Formation of Hybrid Micelles from Poly(ethylene

glycol)-block-poly(4-vinylpyridinium) Cations and SO₄²⁻ Anions in an Aqueous

Milieu

Kai Wu, Linqi Shi,* Wangqing Zhang, Yingli An, Xiao-Xia Zhu*, Xu zhang, Zhanyong Li
[*]
K. Wu, Prof. L. Shi, W. Zhang, Y. An.
Institute of Polymer Chemistry, Nankai University, Tianjin, 300071, China
E-mail: shilinqi@nankai.edu.cn.

Prof. X.X. Zhu

Département de chimie, Université de Montréal, Pavillon Bombardier, C.P. 6128, succ. Centre-ville, Montreal, QC, H3C 3J7, Canada E-mail: julian.zhu@umontreal.ca

Preparation of the Macroinitiator PEG₁₁₂-**Br.** 25.0 g CH₃O-PEG₁₁₂-OH was dissolved in 300 mL of toluene in a 500 mL three-neck flask. After azeotropic distillation of about 60 mL toluene at reduced pressure to remove traces of water, 2.5 mL triethylamine was added and the solution mixture was cooled to 0°C. Then 2.0 mL 2-bromoisobutyryl bromide was added dropwise via syringe over 1 hour, and the reaction mixture was stirred overnight at room temperature. The stirred solution was treated with charcoal, which was subsequently removed by filtration, and most of the toluene was removed by rotary evaporation prior to precipitation into a 10-fold excess of cold ether. The crude polymer was dried under vacuum, dissolved in water at pH 8-9, and then extracted with CH₂Cl₂. The organic layers were collected and dried over MgSO₄, and removal of the solvent under vacuum led to isolation of the purified macroinitiator (PEG₁₁₂-Br). The procedure can be seen in Scheme S1.

PEG-Br Scheme S1 Preparation of the Macroinitiator PEG₁₁₂-Br

This journal is © The Royal Society of Chemistry 2005 Electronic supplementary information for Soft Matter

Supporting Figures

Figure S2. The ¹HNMR spectrum of PEG₁₁₂-*b*-P(4-VP)₅₅.

The composition of the block copolymer PEG_{112} -*b*-P(4-VP)₅₅ was determined by the ¹HNMR spectrum in Figure S2.

This journal is © The Royal Society of Chemistry 2005 Electronic supplementary information for Soft Matter

The following Figures S3 to S5 show the dependence of the hydrodynamic radius R_h (S3, circles), apparent radius of gyration R_g (S3, triangles), ratio of R_g/R_h (S4), and excess Rayleigh ratio at the scattering angle 90° R_{90} (S5) of the PEG₁₁₂-*b*-P(4-VPH⁺)₅₅/SO₄²⁻ micelles on the Na₂SO₄ concentration, where the PEG₁₁₂-*b*-P(4-VP)₅₅ concentration is 0.50 mg/mL.

Figure S3

Figure S4

This journal is ${\ensuremath{\mathbb C}}$ The Royal Society of Chemistry 2005 Electronic supplementary information for Soft Matter

Figure S5