4 (C), 148.4 (C), 144.4 (C), 144.3 (C), 143.5 (C), 139.9 (C), 139.3 (C), 136.9 (CH), 133.9 (C), 132.3 (CH), 131.9 (CH), 130.9 (2 x CH), 129.2 (CH), 124.2 (CH), 124.2 (CH), 123.7 (CH), 122.0 (CH), 119.9 (CH), 114.9 (CH), 113.3 (CH), 112.9 (CH), 67.8 (CH₂), 63.7 (CH₂), 63.2 (C), 63.2 (C), 61.8 (CH₂), 46.5 (CH₂), 37.8 (CH₂), 34.5 (C), 34.5 (CH₂), 34.4 (C), 32.7 (CH₂), 31.6 (CH₃), 31.5 (CH₃), 29.0 (CH₂), 29.0 (CH₂), 25.5 (CH₂); LRMS (ESI+) 1637 m/z $[M+H]^{+}$.

Synthesis of [2]Rotaxane 10d

[2]Rotaxane 10d was made according to conditions B (except at 0.05 M), using macrocycle 9d (12.0 mg, 0.025 mmol), azide **3** (17.6 mg, 0.030 mmol), alkyne **2** (16.3 mg, 0.030 mmol) and Cu(MeCN)₄.PF₆ (8.9 mg, 0.024 mmol), in CH₂Cl₂ (0.5 mL) stirred at 100°C in a 150W microwave reactor for 15 minutes. Flash column chromatography (0-30% MeCN/1:1 hexane:CH₂Cl₂ (+0.25% EtOH)) afforded 42.4 mg (>99%) of the target material as a white solid; m.p. 151-154 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.42 (s, 1H, H_g), 7.53 (t, $J = 7.7, 2H, H_B$), 7.32 (d, $J = 7.7, 2H, H_B$), 7.32 (d, J = 7.7, 2H, H_B), 7.32 (d, J = 7.7, 2H, H H_{A} , 7.28 (d, $J = 8.7, 6H, H_{b}$ and H_{n}), 7.23 (d, $J = 8.7, 6H, H_{b}$ and H_{n}), 7.13 (d, $J = 8.7, 6H, H_{c}$ and H_{m}), 7.09 (d, J $= 8.7, 6H, H_c \text{ and } H_m$, 7.03 (d, $J = 9.1, 2H, H_d$), 7.03 (d, $J = 7.7, 2H, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, 2H, H_l$), 6.76 (d, $J = 9.1, H_c$), 6.97 (d, $J = 8.9, H_c$), 7.97 (d, $J = 8.9, H_c$), 8.97 (d, $J = 8.9, H_c$), 8.97 (d, $J = 8.9, H_c$), 8.97 (d, J = 8.9, H2H, H_e), 6.70 (d, $J = 8.7, 4H, H_G$), 6.63 (d, $J = 8.7, 4H, H_H$), 6.45 (d, $J = 8.9, 2H, H_k$), 4.90 (s, 2H, H_f), 4.31 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.31 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.90 (s, 2H, H_f), 4.91 (dd, $J = 8.9, 2H, H_h$), 4.91 (dd, J = 8.9, 2H, H_h), 4.91 (dd, J = 8.9, 2H $16.3, 6.9, 2H, H_i$, 3.98 - 4.11 (m, $2H, H_i$), 3.38 - 3.45 (m, $2H, H_i$), 3.37 (t, $J = 6.1, 2H, H_i$), 2.51 (td, J = 12.5, 5.3, 2H, H_D^{*}), 2.43 (td, J = 12.5, 5.3, 2H, H_D), 2.37 - 2.62 (m, 4H, H_F and H_F^{*}), 2.09 - 2.21 (m, 2H, H_J^{*}), 1.88 - 2.01 (m, 2H, H₁), 1.62 - 1.83 (m, 1H, H_E and H_E'), 1.28 - 1.39 (m, 54H, H_a and H_o), 1.16 - 1.24 (m, 2H, H_i); ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.7 (C), 157.8 (C), 157.5 (C), 156.6 (C), 156.4 (C), 148.4 (2 x C), 144.4 (C), 144.3 (C), 142.6 (C), 139.8 (C), 139.1 (C), 136.8 (CH), 133.2 (C), 132.2 (CH), 132.0 (CH), 130.9 (CH), 130.8 (CH), 129.5 (CH), 125.1 (CH), 124.2 (CH), 124.1 (CH), 121.6 (CH), 120.3 (CH), 115.0 (CH), 113.3 (CH), 113.0 (CH), 66.6 (CH₂), 64.6 (CH₂), 63.2 (C), 63.2 (C), 61.7 (CH₂), 46.7 (CH₂), 37.2 (CH₂), 35.0 (CH₂), 34.4 (C), 34.4 (C), 32.1 (CH₂), 31.6 (CH₃), 31.5 (CH₃), 28.6 (CH₂), 24.9 (CH₂); LRMS (ESI+) 1609 m/z [M+H]⁺.

