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E1. Discussions of the Structural and Mechanical Properties of the Langmuir 
Monolayer of the 1.5-µm Silica Particles 

For in situ imaging of the silica colloid monolayer at the air-water interface under 
various compression conditions, the miniaturized Langmuir trough equipment (Kibron 
Microtrough X-LB) was staged on a Leica DMIRB inverted microscope. All in situ 
imaging was performed in a vibration-controlled environment within a plexiglass 
chamber which prevents any disturbance of the silica monolayer at the air-water interface 
by air flow in the room and contamination of the interface due to dust accumulation. The 
representative images shown in Figure E1 were taken at an objective lens magnification 
of 40×.  

At low compression, the mean particle separation distance is sufficiently large 
(i.e., in the gas limit) (Figures E1(A) and E1(B)), and the dependence of π on A is almost 
unnoticeable in the linear presentation of the π vs. A plot. With further compression (i.e., 
when the interparticle distance is significantly decreased), the increase of π becomes 
slightly pronounced even though the system is still in the fluid phase (Figure E1(C)). At 
A ≈ 2.4 µm2 per particle, further compression of the monolayer causes an abrupt increase 
of π, indicating the onset of formation of dense hexagonal close-packed structures 
(Figures E1(D) through E1(F)) due to the hard-core repulsive interaction among the silica 
particles. From the π-A isotherm data, the monolayer collapse pressure is estimated to be 
about 10 mN/m for the hydroxy silica particles used in this study; this value is 
considerably lower than those reported in the literature for hydrophobically surface-
modified silica particles (> 15 mN/m),1-5 indicating a weaker interaction between 
adjacent particles in the solid phase in the hydroxyl functionalized case.  The limiting 
area Ao (the x-intercept of the extrapolated linear regression of the steepest section of the 
solid portion of the isotherm curve) is estimated to be approximately 1.97 µm2 per 
particle. This limiting area can be interpreted as the theoretical onset of the hard-sphere-
like repulsion, and the estimated value is consistent with the theoretical surface area that 
would be occupied by a particle when the particles are packed into an HCP lattice (= 
2 3 r2 where r is the particle radius), i.e., 1.95 µm2 per particle for the 1.5-µm silica, 
indicating that the actual range of the hard core exclusion is quite comparable to their 
physical diameter.  

We performed optical microscopy imaging under the identical sequence of 
compression conditions or in real time simultaneously to the measurements of the π-A 
isotherms, and identified the exact structures of the Langmuir monolayer which 
characterize the various states in the π-A isotherm that occur during the lateral 
compression of the particle monolayer; the results are shown in Figure E1. From the 
images taken from the fluid regime (Figures E1(A) through E1(C)), it was estimated that 
approximately 7% of the particles were lost from the water surface due to sedimentation 
into the subphase during the initial spreading process; however, it was confirmed that at 
least in the fluid regime and in the early stage in the development of the solid phase 
during the compression, no additional sedimentation occurred during the course of 
compression. It should be mentioned that in constructing the π-A isotherm shown in 
Figure 2 of the main text, we used the surface area per particle values corrected for the 
amount of the sedimented particles. As shown in Figures E1(A) though E1(D), we found 
that the transitions from the gaseous state (A and B) to the condensed liquid state (C) to 
the solid state (D) are rather smooth and continuous; we observed no evidence for a 



discontinuous change in the surface area of the system (such as a plateau in the π-A 
isotherm) throughout these transitions, suggesting that these transitions are unlikely to be 
first-order phase transitions. It is also of note that unlike what has been hypothesized in 
the literature (based on imaging studies of LB-deposited films of colloid monolayers),2,5 
the fluid-solid transition occurs at the high-surface area end of the upturn region in the π-
A isotherm. From the imaging results, the critical area fraction for the onset of the 
confinement-induced 2D crystallization is estimated to be Dc 2,φ  = 0.65 ± 0.02 (in this 
work we did not attempt to resolve the precise boundaries for the 2D hexatic phase), and 
this result deviates from the predicted value of Dc 2,φ  ≈ 0.735 for the crystallization of 
hard-sphere colloids in 2D based on simulations;6 note the measured crystallization 
threshold is lower than even the predicted fluid-hexatic transition boundary of Dh 2,φ  ≈ 
0.70.6 In the solid regime, further compression after crystallization causes the formation 
of buckled structures (see Figures E1(E) and E1(F)), and in the linear up-slope region, the 
buckled domains (“mesas”) were found to be significantly larger than the single particle 
dimension (Figure E1(F)). We also note that in our system, we have not observed 
formation of particle clusters in the fluid regime. This observation is attributed to the 
following factors: (i) successful purification of the particles and maintenance of a 
contaminant-free environment within the Langmuir apparatus (incorporation of any 
surface active impurity can induce uncontrolled agglomeration of colloids at the air-water 
interface);7,8 (ii) the strong hydrophilicity of the particle surface;1,9 (iii) the uniform 
distribution of the hydroxyl groups on the surface of the silica sphere (long-range 
anisotropic dipolar interactions between colloids on the water surface (due to a non-
uniform distribution of the charge on the colloid surface) can give rise to formation of 
such morphologies as strings, rings or foam-like agglomerates of particles).7,8,10  



