Preparations of self-supporting nanofilms of metal oxides by casting processes

Mineo Hashizume[†] and Toyoki Kunitake^{*}

Topochemical Design Laboratory, Spatio-Temporal Function Materials Research Group, Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. E-mail: kunitake@ruby.ocn.ne.jp; phone: +81-48-467-9601; fax: +81-48-464-6391.

[†]Present address: Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan *kunitake@ruby.ocn.ne.jp

Supplemental figures and tables for preparation of self-supporting nanofilms of metal

oxides by spin casting.

Figure S1 SEM images of top views (a, c) and side views (b, d) of a PVA/Nb₂O₅ film (sample no. **4**, Table 1) (a, b) and a PVA/ZrO₂ film (sample no. **5**, Table 1) (c, d) on ANODISCs.

This journal is © The Royal Society of Chemistry 2005 Electronic supplementary information for Soft Matter

Figure S2 A PVA/SiO₂ film (sample no. **6**, Table 1) (a) and a PVA/La₂O₃ (sample no. **7**, Table 1) (b) in ethanol. SEM images of the top view (c) and the side view (d) of a PVA/SiO₂ film on an ANODISC.

Table S1 Preparation of self-supporting nanofilms of PVA/TiO₂ by using PVP as the polymer underlayer.

Film no.	PVP coating solution ^a	Film detachment ^b	Thickness / nm ^c
11	PVP(10 mg ml ⁻¹ in 2-buyoxyethanol)	×	nd
12	PVP(10 mg ml ⁻¹ in ethanol)	Δ	nd
13	PVP(50 mg ml ⁻¹ in ethanol)	0	60±56

a: the layer comoposition is $Si/PVP/PVA/TiO_2$. $[Ti(OBu)_4] = 100 \text{ mM}$.

b: in ethanol.

c: mean \pm S. D., nd = not determined.

Figure S3 SEM images of the top view (a) and the side view (b) of a PVA/TiO_2 film (sample no. 13, Table S1) on an ANODISC.

Table S2 Effect of	f the polymer	middle layer on	the film formation
--------------------	---------------	-----------------	--------------------

Film no.	Middle layer coating solution ^a	Film size / mm ²	Film thickness / nm ^b
14	PAA(M_n 11700, 10 mM as monomer)	ca. 10	130 ± 17
15	$PAA(M_n 11700, 5 \text{ mg mL}^{-1})$	ca. 1	nd
16	$PAA(M_v 450000, 5 \text{ mg mL}^{-1})$	ca. 2	nd
17	$PAA(M_n 11700, 10 \text{ mM as monomer})^c$	ca. 4	nd
18	$PAA(M_n 11700, 5 \text{ mg mL}^{-1})^c$	> 100	77 ± 35
19	$PAA(M_v 450000, 5 \text{ mg mL}^{-1})^c$	ca. 4	nd
20	dextran(MW 180000-210000, 5 mg mL ⁻¹)	~ 15	nd

a: aqueous solution. The layer comoposition is Si/photoresist/middle layer/TiO₂. [Ti(OBu)₄] = 100 mM.

b: mean \pm S. D., nd = not determined.

c: the layer composition is Si/photoresist/middle layer/(4-PABA + TiO₂). $[Ti(OBu)_4] = 100 \text{ mM},$ [4-PABA] = 20 mM.

Figure S4 SEM images of top views (a, c) and side views (b, d) of a PAA/TiO₂ film (sample no. 14, Table S2) (a, b) and a PAA/(4-PABA + TiO₂) film (sample no. 18, Table S2) (c, d) on ANODISCs.

This journal is © The Royal Society of Chemistry 2005 Electronic supplementary information for Soft Matter

Figure S5 SEM images of the top view (a) and the side view (b) of a PVA/TiO₂ film (sample no. **22**) on an ANODISC.