Electronic Supplementary Information

Structure Directed Self-Assembly of Alkyl-Aryl-Ethylene oxide Amphiphiles

Gao Liu¹ and Gregory L. Baker²

¹Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 70R0108B, Berkeley, CA 94720, USA. Fax: 510 486-7303; Tel: 510 486-7207; E-mail: gliu@lbl.gov

²Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. Fax: 517-353-1793; Tel: 517-355-9715, ext. 160; E-mail: bakerg@msu.edu

Figure S-1. DSC second heating scans of C ₁₄ PhEO _y C ₁ run at 10 °/min under a He	2
atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate	
of 200°/min and held at -100 °C before initiating the heating scan.	
Figure S-2. DSC second heating scans of C ₁₆ PhEO _y C ₁ run at 10 °/min under a He	3
atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate	
of 200°/min and held at -100 °C before initiating the heating scan.	
Figure S-3. DSC second heating scans of $C_{18}PhEO_yC_1$ run at 10 °/min under a He	4
atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate	
of 200°/min and held at -100 °C before initiating the heating scan.	
Figure S-4. DSC second heating scans of C ₂₀ PhEO _v C ₁ run at 10 °/min under a He	5
atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate	
of 200°/min and held at -100 °C before initiating the heating scan.	
Table S-1. Melting points and ΔH_{fus} derived from DSC measurements of	6
C ₁₈ PhEO _y C ₁	
Table S-2. Melting points and ΔH_{fus} derived from DSC measurements of	7
C ₂₀ PhEO _y C ₁	
Figure S-5. Low angle XRD data for $C_{14}PhEO_yC_1$. The samples were cooled from	8
the melt and held at room temperature for 20 h prior to analysis.	
Figure S-6. Low angle XRD data for $C_{16}PhEO_yC_1$. The samples were cooled from	9
the melt and held at room temperature for 20 h prior to analysis.	
Figure S-7. Low angle XRD data for $C_{18}PhEO_yC_1$. The samples were cooled from	10
the melt and held at room temperature for 20 h prior to analysis.	
Figure S-8. Low angle XRD data for $C_{20}PhEO_yC_1$. The samples were cooled from	11
the melt and held at room temperature for 20 h prior to analysis.	
Figure S-9. Low angle XRD data for annealed $C_{18}PhEO_yC_1$. Prior to analysis, the	12
samples were annealed 2° below their melting point until they reached their ultimate	
stable structure (~2-10 h).	
Figure S-10. Low angle XRD data for annealed $C_{20}PhEO_yC_1$. Prior to analysis, the	13
samples were annealed 2° below their melting point until they reached their ultimate	
stable structure (~2-10 h).	
Synthesis of $C_x PhEO_v C_1$ amphiphiles Experimental details	14

Figure S-1. DSC second heating scans of $C_{14}PhEO_yC_1$ run at 10 °/min under a He atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate of 200°/min and held at -100 °C before initiating the heating scan.

Figure S-2. DSC second heating scans of $C_{16}PhEO_yC_1$ run at 10 °/min under a He atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate of 200°/min and held at -100 °C before initiating the heating scan.

Figure S-3. DSC second heating scans of $C_{18}PhEO_yC_1$ run at 10 °/min under a He atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate of 200°/min and held at -100 °C before initiating the heating scan.

Figure S-4. DSC second heating scans of $C_{20}PhEO_yC_1$ run at 10 °/min under a He atmosphere. Samples were held at 100 °C for 5 minutes, quenched to -100 °C at rate of 200°/min and held at -100 °C before initiating the heating scan.

Table S-1. Melting points and ΔH_{fus} derived from DSC measurements									
of C ₁₈ PhEO _y C ₁									
	1 st melti	ing peak	2 nd melting peak		Crystallization peak				
У	тр	ΔH	mp	ΔН	Crystallization point	ΔH (J/g)			
	(°C)	(J/g)	(°C)	(J/g)	(°C)				
0	51.5	176.3			46.6	180.2			
1	46.2	144.0			43.6	148.2			
2	37.4	133.1			35.0	132.6			
3	30.0	75.5	35.9	69.3	35.2	72.0			
4	31.2	74.9	36.1	62.9	35.3	66.7			
5	35.6	138			35.2	62.6			
6	36.9	143.2			34.4	55.4			
7	38.3	139.0			33.6	52.8			

Γ

Table S-2. Melting points and ΔH_{fus} derived from DSC measurements										
of C ₂₀ PhEO _y C ₁										
	1 st melting peak		2 nd melt	ting peak	Crystallization pea	ık				
У	mp	- ΔH	mp	- ΔH	Crystallization point	ΔН				
	(°C)	(J/g)	(°C)	(J/g)	(°C)	(J/g)				
0	58.1	180.3			52.3	179.6				
1	53.1	147.6			49.8	152.5				
2	44.5	137.7			44.4	82.5				
3	35.8	50.3	45.9	73.7	45.0	75.5				
4	32.0	48.8	45.4	69.3	44.6	72.9				
5	39.3	87.7	45.0	67.6	44.6	69.2				
6	40.4	87.2	44.3	60.8	44.8	66.5				
7	41.4	91.7	43.6	62.0	43.5	62.0				

Figure S-5. Low angle XRD data for $C_{14}PhEO_yC_1$. The samples were cooled from the melt and held at room temperature for 20 h prior to analysis.

