
SUPPLEMENTARY MATERIAL

Additional considerations on the model and

the data analysis

Scaling with d

We present here a simple argument for the scaling of the amplitude s with
distance d, explaining the scaling seen for experiments and simulations in
figure 3(d).

To estimate the d-dependency of the amplitude during a cycle, it is suffi-
cient to describe the displacement of the central bead in one of the four sub-
phases. We consider the simplified but physically equivalent situation of two
interacting trapped beads at distance d. Initially the left bead, which repre-
sents the central bead in the experiment, is at rest and the right bead is out of
its equilibrium position by a distance ε, as it would be if in the instant the trap
has been shifted. The initial conditions are thus xL(0) = 0, xR(0) = d and the
equilibrium positions of the trapping potentials are x0,L = 0;x0,R = (d− ε).
To a first approximation, (“zeroth order” in R/d) the left bead is still, and
the position of the right bead follows a simple relaxation law

x
(0)
R (t) = ε

(
e
− t
τ0 − 1

)
+ d . (1)

This unperturbed solution can be used to estimate (by the force balance with

the fluid) the source of force F
(0)
R = −ktrap(x

(0)
R −d) applied by the right bead

on the fluid during its relaxation. This can then be used into equation (1) of
the main text for the left bead, giving

τ0 ẋ
(1)
L = x

(1)
L −

3R

2d
x

(0)
R , (2)

where x
(0)
R appears as an external perturbation, and we approximated the

distance between the beads with d, which is justified in the limit of large
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distances d >> ε. With this assumption, the problem becomes linear and
the solution to order R/d can be calculated as

x
(1)
L (t) =

3Rε

2d

t

τ0
e
− t
τ0 . (3)

In turn, this solution could be used as a source for the equation for xR, to
obtain hierarchically the higher order contribution in R/d to its motion. The
value of the peak of the central bead in the experiment s can be estimated
by the maximum displacement of the left bead

x
(1)
L,max =

3Rε

2de
. (4)

This argument implies that the leading order scaling of each peak in a cycle,
and hence of s, is 1/d. The argument has the advantage of showing how
the hydrodynamic interaction tensor comes into play explicitly after a trap
switches its position.
In the same linear approximation, the coupled equations (eq.1) from the main
text can even be solved directly in a straightforward way, and the resulting
maximum displacement is:

xL,max =
3Rε

2d

1(
1 + 3R

2d

)1+ 2d
3R

, (5)

which has the same behavior in the limit of large d/R.
Strictly speaking, this result is applicable in the regime τ >> τ0, in which

the beads have the time to fully relax in the trap potentials. In the opposite
limit, τ << τ0, since the subcycle ends while the central bead is still moving
away from the center of its trap, the maximum position can be estimated
using the same solution, x

(1)
L (t), by the position assumed by the central bead

at the end of this subcycle, i.e. the instant t = τ . Thus as

x
′(1)
L,max =

3Rε

2d

τ

τ0
e
− τ
τ0 , (6)

and the scaling with d is unaffected.

Relating the observables δ2 and δinv with the

mean force.

We summarise here how the procedure to relate the experimental data to the
induced flow.
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Supplementary Figure S1: Converting observables into mean force.
This scheme illustrates the procedure used to obtain the mean force from
the experiments, by means of simulations. Step 1: Because of the different
shapes of the mean cycles for different values of τ , we define two different
observables δ2 and δinv to quantify the asymmetry in the displacements for
the central bead. The peaks which enter in the definitions are indicated
with red arrows. Step 2: (a) We analyze the mean cycle of experiments
and simulations, extracting each observable at varying ε. We also calculate
directly the temporal average 〈∆x〉 for the position of the central bead. (b)
Comparing these results and eliminating the dependence from ε, we find
that there exist a one to one mapping between each observable and the
temporal average 〈∆x〉. (c) Using this relation the curve of each observable
as a function of ε can be converted into a curve of the mean position as a
function of ε. Step 3: using Hooke’s law we convert the mean displacement
into a mean force as a function of ε.
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Scaling with τ

0.1 1
ε (µm)

1e-06

0.0001

0.01

1

F
m

ea
n (

pN
)

τ=20 ms
τ=40 ms
τ=80 ms
τ=160 ms
τ=320 ms
τ=640 ms

1
ε (µm)

1e-05

0.0001

0.001

0.01

0.1

F
m

ea
n (

pN
)

experiment
theory

(a) (b)

Supplementary Figure S2: Scaling law for the mean force at varying
τ . (a) Plot on log-log scale of the simulated mean displacement from the
equilibrium position of the central bead. The curve is a power law with
different exponents for different values of τ . In our model the exponent varies,
and increases monotonically for increasing τ . In the limit of small τ the mean
displacement follows a power law with exponent close to 2 (dashed line),
which resembles the behavior of the Golestanian swimmer. (b) Comparison
between experimental and theoretical data for τ = 320 ms on log-log scale.
Due to the large error bars on the experimental curve, the determination of
the exponent from the experiment is subject to large uncertainties.
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Intrinsic Swimmer

Figure S3 shows a comparison of our model with simulations of an analogous
intrinsic swimmer.
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Supplementary Figure S3: Comparison of the propulsive forces for
extrinsic and intrinsic swimmers. The extrinsic swimmer is studied
experimentally and numerically in this work, whereas we can only study
the intrinsic swimmer, actuated by two-state springs, numerically. The plot
shows the mean force with varying ε, for simulations of the two models, with
parameters d = 6µm τ = 80ms. The difference between the two swimmers is
only quantitative.
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