Lithiation Experiments (Scheme 4)

Step 1

A solution of macrocycle **1b** (26.9 mg, 0.05 mmol) and Cu(MeCN)₄.PF₆ (0.96 eq., 17.9 mg, 0.048 mmol) in THF (2.5 mL) was stirred at rt for 15 min, to form a solution of [**1b**.Cu].PF₆ (0.02 M). Separately, a solution of alkyne **1** (21.7 mg, 0.04 mmol) in THF (2.0 mL) was cooled to -78 °C and ^{*n*}BuLi (2.5 M in hexanes, 0.16 μ L, 0.04 mmol) was added. After 15 min the solution of the lithiated alkyne was transferred to an ice bath, a portion of the solution of [**1b**.Cu].PF₆ (2.0 mL) was added and the resulting mixture allowed to warm to rt to give a solution of macrocycle bound Cu-acetylide (0.01M).

Step 2 (no extra [1b.Cu].PF₆)

A portion of the solution of macrocycle bound Cu-acetylide (0.50 mL, 0.005 mmol) was added to azide **3** (2.9 mg, 0.005 mmol) in THF (0.5 mL) and the mixture heated at 80 °C for 16 h. The solution was allowed to return to rt before dilution with further CH₂Cl₂ (20 mL) and washing with 16% aqueous EDTA tetrasodium-saturated ammonia solution (20 mL). The aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The organic extracts were combined, dried over MgSO₄ and dried *in vacuo*. The residue was analysed by ¹H NMR. All macrocycle **1b** was consumed in the formation of rotaxane **4b**, the only interlocked product formed (ratio **4b** : **5b** = >99% : <1%)

Step 2 (additional [1b.Cu].PF₆)

A portion of the solution of [1b.Cu].PF₆ (0.25 mL, 0.005 mmol) was added to azide 3 (2.9 mg, 0.005 mmol) in THF (0.25 mL) followed by a portion of the solution of macrocycle bound Cu-acetylide (0.50 mL, 0.005 mmol) and the resulting mixture heated at 80 °C for 16 h. The solution was allowed to return to rt before dilution with further CH₂Cl₂ (20 mL) and washing with 16% aqueous EDTA tetrasodium-saturated ammonia solution (20 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were combined, dried over MgSO₄ and dried *in vacuo*. The residue was analysed by ¹H NMR. Rotaxanes **4b** and **5b** formed in a 90 : 10 ratio.

[3]Rotaxane 5a ¹H NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane 5a DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[3]Rotaxane 5a HSQC NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane 5a HMBC NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane 5b ¹H NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane 5b DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

-650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 A MM. MM -0 भ्रमम्पत् म्यन्त 3.06 -3.98 - 22.31-۲ Ч - - + +1.00 1.01 1.07 3.41 2.31 2.31 0.91 -2.22 0.54 20 0.53 4 --50 0 4 5.0 f1 (ppm) 6.5 5.5 4.5 3.0 2.0 1.5 0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.0 4.0 3.5 2.5 1.0

[3]Rotaxane 5c ¹H NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane 5c DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

Azide 6¹H NMR (CDCl₃, 600 MHz, 300 K)

Azide 6 DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

-7000 -6500 -6000 -5500 -5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 11 -0 ካ ተ Ħ 29.10-J ⊭र ए 뉕 ተ 2.00 0.80 1.85 1.92 --500 -5.75 8.05 1.90 1.92 5.0 f1 (ppm) 4.5 3.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 9.5

Alkyne 7¹H NMR (CDCl₃, 600 MHz, 300 K)

-139.68 ~34.44 ~31.54 ~28.52 ~25.27 ~68.73 ~67.25 ~63.21 -50000 -45000 -40000 -35000 -30000 -25000 -20000 -15000 -10000 -5000 -0 --5000 --10000 --15000 --20000 --25000 -30000 -35000 90 f1 (ppm) 170 160 150 120 100 80 60 50 30 10 140 130 110 70 40 20 0 180

Alkyne 7 DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

Alkyne 8 ¹H NMR (CDCl₃, 400 MHz, 300 K)

Alkyne 8 DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[3]Rotaxane S6 ¹H NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane S6 DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

S-55

8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5 f2 (ppr	4.0 n)	3.5	3.0	2.5	2.0	1.5	1.0	0.5

[3]Rotaxane S6 HMBC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S7 ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S7 DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[2]Rotaxane S7 COSY (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S7 HSQC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S7 HMBC NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane S8 ¹H NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane S8 DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

S-64

[2]Rotaxane S9 ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S9 DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

S-69

[2]Rotaxane S9 HSQC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S9 HMBC NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane S10a ¹H NMR (CDCl₃, 400 MHz, 300 K)

