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1 Hydrogels 
 
1.1 - Synthesis  
  The hydrogels are obtained by free radical polymerization 
as described in part 3a of the main article replacing the 
ferrofluid by an aqueous solution of trisodium citrate (Na3Cit) 
at a concentration 8.10-3 mol.L-1. The range (0.5-2%) of cross-
linker ratio is chosen for the following reasons:  
(i) Below CL = 0.5%, the gels are too soft to be manipulated 
(ii) Above CL = 2%, PAM hydrogels are known to present 
local heterogeneities of cross-linkers.1,2,3 
 
1.2 Swelling of the hydrogel 
 At the end of the synthesis, the hydrogel is out of 
thermodynamical equilibrium. Placed inside a water bath at the 
same concentration [Na3Cit] as the synthesis medium, it 
absorbs a large volume of water. The swelling equilibrium is 
reached when the hydrogel mass does not evolve anymore 
(typically after 3 weeks). Before reaching equilibrium, the bath 
is changed several times in order to accelerate the equilibration 
process. When equilibrium is reached, the swollen gel is 
weighed (mswollen), then dried at 70°C during 12 hours, and 
weighed again (mdried). mdried is very close to the mass of 
polymer mpolymer because the polymerization yield is measured 
equal to 98%. This allows to determine the swelling ratio G HG

equil  
at equilibrium through mswollen − mdried( ) m polymer = m H2O m polymer . 
G HG

equil  depends on the degree of cross-linking CL (see Table 
S1). It is related to the volume ratio of polymer at equilibrium 
through ϕ AM

equil = ρ H2O ρ G HG
equil  with ρ ρ H2O  = 1.35, ρ being the 

polymer density. The same formula stands at the end of the 
synthesis: ϕ AM

synth  = ρ H2O ρG HG
synth  where ϕ AM

synth  and G HG
synth  are the 

volume ratio of polymer and the swelling ratio in the 
preparation state (after cross-linking and before swelling). 
 
1.3 –Swelling pressure of hydrogels and mesh size of the 
hydrogel polymeric array 
 Once G HG

equil  is measured, it is possible to calculate the 
initial swelling pressure Πswl

HG  (at polymer volume fraction ϕ AM  
= ϕ AM

synth ) following Flory-Rehner theory knowing the Flory 
parameter χ . It is also possible to calculate the number of 
monomers NC between two cross-links and to estimate the 
mesh size of the polymeric network ξequil either from the 
volume density of cross-links or from the gyration radius of a 
polymer branch between two cross-links that gives very similar 
results. All the results are summed up in Table S1 for the three 
cross-linking ratios CL used here. 

 

CL 
(%)

G HG
synth ϕAM

synth
 

(%) 

 
G HG

equil  

 

ϕAM
equil  

(%) 
Nc  = 

Mc / M 
ξequil 
ξΘ 

(nm) 

ξsynth  

(nm) 
Πswl

HG  
(kPa)  

0.5 25.9 2.78 74.4 0.99 1.55103 24.0, 
23.0 

16.8 3.60 

1 25.4 2.83 54.0 1.35 8.3 102 17.5, 
16.5 

13.4 3.52 

2 24.9 2.88 38.9 1.87 4.2 102 12.5, 
12.0 

10.8 2.93 

 
Table S1- Characteristics of the hydrogels – CL cross-linking ratio; 
G HG

synth  and ϕ AM
synth  : swelling ratio and polymeric volume ratio of the 

hydrogel determined immediately after synthesis; G HG
equil  and ϕ AM

equil : 
swelling ratio and polymeric volume ratio at swelling equilibrium; Nc is 
the number of monomers between two cross-links, Mc being the molar 
mass of polymer between cross-links deduced at equilibrium from eqn 
(S4) and M the molar mass of monomer AM; ξequil

 is the mesh size of 
the hydrogel at swelling equilibrium deduced from eqn (S5), ξΘ the 
mesh size of PAM in a Θ solvent; ξsynth is the mesh size of the hydrogel 
immediately after synthesis, Π swell

HG the initial swelling pressure of the 
hydrogel at ϕ AM  = ϕ AM

synth . 
 