Figure S-6. Low angle XRD data for $C_{16}PhEO_yC_1$. The samples were cooled from the melt and held at room temperature for 20 h prior to analysis.

Figure S-7. Low angle XRD data for $C_{18}PhEO_yC_1$. The samples were cooled from the melt and held at room temperature for 20 h prior to analysis.

Figure S-8. Low angle XRD data for $C_{20}PhEO_yC_1$. The samples were cooled from the melt and held at room temperature for 20 h prior to analysis.

Figure S-9. Low angle XRD data for annealed $C_{18}PhEO_yC_1$. Prior to analysis, the samples were annealed 2° below their melting point until they reached their ultimate stable structure (~2-10 h).

Figure S-10. Low angle XRD data for annealed $C_{20}PhEO_yC_1$. Prior to analysis, the samples were annealed 2° below their melting point until they reached their ultimate stable structure (~2-10 h).

Synthesis of C_xPhEO_yC₁ amphiphiles

General experimental information

Unless otherwise specified, ACS reagent grade starting materials were used as received from the Aldrich. THF was dried by refluxing over CaH_2 overnight, and was then distilled from Na/benzophenone. House nitrogen was used in air and moisture sensitive reactions. The reported melting points points are uncorrected.

¹H NMR analyses were carried out at room temperature in CDCl₃ on a Varian Gemini-300 spectrometer operating at 300 MHz. The chemical shifts were calibrated using solvent peaks from residual CHCl₃ and are reported relative to tetramethylsilane. Infrared spectra (IR) were measured in transmission mode on a Nicolet IR/42 FT-IR spectrometer under nitrogen. The samples were prepared by melting on a NaCl disc. The spectrum for each pure sample was obtained by subtracting the NaCl spectrum from that of the sample plus substrate. Raman spectra were obtained at room temperature with a HoloProbe Raman Spectrograph excited at 633 nm. High resolution mass spectra were measured in the Mass Spectrometry Lab at University of South Carolina. All samples were purified by column chromatography followed by recrystallization in ether solution and dried under vacuum at 60 °C for 4 days.

1 Synthesis of monotosylated polyethylene glycols

1-Tosyloxy-3-oxapentan-5-ol [Ts(OCH₂CH₂)₂OH] (1a) Diethylene glycol (100 mL, 0.84 mol) was dissolved in THF (50 mL) and cooled t o 0 °C in an ice bath. A solution of KOH (23 g, 0.41 mol) in 40 mL water was slowly added to the mixture, and then a solution of TsCl (40 g, 0.21 mol) in 150 mL THF was added drop-wise over one hour with vigorous stirring. After stirring overnight in an ice bath, the mixture was poured into distilled water (500 mL) and extracted with CH₂Cl₂ (2 × 250 mL). The combined organic solutions were washed with saturated NaHCO₃ solution (2 × 200 mL), distilled water (2 × 200 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude oil was dissolved in methanol (300 mL), and stored in a freezer over night. The

ditosylate byproduct crystallized and was removed by filtration. The filtrate was concentrated under reduced pressure to give 41.6 g (76%) of $Ts(OCH_2CH_2)_2OH$ as a colorless oil¹. ¹H NMR (300 MHz, CDCl₃) δ 1.92 (s, 1H), 2.41 (s, 3H), 3.50 (t, 2H), 3.65 (m, 4H), 4.18 (t, 2H), 7.35 (d, 2H), 7.78 (d, 2H).

1-Tosyloxy-3,6-dioxaoctan-8-ol [Ts(OCH₂CH₂)₃OH] (1b) A clear colorless oil¹ obtained as described for 1-tosyloxy-3-oxapentan-5-ol [Ts(OCH₂CH₂)₂OH] (1a) in 89% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.92 (s, 1H), 2.41 (s, 3H), 3.50 -3.65 (m, 10H), 4.18 (t, 2H), 7.35 (d, 2H), 7.78 (d, 2H).

1-Tosyloxy-3,6,9-trioxaundecan-11-ol [Ts(OCH₂CH₂)₄OH] (1c) A clear colorless oil² obtained as described for 1-tosyloxy-3-oxapentan-5-ol [Ts(OCH₂CH₂)₂OH] (1a) in 92% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.92 (s, 1H), 2.41 (s, 3H), 3.50 -3.65 (m, 14H), 4.18 (t, 2H), 7.35 (d, 2H), 7.78 (d, 2H).