Figure E1. Representative optical micrographs of the Langmuir monolayer of the silica 
particles at seven different monolayer areas of A = (A) 6.0, (B) 4.1 , (C) 2.6, (D) 2.4, (E) 
2.2, (F) 1.9, and (G) 1.3 µm2 per particle. Compression of the particle monolayer in 2D 
typically causes transitions in the structural state of the monolayer film from the gaseous 
(A and B) to the liquid (C) to the crystalline (D through F) and finally to the irreversibly 
deformed (G) states.  
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E2. Demonstration of the Template-Guided LB Deposition of Silica Microspheres 
onto a Square-Patterned Substrate 

We tested the pattern-guided LB colloid deposition method for a square substrate 
pattern at a pattern density comparable to that of the hexagonal pattern; the pattern 
densities are 26% and 28% for the hexagonal and square substrates, respectively. On this 
square-patterned substrate, LB particle monolayers were constructed at the six different 
values of A used in the previous set of experiments with the hexagonal substrate (Figure 3 
of the main text), and scanning electron microscopy (SEM) images of the resulting 
samples are presented in Figures E2(A) through E2(F). As shown in these figures, despite 
the difference in symmetry, the overall trend observed with the square substrate is almost 
identical to that observed in the hexagonal case (Figure 3). Notably, a nearly defect-free 
2D NCP square crystal was obtained at the same value for the surface area of the 
precursor monolayer at the air-water interface as in the hexagonal case (i.e., A = 2.4 µm2 
per particle).  



Figure E2. Representative SEM images of the LB colloid monolayers transferred onto 
the square patterned substrates at six different initial monolayer areas of A = (A) 6.0, (B) 
4.1, (C) 2.6, (D) 2.4, (E) 2.2 and (F) 1.9 µm2 per particle and at a fixed substrate lifting 
speed of U = 1.0 mm/min.  
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Figure E3. Low-magnification optical microscopy images of the LB-deposited particles 
on the hexagonally patterned substrate demonstrating the oscillations of the deposited 
particle densities inside the micro-patterned region of the substrate (along the direction of 
the substrate movement during the deposition). These samples were prepared at four 
different values of the surface area of the precursor monolayer at the air-water interface: 
i.e., A = (A) 2.4, (B) 2.6, (C) 4.1 and (D) 6.0 µm2 per particle and at a fixed substrate 
lifting speed of U = 1.0 mm/min. Plots of the particle density (φ ) as a function of the 
distance from the pattern edge (L) calculated from higher-magnification images of the 
samples are presented in Figure 4 of the main text.  
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E3. Analyses of the Spatial Variations of the Densities of the LB-Deposited Silica 
Particles on the Square-Patterned Substrate 

The same set of analyses as discussed in Section III.2 of the main text were 
performed on the LB monolayer samples prepared on the square-patterned substrate at 
the four different initial surface area values (Figures E4(A) through E4(D)). Interestingly, 
in these square-substrate cases, the spatial variations of the deposited particle densities 
were observed to be significantly irregular, which is in contrast to the far more regular 
behavior observed in the hexagonal cases under the identical LB deposition conditions 
(Figure 4). We speculate that this non-regular variation of the particle density in the 
square cases resulted from the fact that because of the larger spacing between lattice lines 
along the substrate lifting direction, a particle that is initially adsorbed in an interstitial 
position on the square-patterned substrate will have to travel a longer distance until it 
finds and enters an empty pattern site (that is, the particles become pinned to the lattice 
sites at distances farther from the contact line) than in the hexagonally-patterned cases, 
and therefore in the square cases, the final distributions of the deposited particle positions 
will be influenced not only by the contact line stick-slip motion at the initial stage of the 
particle deposition but also by further displacement of the particles within the LB film 
due to the gravity as well as the drying of the film in the later stage of the LB monolayer 
transfer. Nonetheless, in these LB films prepared on the square-patterned surfaces, 
despite the spatial variations of the deposited particle densities, the average particle 
density was found to be a systematic (i.e., monotonically decreasing) function of the 
initial compression area with a dependence similar to that observed in the hexagonal case 
(Figure 7(A)). 