[3]Rotaxane S10a DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

S-74

-450 -400 -350 -300 -250 -200 -150 -100 -50 M V -0 मा भ्राप्तन्त् सिं 4.14 ₁ **דיע** אין ተ Ч Ч 41.58-4.07 3.07 1.07 1.03 3 20 23 2 23 23 10 8 <u>ю</u> ÷ 5.0 f1 (ppm) 9.0 8.5 8.0 6.5 6.0 5.5 4.5 3.5 2.5 2.0 1.5 0.5 7.5 7.0 4.0 3.0 1.0

[2]Rotaxane S11a ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S11a DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

S-79

[2]Rotaxane S11a HSQC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S11a HMBC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S11d ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S11d DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[2]Rotaxane S11d COSY (CDCl₃, 600 MHz, 300 K)

[2]Rotaxane S11d HSQC NMR (CDCl₃, 600 MHz, 300 K)

[2]Rotaxane S11d HMBC NMR (CDCl₃, 600 MHz, 300 K)

[3]Rotaxane S12 DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

S-91

[2]Rotaxane S13 ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S13 DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[2]Rotaxane S13 COSY (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane S13 HSQC NMR (CDCl₃, 400 MHz, 300 K)

Thread S14 ¹H NMR (CDCl₃, 400 MHz, 300 K)

Thread S15 ¹H NMR (CDCl₃, 400 MHz, 300 K)

Thread S15 DEPTQ135 NMR (CDCl₃, 150 MHz, 300 K)

Thread S16 ¹H NMR (CDCl₃, 400 MHz, 300 K)

Thread S16 DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

Thread S17 ¹H NMR (CDCl₃, 400 MHz, 300 K)

Thread S17 DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

Macrocycle 9a ¹H NMR (CDCl₃, 400 MHz, 300 K)

Macrocycle 9a ¹³C NMR (CDCl₃, 100 MHz, 300 K)

Macrocycle 9a DEPT135 NMR (CDCl₃, 100 MHz, 300 K)

S-109

Macrocycle 9b ¹H NMR (CDCl₃, 400 MHz, 300 K)

Macrocycle 9b DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

├-10 -0 -10 -20 . . -30 . . -40 -50 -60 f1 (ppm) ۵ -70 -80 -90 -100 -110 ÷ -120 ____ -130 . -140 -150 9 -1 10 5 f2 (ppm) 2 1 0 7 3 8 6 4

Macrocycle 9b HSQC NMR (CDCl₃, 400 MHz, 300 K)

Macrocycle 9b HMBC NMR (CDCl₃, 400 MHz, 300 K)

Macrocycle 9c¹H NMR (CDCl₃, 400 MHz, 300 K)

Macrocycle 9c DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

S-119

Macrocycle 9c HMBC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10a ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10a DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[2]Rotaxane 10a HSQC NMR (CDCl₃, 600 MHz, 300 K)

[2]Rotaxane 10a HMBC NMR (CDCl₃, 600 MHz, 300 K)

[2]Rotaxane 10b ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10b DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[2]Rotaxane 10b HSQC NMR (CDCl₃, 600 MHz, 300 K)

[2]Rotaxane 10c ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10c DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

[2]Rotaxane 10c HSQC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10c HMBC NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10d ¹H NMR (CDCl₃, 400 MHz, 300 K)

[2]Rotaxane 10d DEPTQ135 NMR (CDCl₃, 100 MHz, 300 K)

S-139

References

- V. Aucagne, J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, D. A. Leigh, P. J. Lusby, V. E. Ronaldson, A. M. Z. Slawin, A. Viterisi and D. B. Walker, J. Am. Chem. Soc., 2007, 129, 11950-11963.
- 2. H. Lahlali, K. Jobe, M. Watkinson and S. M. Goldup, Angew. Chem. Int. Ed., 2011, 50, 4151-4155.
- 3. V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby and D. B. Walker, J. Am. Chem. Soc., 2006, 128, 2186-2187.
- 4. L. M. Klivansky, G. Koshkakaryan, D. Cao and Y. Liu, Angew. Chem. Int. Ed., 2009, 48, 4185-4189.
- 5. H. W. Gibson, S. H. Lee, P. T. Engen, P. Lecavalier, J. Sze, Y. X. Shen and M. Bheda, J. Org. Chem., 1993, 58, 3748-3756.
- 6. P. M. Jackson, C. J. Moody and P. Shah, J. Chem. Soc. Perkin Trans. 1, 1990, 2909-2918.
- 7. G. W. Kabalka, M. Varma, R. S. Varma, P. C. Srivastava and F. F. Knapp, J. Org. Chem., 1986, 51, 2386-2388.
- 8. J. Winn, A. Pinczewska and S. M. Goldup, J. Am. Chem. Soc., 2013, 135, 13318-13321.