2 THP protection of monotosylated polyethylene glycols

2-(1-Tosyloxy-3-oxapentan-5-oxy)tetrahydropyran [Ts(OCH₂CH₂)₂OTHP] (2a) Over a period of 5 minutes, dihydro-4*H*-pyran (50 g, 0.59 mol) was added drop-wise to a stirred solution of **1a** (48 g, 0.18 mol) and *p*-toluenesulfonic acid monohydrate (2.50 g, 13.1 mmol) in anhydrous dioxane (500 mL) at 20 °C. After stirring for 15 minutes, half-saturated methanolic ammonia was added until the solution was slightly basic. The mixture was concentrated under reduced pressure, and redissolved in CHCl₃ (300 mL). The solution was washed with 5% NaCl (3×200 mL), dried over MgSO₄, and concentrated under reduced pressure to give 61.4 g (97%) of Ts(OCH₂CH₂)₂OTHP as a

clear light yellow oil³. The product was used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 2.41 (s, 3H), 3.40-3.80 (m, 8H), 4.18 (t, 3H), 4.60 (t, 1H), 7.35 (d, 2H), 7.78 (d, 2H).

2-(1-Tosyloxy-3,6-dioxaoctan-8-oxy)tetrahydropyran [Ts(OCH₂CH₂)₃OTHP] (2b) Obtained as described above as a clear light yellow oil⁴ in 98% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 2.41 (s, 3H), 3.40-3.80 (m, 12H), 4.18 (t, 3H), 4.60 (t, 1H), 7.35 (d, 2H), 7.78 (d, 2H).

2-(1-Tosyloxy-3,6,9-trioxaundecan-11-oxy)tetrahydropyran

[Ts(OCH₂CH₂)₄OTHP] (2c) Obtained as described above as a clear light yellow oil⁵ in 98% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 2.41 (s, 3H), 3.40-3.80 (m, 16H), 4.18 (t, 3H), 4.60 (t, 1H), 7.35 (d, 2H), 7.78 (d, 2H).

3 THP protection of polyethylene glycol monomethyl ethers

2-(2,5,8,11,14-pentaoxahexadecan-16-oxy)tetrahydropyran

[CH₃(OCH₂CH₂)₅OTHP] (3b) Over a period of 20 minutes, a solution of triethylene glycol monomethyl ether (29 mL, 0.18 mol) in THF (200 mL) was added drop-wise to a mixture of sodium hydride (9.0 g, 0.38 mol) in THF (150 mL) at reflux. Heating was continued for an hour, and then a solution of 2-(5-tosyloxy-3-oxapentanoxy)tetrahydropyran (61.4 g, 0.178 mol) in THF (200 mL) was added to the mixture. After stirring overnight, the precipitates were removed by filtration and the THF solution was concentrated under reduced pressure to give 53.8 g, (89%) of CH₃(OCH₂CH₂)₅OTHP as a clear light yellow oil⁶. The product was used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 3.36 (s, 3H), 3.50-3.80 (m, 22H), 4.60 (t, 3H).

2-(2,5,8,11-hexaoxanonadecan-13-oxy)tetrahydropyran

[CH₃(OCH₂CH₂)₄OTHP] (**3a**) Obtained as described above as a clear light yellow oil in 80% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 3.36 (s, 3H), 3.50-3.80 (m, 18H), 4.60 (t, 3H).

2-(2,5,8,11,14,17-hexaoxanonadecan-19-oxy)tetrahydropyran

[CH₃(OCH₂CH₂)₆OTHP] (3c) Obtained as described above as a clear light yellow oil in 78% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 3.36 (s, 3H), 3.50-3.80 (m, 26H), 4.60 (t, 3H).

2-(2,5,8,11,14,17,20-heptaoxadocosan-22-oxy)tetrahydropyran

[CH₃(OCH₂CH₂)₇OTHP] (3d) Obtained as described above as a clear light yellow oil in 82% yield. ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.90 (m, 6H), 3.36 (s, 3H), 3.50-3.80 (m, 30H), 4.60 (t, 3H).

4 Deprotection of polyethylene glycol monomethyl ethers

2,5,8,11,14-pentaoxahexadecan-16-ol [CH₃(OCH₂CH₂)₅OH] (4b) HCl (50 mL, 2M) was added to an ethanol solution (400 mL) of 2-(14-methoxy-3,6,9,12-tetraoxatetradecan-1-oxy)tetrahydropyran (50.0 g, 0.147 mol) and the mixture was refluxed for 5 hours. Concentration under reduced pressure and vacuum distillation gave a 72% yield of CH₃(OCH₂CH₂)₅OH. bp 102 °C (40 mTorr) (lit.⁷ bp 145 – 147 °C/1 Torr). ¹H NMR (300 MHz, CDCl₃) δ 2.33 (s, 1H), 3.36 (s, 3H), 3.50-3.80 (m, 20H).