Figure E4. Low-magnification optical microscopy images of the LB-deposited particles 
on the square patterned substrate, and the respective particle density profiles inside the 
patterned region ( ( )Lφ ). The particle monolayers (initially constructed at the air-water 
interface) were transferred onto the patterned substrates at four different initial 
compression areas of A = (A) 2.4, (B) 2.6, (C) 4.1 and (D) 6.0 µm2 per particle and at a 
fixed substrate lifting speed of U = 1.0 mm/min.  
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Figure E5. Representative low(left) and high(right)-magnification microscopy images of 
the LB colloid monolayers on the hexagonally-patterned surfaces, produced at four 
different substrate lifting speeds (i.e., U = (A) 1.0, (B) 2.0, (C) 4.0 and (D) 8.0 mm/min) 
and at a fixed initial monolayer area of A = 2.4 µm2 per particle.  
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E4. Derivation and Use of the Theoretical Model in the Interpretation of the 
Results from the LB Particle Deposition Experiments 

We consider a force balance on a differential volume element located at the three-
phase contact line to model the time-dependent motion of the contact line (L(t)). The 
contact line motion along the y-direction will be determined by a balance among the y-
components of the following three driving forces acting on the control volume: (a) the 
force due to the surface tension (

/ 2cy y dy
γ

= +
) acting upward on the deposited film side of 

the control volume, (b) the surface tension (
/ 2cy y dy

γ
= −

) in the opposite direction on the 

original Langmuir film side, (c) the shear stress due to the water velocity gradient at the 

bottom surface of the particle monolayer, y

x

v
x δ=

∂

∂
 (this force is normally in the downward 

direction because of the gravitational drainage of water in the subphase gap), and (1) the 
gravitational body force exerted on the control volume. Hence, the force balance on the 
control volume can be written as 

( ) ( ) ( ) ( )
2

2 2
2 / 2 / 2

( ) cos
c c

y
y y dy y y dy

x

vd LWdy W Wdy Wdy g
dt x δ

ρ γ γ θ η ρ
= + = −

=

∂
= − − −

∂
 (E1) 

where W, dy, ρ , θ, η  and g  denote the width of the Langmuir film, the thickness of the 
control volume, the density of the control volume (≈ density of water), the contact angle, 
the viscosity of water and the gravitational acceleration, respectively. Approximating the 
surface tension difference as ( )/ 2 / 2c c c

oy y dy y y dy y y
d cγ γ γ γ γ

= + = − =
− = ≈ −  (where c is a 

proportionality factor, and γ  and oγ  respectively denote the surface tensions of the LB-
deposited monolayer right above the contact line and of the pristine monolayer in the 
bulk limit (i.e., far away from the contact line)), and setting the size of the control volume 
equal to the particle diameter (i.e., dy ≈ D), the balance equation can be re-written as 

( )
2

2 2

1 1cos y
o

x

vd L c g
dt D D x δ

ρ γ γ θ η ρ
=

∂⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠
.   (E2) 

Here, the surface tension of the monolayer is a function of the particle area fraction in the 
monolayer (φ , in dimensionless units), and in our system, the exact dependence of γ  on 
φ  can be estimated from the measured π-A isotherm (Figure 2). Over the particle 
densities corresponding to the fluid regime of the isotherm, the relationship between γ  
and φ  can be reasonably approximated by a linear equation (because of the ideal gas-like 
behavior of the system in this regime) 

( )
o

o o
φ φ

γγ γ φ φ
φ =

∂
= + −

∂
.    (E3) 

In our case, the value of 
oφ φ

γ
φ =

∂
∂

 was estimated to be -3.2 × 10-4 mN·m from the fitting of 

the fluid portion of the π-A isotherm to a linear equation. The force balance, therefore, 
can now be expressed in terms of φ  and oφ  
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vd L c g
dt D D xφ φ δ

γρ θ φ φ η ρ
φ = =
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To be able to calculate the viscous drag force on the control volume, the velocity 
profile for water flowing through the gap between the substrate and the contact line (i.e., 