2,5,8,11-hexaoxanonadecan-13-ol [CH₃(OCH₂CH₂)₄OH] (4a) Obtained as described above as a clear colorless oil in 72% yield after vacuum distillation. bp 100 °C (40 mTorr) (lit.⁷ bp 160 – 167 °C (1 Torr)). ¹H NMR (300 MHz, CDCl₃) δ 2.33 (s, 1H), 3.36 (s, 3H), 3.50-3.80 (m, 24H).

2,5,8,11,14,17-hexaoxanonadecan-19-ol [CH₃(OCH₂CH₂)₆OH] (4c) Obtained as described above as a clear colorless oil⁷ in 61% yield after vacuum distillation. bp 135 °C (40 mTorr) (lit.⁷ bp 160 – 167 °C (1 Torr)). ¹H NMR (300 MHz, CDCl₃) δ 2.33 (s, 1H), 3.36 (s, 3H), 3.50-3.80 (m, 24H).

2,5,8,11,14,17,20-hexaoxadocosan-22-ol [CH₃(OCH₂CH₂)₇OH] (4d) Obtained as described above as a clear colorless oil in 45% yield after vacuum distillation. bp 205 °C (40 mTorr) (lit.⁸ bp 198 – 205 °C (0.04 Torr)). ¹H NMR (300 MHz, CDCl₃) δ 2.33 (s, 1H), 3.36 (s, 3H), 3.50-3.80 (m, 28H).

5 Synthesis of tosylated derivates of polyethylene glycol monomethyl ethers

4-Tosyloxy-2-oxabutane [TsOCH₂CH₂OCH₃] (5a) Prepared according to the procedure for 5-tosyloxy-3-oxapentanol except that stoichiometric amounts of starting materials were used. Yield: 98% as a clear colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 2.43 (s, 3H), 3.29 (s, 3H), 3.56 (t, 2H), 4.15 (t, 2H), 7.31 (d, 2H), 7.77 (d, 2H).

7-Tosyloxy-2,5-dioxaheptane [Ts(OCH₂CH₂)₂OCH₃] (5b) Obtained as described above as a clear colorless oil in 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.43 (s, 3H), 3.33 (s, 3H), 3.45 (t, 2H), 4.04 (t, 2H), 3.58 (t, 2H), 7.68 (d, 2H) 3.67 (t, 2H), 4.17 (t, 2H), 7.31 (d, 2H), 7.77 (d, 2H).

10-Tosyloxy-2,5,8-trioxadecane [Ts(OCH₂CH₂)₃OCH₃] (5c) Obtained as described above as a clear colorless oil⁹ in 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.3 (s, 3H), 3.22 (s, 3H), 3.28-3.70 (m, 10H), 4.04 (t, 2H), 7.24 (d, 2H), 7.68 (d, 2H).

13-Tosyloxy-2,5,8,11-tetraoxatridecane [Ts(OCH₂CH₂)₄OCH₃] (5d) Obtained as described above as a clear colorless oil in 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.3 (s, 3H), 3.22 (s, 3H), 3.28-3.70 (m, 14H), 4.04 (t, 2H), 7.24 (d, 2H), 7.68 (d, 2H).

16-Tosyloxy-2,5,8,11,14-pentaoxahexadecane [Ts(OCH₂CH₂)₅OCH₃] (5e) Obtained as described above as a clear colorless oil¹⁰ in 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.3 (s, 3H), 3.22 (s, 3H), 3.28-3.70 (m, 18H), 4.04 (t, 2H), 7.24 (d, 2H), 7.68 (d, 2H).

19-Tosyloxy-2,5,8,11,14,17-hexaoxanonadecane [**Ts(OCH₂CH₂)₆OCH₃**] (**5f**) Obtained as described above as a clear colorless oil¹¹ in 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.3 (s, 3H), 3.22 (s, 3H), 3.28-3.70 (m, 24H), 4.04 (t, 2H), 7.24 (d, 2H), 7.68 (d, 2H).

22-Tosyloxy-2,5,8,11,14,17,19-heptaoxadocosane [Ts(OCH₂CH₂)₇OCH₃] (5g) Obtained as described above as a clear colorless oil¹² in 99% yield. ¹H NMR (300 MHz, CDCl₃) δ 2.3 (s, 3H), 3.22 (s, 3H), 3.28-3.70 (m, 28H), 4.04 (t, 2H), 7.24 (d, 2H), 7.68 (d, 2H).