( )yv x  from x = 0 to x = δ) needs to be known. To a simplest (but reasonable) 

approximation, we assume a quadratic form for this velocity (i.e., 2( )yv x Ax Bx C= + + ), 
because this is the simplest possible form of the equation that allows us to capture the 
anticipated flow separation behavior in the subphase gap due to the downward drainage 
of water. Due to the no-slip boundary condition at the substrate surface (i.e., 

( 0, )yv x t U= = ) and the particle mass balance in the monolayer film above the contact 
line (i.e., ( , ) '( )yv x t L tδ= = − ), we obtain 

( )( , ) ( ) ( ) ( ) ( / )yv x t A t x x U L t x Uδ δ′= − − + + .  (2) 
Here, A(t) can be determined from the mass balance for water. In setting up the water 
balance, we assume that using the ∆L concept introduced earlier in this section, only the 
water evaporation from the surface of the monolayer in the region between the contact 
line (y = yc) and a position ∆L above the contact line (y = yc + ∆L) will be compensated 
by the inflow of water from the subphase into the air-water meniscus of the monolayer 
film, and will therefore influence the subphase water velocity profile; beyond this region 
(y > yc + ∆L), because of the absence of the subphase gap, further evaporation of water 
will only result in a gradual depletion of water in the deposited monolayer film, which is 
initially wet, eventually leading to a dried monolayer film of the particles on the substrate. 
Within this picture, the molar water evaporation rate over the ∆L region should be 
balanced by the molar rate of water inflow through the cross section of the film at y = yc: 

( )

( )

( ) ( ) ( )
L t L

e c
L t

J t W L L WdL J t Wφ δ
+Δ⎧ ⎫⎪ ⎪Δ − =⎨ ⎬

⎪ ⎪⎩ ⎭
∫    (3) 

where ( )eJ t  and ( )cJ t  denote the molar water evaporation flux and the average molar 
flux of water through the y = yc cross section of the subphase layer; ( )cJ t  is related to 

( , )yv x t  by 

0

1( ) ( , )w c ym J t v x t dx
δ

ρ
δ

= ∫     (4) 

where mw is the molar mass of water. Eqs (1) though (4) now provide a closed set of 
equations for all the relevant variables. Further, these equations provide useful insights on 
why the water evaporation causes the undulation of the contact line; (i) as can be seen 
from eq (3), water evaporation in the ∆L region increases ( )cJ t  and reduces the 
downward flow velocity of the subphase water (eq (4)), and as a result, the shear stress in 
eq (1) becomes less negative; (ii) the reduction in the shear stress accelerates the upward 
motion of the contact line, and causes a φ  increase (eq (1)); (iii) the increase in φ  
reduces ( )cJ t  (eq (3)); (iv) the decrease in ( )cJ t  now reverses the trends described in the 
above sequence of events; (v) finally, these processes repeat over time, giving rise to a 
stable periodic oscillation of the properties.  



To test whether this proposed model can indeed predict the oscillatory particle 
density profiles at reasonable values for the unknown parameters in the model (i.e., ccosθ, 
δ, Je(t) and ΔL), the above equations were numerically analyzed. For this purpose, eqs (1) 
through (4) were further transformed and combined to obtain the following set of 
ordinary differential equations:  

( ) ( ) ( )2"( ) '( ) '"( ) "( ) '( ) "( ) 0L t L t L t L t L t L tα β χ γ ε+ + + + =   (E4) 
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        In solving eq (E4), the following parameter values and initial conditions were 
assumed: ccosθ ≈ 7.80 (this estimate was obtained as explained in the later part of this 
section), δ ≈ D, Je(t) ≈ 3.3 × 10-7 mol/cm2·s (taken from the literature),11 L(t=0) = 2 mm, 
and L’(t=0) = -U. The two remaining unknowns (i.e., ΔL and L”(t=0)) were used as 
adjustable parameters. As demonstrated in Figures E6(A) and E6(B), it was confirmed 
that at ΔL = 25 μm and L”(t=0) = 0.1 μm/s2, for instance, the model predicts the stick-slip 
behavior of the contact line at the four different values of oφ  with fixed U (used for the 
experiments described in Section III.2), and also at the four different values of U with 
fixed oφ  (used for the experiments described in Section III.3). Once L(t) is calculated for 
each of the given conditions, the corresponding φ  profile was obtained by numerically 
solving eq (E5). See Figure E6 and also Section III.4 of the main text for discussions of 
the results.  
 With no evaporation of water (i.e., Je(t) = 0), the net flux of water into the film 
region above the contact line (i.e., y > yc) is zero (i.e., Jc(t) = 0) (see eq (3)); otherwise, 
water will accumulate over time in the LB film, which is unphysical. Using this condition, 
the value of A(t) in eq (2) is estimated to be A(t) = 3(U–L’(t))/δ, and this gives an 