6 Coupling of alkyl chains to benzene ring

4-Decylanisole [CH₃(CH₂)₉PhOCH₃] (6a) A solution of 1-decylbromide (44.2 mL, 0.2 mol) in THF (200 mL) was added under nitrogen to Mg turnings (5.0 g, 0.22 mol) over a period of 15 minutes. Heating was applied to initiate the reaction. After the reaction was no longer exothermic, the mixture was refluxed for an additional hour. The Grignard solution was transferred while hot to a stirred THF solution (250 mL) of 4-chloroaniline (20 g, 0.14 mol) and (dppp)Cl₂Ni (0.28 g, 7.0 mmol). The mixture was refluxed for 2 days under nitrogen and then cooled to room temperature. The mixture was washed with saturated aqueous NaCl (3×200 mL), dried over MgSO₄ and concentrated under reduced pressure. The crude brown solid was purified by recrystallization from pentane and ether to give 25 g (72%) of CH₃(CH₂)₉PhOCH₃ as a

white crystalline powder. mp 16.2 – 17.1 °C (lit.¹³ mp 17.0 – 17.5 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 16H), 1.55 (t, 2H), 2.52 (t, 2H), 3.78 (s, 3H), 6.80 (d, 2H), 7.08 (d, 2H).

4-Tetradecylanisole [CH₃(CH₂)₁₃PhOCH₃] (6b) Obtained as described above as a white crystalline powder in 61% yield. mp 36.5 °C (lit.¹⁴ mp 38 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 24H), 1.55 (t, 2H), 2.52 (t, 2H), 3.78 (s, 3H), 6.80 (d, 2H), 7.08 (d, 2H). HRMS calc. for C₂₁H₃₆O₁ 304.2766, found 304.2767.

4-Hexadecylanisole [CH₃(CH₂)₁₅PhOCH₃] (6c) Obtained as described above as a white crystalline powder in 61% yield. mp 44.1 °C (lit.¹⁵ mp 43 – 44 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 28H), 1.55 (t, 2H), 2.52 (t, 2H), 3.78 (s, 3H), 6.80 (d, 2H), 7.08 (d, 2H). HRMS calc. for C₂₃H₄₀O₁ 332.3079, found 332.3086.

4-Octadecylanisole [CH₃(CH₂)₁₇PhOCH₃] (6d) Obtained as described above as a white crystalline powder¹³ in 45% yield. mp 51.5 °C (lit.¹⁶ mp 51 – 52 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 32H), 1.55 (t, 2H), 2.52 (t, 2H), 3.78 (s, 3H), 6.80 (d, 2H), 7.08 (d, 2H). HRMS calc. for C₂₅H₄₄O₁ 360.3392, found 360.3393.

4-Eicosylanisole $[CH_3(CH_2)_{19}PhOCH_3]$ (6e) Obtained as described above as a white crystalline powder in 45% yield. mp 58.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 36H), 1.55 (t, 2H), 2.52 (t, 2H), 3.78 (s, 3H), 6.80 (d, 2H), 7.08 (d, 2H).

7 Synthesis of 4-alkylphenols

4-Decylphenol [CH₃(CH₂)₉PhOH] (7a) An anhydrous solution of 4-decylanisole (7.50 g, 30.2 mmol) in methylene chloride (200 mL) was cooled in a dry ice/acetone bath. After the temperature reached equilibrium, a solution of BBr₃ (2.9 mL, 30 mmol) in methylene chloride (50 mL) was added over a period of 10 minutes. The mixture was allowed to warm to room temperature and stirred over night. The reaction was quenched by the drop-wise addition of water (100 mL) and extracted with ether (200 mL). The organic layer was washed with saturated aqueous NaCl (200 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude white solid was recrystallized from cold methylene chloride to give 7.0 g (99%) of 4-decylphenol as white crystalline powder. mp

19

 $57.5 - 58.5 \ ^{\circ}C$ (lit.¹³ mp $57.5 - 58.5 \ ^{\circ}C$). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 16H), 1.55 (t, 2H), 2.50 (t, 2H), 4.45 (s, 1H), 6.72 (d, 2H), 7.02 (d, 2H).

4-Tetradecylphenol [CH₃(CH₂)₁₃PhOH] (7b) A white crystalline powder obtained as described for 4-decylphenol [CH₃(CH₂)₉PhOH] in 90% yield. mp 72.5 – 73.5 °C (lit.¹⁷ mp 73 – 74 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 24H), 1.55 (t, 2H), 2.50 (t, 2H), 4.45 (s, 1H), 6.72 (d, 2H), 7.02 (d, 2H).

4-Hexadecylphenol [CH₃(CH₂)₁₅PhOH] (7c) A white crystalline powder obtained as described for 4-decylphenol [CH₃(CH₂)₉PhOH] in 90% yield. mp 78 – 79 °C (lit.¹⁸ mp 78 – 79 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 28H), 1.55 (t, 2H), 2.50 (t, 2H), 4.45 (s, 1H), 6.72 (d, 2H), 7.02 (d, 2H).

4-Octadecylphenol [CH₃(CH₂)₁₇PhOH] (7d) A white crystalline powder obtained as described for 4-decylphenol [CH₃(CH₂)₉PhOH] in 91% yield. mp 82.0 – 84.0 °C (lit.¹³ mp 83.0 – 84.0 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 32H), 1.55 (t, 2H), 2.50 (t, 2H), 4.45 (s, 1H), 6.72 (d, 2H), 7.02 (d, 2H).

4-Eicosylphenol [CH₃(CH₂)₁₉PhOH] (7e) A white crystalline powder obtained as described for 4-decylphenol [CH₃(CH₂)₉PhOH] in 89% yield. mp 88.0 – 89.0 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 36H), 1.55 (t, 2H), 2.50 (t, 2H), 4.45 (s, 1H), 6.72 (d, 2H), 7.02 (d, 2H).

8 Synthesis of C_xPhEO_yC₁

4-Decyl-1-(2,5,8-trioxadecan-10-oxy)benzene

[CH₃(OCH₂CH₂)₃OPh(CH₂)₉CH₃] A THF solution (100 mL) of 7a (2.5 g, 11 mmol) was added drop-wise to a mixture of sodium hydride (0.50 g, 21 mmol) in anhydrous THF (50 mL) under nitrogen. After refluxing for an hour, a THF solution (100 mL) of 5c (4.00 g, 12.6 mmol) was added and heating was continued overnight. The mixture was cooled to room temperature and filtered. The filtrate was washed with saturated aqueous NaCl (3×200 mL), dried over MgSO₄, and concentrated under reduced pressure. The resulting oil was purified using flash chromatography (60/40 ethyl acetate/hexane) to yield 3.4 g (75%) of product as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 14H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 8H), 3.82 (t,

2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₃H₄₀O₄ 380.2927, found 380.2921.

4-Tetradecyl-1-(2-oxabutan-4-oxy)benzene [CH₃OCH₂CH₂OPh(CH₂)₁₃CH₃] Obtained as described above as a white crystalline solid in 80% yield after purification by column chromatography (35/65 ethyl acetate/hexane). mp 30.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.73 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₃H₄₀O₂ 348.3028, found 348.3021.

4-Tetradecyl-1-(2,5-dioxaheptan-7-oxy)benzene

[CH₃(OCH₂CH₂)₂OPh(CH₂)₁₃CH₃] Obtained as described above as a white crystalline solid obtained in 77% yield after purification by column chromatography (40/60 ethyl acetate/hexane). mp 30.5 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.55 (t, 2H), 2.72 (d, 2H), 3.83 (t, 2H), 4.10 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₅H₄₄O₃ 392.3290, found 392.3291.

4-Tetradecyl-1-(2,5,8-trioxadecan-10-oxy)benzene

[CH₃(OCH₂CH₂)₃OPh(CH₂)₁₃CH₃] Obtained as described above as a white solid in 73% yield after purification by column chromatography (50/50 ethyl acetate/hexane). mp 16.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 8H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₇H₄₈O₄ 436.3553, found 436.3549.

4-Tetradecyl-1-(2,5,8,11-tetraoxatridecan-13-oxy)benzene

[CH₃(OCH₂CH₂)₄OPh(CH₂)₁₃CH₃] Obtained as described above as a white solid in 60% yield after purification by column chromatography (60/40 ethyl acetate/hexane). mp 22.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₉H₅₂O₅ 480.3815, found 480.3806.

4-Tetradecyl-1-(2,5,8,11,14-pentaoxahexadecan-16-oxy)benzene

[CH₃(OCH₂CH₂)₅OPh(CH₂)₁₃CH₃] Obtained as described above as a white solid in 52% yield after purification by column chromatography (80/40 ethyl acetate/hexane). mp 31.7 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H),

2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 16H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₁H₅₆O₆ 524.4077, found 524.4081.

4-Tetradecyl-1-(2,5,8,11,14,17-hexaoxanonadecan-19-oxy)benzene [CH₃(OCH₂CH₂)₆OPh(CH₂)₁₃CH₃] Obtained as described above as a white solid in 65% yield after purification by column chromatography (80/20 ethyl acetate/hexane). mp 26.9 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₃H₆₀O₇ 568.4339, found 568.4327.

4-Tetradecyl-1-(2,5,8,11,14,17,19-heptaoxadocosan-22-oxy)benzene [CH₃(OCH₂CH₂)₇OPh(CH₂)₁₃CH₃] A white solid obtained in 62% yield after purification by column chromatography (80/20 ethyl acetate/hexane). mp 29.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 24H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₅H₆₄O₈ 612.4601, found 612.4607.

4-Hexadecyl-1-(2-oxabutan-4-oxy)benzene [CH₃OCH₂CH₂OPh(CH₂)₁₅CH₃] Obtained as described above as a white crystalline solid in 71% yield after purification by column chromatography (35/65 ethyl acetate/hexane). mp 38.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 26H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.73 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₅H₄₄O₂ 376.3341, found 376.3335.

4-Hexadecyl-1-(2,5-dioxaheptan-7-oxy)benzene

[CH₃(OCH₂CH₂)₂OPh(CH₂)₁₅CH₃] Obtained as described above as a white crystalline solid in 79% yield after purification by column chromatography (40/60 ethyl acetate/hexane). mp 28.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 26H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.55 (t, 2H), 2.72 (d, 2H), 3.83 (t, 2H), 4.10 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₇H₄₈O₃ 420.3603, found 420.3601.