equation for the contact line shear stress in eq (1), ( )2 2 '( )y

x

v
U L t

x δ

ηη
δ

=

∂
= −

∂
 . Under 

this no evaporation condition, the ( )yv x  profile and thus the contact line position in the 
laboratory frame of reference will be stationary (under steady state conditions), and 
therefore, the contact line becomes displaced from the starting edge of the substrate at a 
constant rate whose magnitude should be equal to the substrate lifting speed (i.e., L’(t) = -
U), which gives L”(t) = 0. Therefore, for this situation, rearranging eq (1) yields 



2 6
cos

o

o
D U g

c Dφ φ

γ ηφ φ ρ
θ φ δ=

∂ ⎛ ⎞= + +⎜ ⎟∂ ⎝ ⎠
    (E6) 

which describes the dependences of φ  on oφ  and U; note here that <φ > = φ  in this case, 
because φ  is position-independent. Now, the predictions based on eq (E6) can be 
quantitatively compared with the experimental data shown in Figures 7(A) and 7(B); see 
Section III.4 for further discussion of this analysis.  



Figure E6. The predictions of the model for (A, B and C) the time-dependent variation of 
the contact line position (L(t)) and (D, E and F) the position-dependent variation of the 
deposited particle density in the resulting LB monolayer ( ( )Lφ ) under various LB 
monolayer transfer conditions. (A and D) L(t) and ( )Lφ  calculated at four different 
particle densities of the precursor air-water monolayer ( oφ ) (i.e., oφ  = 0.67 (solid curve), 
0.63 (dashed curve), 0.56 (dashed-dotted curve) and 0.47 (dotted curve)) and at a fixed 
substrate lifting speed of U = 1.0 mm/min and a fixed water evaporation rate of Je(t) = 3.3 
× 10-7 mol/cm2·s. (B and E) L(t) and ( )Lφ  calculated at four different substrate lifting 
speeds (i.e., U = 1.0 (solid curve), 2.0 (dashed curve), 4.0 (dashed-dotted curve) and 8.0 
(dotted curve) mm/min) and at a fixed initial particle density of oφ  = 0.67 and a fixed 
water evaporation rate of Je(t) = 3.3 × 10-7 mol/cm2·s. (C and F) L(t) and ( )Lφ  calculated 
at four different water evaporation rates (i.e., Je(t) = 0 (solid curve), 3.3 × 10-8 (dashed 
curve), 3.3 × 10-7 (dashed-dotted curve), 3.3 × 10-6 (dotted curve) and 3.3 × 10-5 (dashed-
dotted curve) mol/cm2·s-1) and at a fixed substrate lifting speed of U = 1.0 mm/min and a 
fixed initial particle density of oφ  = 0.67. In (D) and (E), the horizontal lines represent the 
deposited particle densities calculated in the limit of no water evaporation (i.e., Je(t) = 0) 
under the respective deposition conditions.  
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E5. Surface Charge Characteristics of the 1.5-µm Silica Particles 
For characterization of the surface charge of the 1.5-µm silica particles, the as-

obtained 0.1 g/ml solution of the silica microspheres was diluted with deionized (Milli-Q 
pure) water to a final particle concentration of 0.01 g/ml. In this suspension, the 
conductivity (σ) was measured to be 14.38 ± 0.05 μS/cm, which gives the number 
concentration of small ions (nion) of approximately 1.1 × 10-4 M for the system due to the 

relation 
2

6
ion

h

e n
a

σ
πη

=  where e, η and ah respectively denote the elementary charge, the 

viscosity of the medium and the hydrodynamic radius of the ions; here we assume for 
simplicity that all ions are monovalent, and have the same radius equal to the 
hydrodynamic radius of water (≈ 1.6 Å).12 Also, the pH value of the suspension was 
measured to be 7.9. From these pH and salt concentration values, and using the 
established correlation between the surface charge density of silica and the pH and salt 
concentration of the medium,13 we estimate the charge density of the 1.5-µm silica 
spheres to be 0.013 e-/nm2 under the given condition. Under the conditions used for the 
LB particle deposition experiments in the present study, the charge characteristics are 
expected to be not much deviant from the above result.  
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