4-Hexadecyl-1-(2,5,8-trioxadecan-10-oxy)benzene

[CH₃(OCH₂CH₂)₃OPh(CH₂)₁₅CH₃] Obtained as described above as a white solid in 78% yield after purification by column chromatography (50/50 ethyl acetate/hexane). mp 23.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 26H), 1.55 (t, 2H),

2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 8H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₉H₅₂O₄ 464.3866, found 464.3857.

4-Hexadecyl-1-(2,5,8,11-tetraoxatridecan-13-oxy)benzene

[CH₃(OCH₂CH₂)₄OPh(CH₂)₁₅CH₃] Obtained as described above as a white solid in 51% yield after purification by column chromatography (60/40 ethyl acetate/hexane). mp 23.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 26H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₁H₅₆O₅ 508.4128, found 508.4127.

4-Hexadecyl-1-(2,5,8,11,14-pentaoxahexadecan-16-oxy)benzene

[CH₃(OCH₂CH₂)₅OPh(CH₂)₁₅CH₃] Obtained as described above as a white solid in 71% yield after purification by column chromatography (70/30 ethyl acetate/hexane). mp 36.8 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 26H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 16H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₃H₆₀O₆ 552.4390, found 552.4370.

4-Hexadecyl-1-(2,5,8,11,14,17-hexaoxanonadecan-19-oxy)benzene

[CH₃(OCH₂CH₂)₆OPh(CH₂)₁₅CH₃] Obtained as described above as a white solid in 65% yield after purification by column chromatography (80/20 ethyl acetate/hexane). mp 23.2°C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 26H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₅H₆₄O₇ 596.4652, found 596.4660.

4-Octadecyl-1-(2-oxabutan-4-oxy)benzene [CH₃OCH₂CH₂OPh(CH₂)₁₇CH₃]

Obtained as described above as a white crystalline solid in 72% yield after purification by column chromatography (35/65 ethyl acetate/hexane). mp 46.2 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 30H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.73 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₇H₄₈O₂ 404.3654, found 404.3656.

4-Octadecyl-1-(2,5-dioxaheptan-7-oxy)benzene

[CH₃(OCH₂CH₂)₂OPh(CH₂)₁₇CH₃] Obtained as described above as a white crystalline solid in 81% yield after purification by column chromatography (40/60 ethyl acetate/hexane). mp 37.4 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b,

30H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.55 (t, 2H), 2.72 (d, 2H), 3.83 (t, 2H), 4.10 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₂₉H₅₂O₃ 448.3916, found 448.3918.

4-Octadecyl-1-(2,5,8-trioxadecan-10-oxy)benzene

[CH₃(OCH₂CH₂)₃OPh(CH₂)₁₇CH₃] Obtained as described above as a white solid in 71% yield after purification by column chromatography (50/50 ethyl acetate/hexane). mp 35.9 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 30H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 8H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₁H₅₆O₄ 492.4179, found 492.4189.

4-Octadecyl-1-(2,5,8,11-tetraoxatridecan-13-oxy)benzene

[CH₃(OCH₂CH₂)₄OPh(CH₂)₁₇CH₃] Obtained as described above as a white solid in 65% yield after purification by column chromatography (60/40 ethyl acetate/hexane). mp 36.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 30H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₃H₆₀O₅ 536.4441, found 536.4447.

4-Octadecyl-1-(2,5,8,11,14-pentaoxahexadecan-16-oxy)benzene [CH₃(OCH₂CH₂)₅OPh(CH₂)₁₇CH₃] Obtained as described above as a white solid in 74% yield after purification by column chromatography (70/30 ethyl acetate/hexane). mp 42.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 30H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 16H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H). HRMS calc. for C₃₅H₆₄O₆ 580.4703, found 580.4694.

4-Octadecyl-1-(2,5,8,11,14,17-hexaoxanonadecan-19-oxy)benzene [CH₃(OCH₂CH₂)₆OPh(CH₂)₁₇CH₃] Obtained as described above as a white solid in 71% yield after purification by column chromatography (80/20 ethyl acetate/hexane). mp 36.9 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 30H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Octadecyl-1-(2,5,8,11,14,17,19-heptaoxadocosan-22-oxy)benzene [CH₃(OCH₂CH₂)₇OPh(CH₂)₁₇CH₃] Obtained as described above as a white solid in 51% yield after purification by column chromatography (90/10 ethyl acetate/hexane). mp 38.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 30H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 24H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2-oxabutan-4-oxy)benzene [CH₃OCH₂CH₂OPh(CH₂)₁₉CH₃] Obtained as described above as a white crystalline solid in 78% yield after purification by column chromatography (35/65 ethyl acetate/hexane). mp 53.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 34H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.73 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2,5-dioxaheptan-7-oxy)benzene

[CH₃(OCH₂CH₂)₂OPh(CH₂)₁₉CH₃] Obtained as described above as a white crystalline solid in 75% yield after purification by column chromatography (40/60 ethyl acetate/hexane). mp 44.5 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 22H), 1.55 (t, 2H), 2.51 (t, 2H), 3.43 (s, 3H), 3.55 (t, 2H), 2.72 (d, 2H), 3.83 (t, 2H), 4.10 (t, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2,5,8-trioxadecan-10-oxy)benzene

[CH₃(OCH₂CH₂)₃OPh(CH₂)₁₉CH₃] Obtained as described above as white solid in 82% yield after purification by column chromatography (50/50 ethyl acetate/hexane). mp 45.9 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 34H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 8H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2,5,8,11-tetraoxatridecan-13-oxy)benzene

[CH₃(OCH₂CH₂)₄OPh(CH₂)₁₉CH₃] Obtained as described above as a white crystalline solid in 72% yield after purification by column chromatography (60/40 ethyl acetate/hexane). mp 45.4 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 34H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2,5,8,11,14-pentaoxahexadecan-16-oxy)benzene

[CH₃(OCH₂CH₂)₅OPh(CH₂)₁₉CH₃] Obtained as described above as a white crystalline solid in 66% yield after purification by column chromatography (70/30 ethyl acetate/hexane). mp 45.0 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b,

34H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 16H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2,5,8,11,14,17-hexaoxanonadecan-19-oxy)benzene [CH₃(OCH₂CH₂)₆OPh(CH₂)₁₉CH₃] Obtained as described above as a white crystalline solid in 62% yield after purification by column chromatography (80/20 ethyl acetate/hexane). mp 44.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 34H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 20H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

4-Eicosyl-1-(2,5,8,11,14,17,19-heptaoxadocosan-22-oxy)benzene

[CH₃(OCH₂CH₂)₇OPh(CH₂)₁₉CH₃] Obtained as described above as a white crystalline solid in 42% yield after purification by column chromatography (90/10 ethyl acetate/hexane). mp 43.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, 3H), 1.18-1.32 (b, 34H), 1.55 (t, 2H), 2.52 (t, 2H), 3.35 (s, 3H), 3.52-3.75 (m, 24H), 3.82 (t, 2H), 4.08 (s, 2H), 6.80 (d, 2H), 7.04 (d, 2H).

IV References

- 1. L. Borjesson and C. J. Welch, Acta Chem. Scand., 1991, 45, 621-626.
- L. N. Markovskii, D. M. Rudkevich and V. I. Kalchenko, *Zhurnal Org. Khimii*, 1990, 26, 452-453.
- 3. T. Nabeshima, T. Hosoya and Y. Yano, *Synlett*, 1998, 265-266.
- 4. H. Bauer, J. Briaire and H. A. Staab, *Tetrahedron Lett.*, 1985, **26**, 6175-6178.
- P. L. Anelli, M. Asakawa, P. R. Ashton, R. A. Bissell, G. Clavier, R. Gorski, A. E. Kaifer, S. J. Langford, G. Mattersteig, S. Menzer, D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, M. S. Tolley and D. J. Williams, *Chem.-Eur. J.*, 1997, 3, 1113-1135.
- O. Kocian, K. W. Chiu, R. Demeure, B. Gallez, C. J. Jones and J. R. Thornback, J. Chem. Soc.-Perkin Trans. 1, 1994, 527-535.
- 7. H. Takahashi and T. Kuwamura, Bull. Chem. Soc. Jpn., 1973, 46, 623-626.

- 8. U. Heimann and F. Vogtle, *Liebigs Annalen Der Chemie*, 1980, 858-862.
- 9. L. Jullien, J. Canceill, L. Lacombe and J. M. Lehn, *J. Chem. Soc.-Perkin Trans.* 2, 1994, 989-1002.
- R. A. Schultz, E. Schlegel, D. M. Dishong and G. W. Gokel, J. Chem. Soc.-Chem. Commun., 1982, 242-243.
- K. Yamashita, V. Janout, E. M. Bernard, D. Armstrong and S. L. Regen, *J. Am. Chem. Soc.*, 1995, **117**, 6249-6253.
- 12. M. Lee and N. K. Oh, J. Mater. Chem., 1996, 6, 1079-1086.
- 13. Matsuda, Technol. Rep. Osaka Univ., 1956, 6, 393.
- A. Wissner, P. E. Sum, R. E. Schaub, C. A. Kohler and B. M. Goldstein, *J. Med. Chem.*, 1984, 27, 1174-1181.
- 15. Hauptmann and Rotschild, Anais Assoc. brasil. Quim., 1951, 10, 254-266.
- 16. Adam, 1923, **103**, 685.
- 17. T. B. Johnson and E. F. Kohmann, J. Am. Chem. Soc., 1914, 36, 1266.
- 18. Johnson and Kohmann, *Journal of American Chemical Society*, **36**, 1264.