 The thermo-dynamical equilibrium of a neutral polymeric 
array, with a homogeneous distribution of reticulation nodes is 
ruled by a balance between osmotic and elastic forces. The 
swelling pressure of the hydrogel Πswl is given by 4,5 : 

 Πswl
HG = − 1

V1

μ1
gel − μ1

bath( )= Πmix
HG − Πel

HG             (SI.1) 

where μ1
gel  (resp. μ1

bath) is the chemical potential of water 
inside the hydrogel (resp. inside the bath), V1 is the molar 
volume of the aqueous solvent (= 18 cm3/mol), Π mix

HG  is the 
contribution coming from entropic and enthalpic effects due to 
the polymer/solvent mixing, Π el

HG  is the elastic pressure 
associated to the stretching of the polymeric chains with respect 
to their reference molten state (without solvent). We forget here 
any contribution coming from electrostatic interactions 
between chains (see end-note (*)). The mixing pressure writes: 

          Π mix
HG = −

RoT
V1

ln 1−ϕAM( )+ϕAM + χϕAM
2( ) 

                   ≅
RoT
V1

1
2

− χ
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ϕAM

2   if ϕAM<<1            (SI.2) 

where Ro is the Perfect Gas constant, T the temperature in 
Kelvin, ϕAM the volume fraction of polymer inside the hydrogel 
and χ the Flory parameter which is here equal to 0.47.6,7 
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Figure S1 – Various pressures of hydrogel and elastic modulus – 
Mixing pressure Π mix

HG  (eqn (S2) - full line) and elastic pressure Π el
HG  

(eqn (S3) - dashed line) as a function of the polymer concentration ϕAM. 
In the synthesis conditions, ϕAM = ϕ AM

synth  and the swelling pressure 
Π swell

HG  = Π mix
HG - Π el

HG . At swelling equilibrium, ϕAM = ϕ AM
equil  and 

Π mix
HG = Π el

HG (solid square). It is proportional to the elastic modulus of 
the swollen hydrogel at equilibrium. A coefficient 0.67 is found while 
comparing to the measurement at CL = 1% of ref 8. 

 The elastic contribution is related to the entropy of the 
stretched chains. Supposing an isotropic swelling with a 
homogeneous distribution of nodes in the hydrogel, we obtain : 

                  Πel
HG = RoTν c ϕ AM

synth ϕ AM

ϕ AM
synth

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
3

− 1
2

ϕ AM

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥              (SI.3) 

where νc = ρ/Mc is the volume concentration of nodes in the 
dry hydrogel (in mol/vol. of polymer), Mc being the molar mass 
between cross-links. 
 When the system is out of equilibrium, eqn (S1) governs 
the swelling of the hydrogel. Figure S1 illustrates the ϕAM-
dependence of Π mix

HG  (full line) and Π el
HG  (dashed line) at CL = 

1%. Just after synthesis, Π mix
HG  given by eqn (S2) with ϕ AM  = 

ϕ AM
synth  is much larger than Πel

HG ϕ AM
synth( ) as it corresponds to a 

deformation still small with respect to the melt. In that case, 
because Πswl

HG  is positive, the hydrogel absorbs water from the 
swelling bath. As the hydrogel swells, ϕAM  decreases, Π mix

HG  
decreases and Π el

HG  slightly increases, the hydrogel swells less 
and less. When Πswl

HG = 0, that is when Π mix
HG = Π el

HG , the 
equilibrium is reached, ϕ AM  = ϕ AM

equil  and the swelling stops. 
 The volume fraction of polymer inside the hydrogel at the 
end of the synthesis is almost the same for all the samples, the 
slight variation in Table S1 resulting from the different CL. The 
volume ratio ϕAM

equil  is deduced from the measurement of the 
swelling ratio G HG

equil . It allows obtaining Mc at equilibrium (see 
Table S1) through: 

    M c = V1ρ

1
2

ϕ AM
equil − ϕ AM

synth 2
3ϕ AM

equil 1
3⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

ln 1− ϕ AM
equil( )+ ϕ AM

equil + χϕ AM
equil 2          (S4) 

We can thus deduce the number of monomers Nc = Mc /M 
between two cross-links, M = 71 g/mol being the molar mass of 
monomer AM. We obtain also the mesh size ξequil at swelling 
equilibrium from: 

               ξ equil = N aν cϕAM
equil[ ]

1
3 .             (S5) 

 Let us note that the state of the system being close to Θ 
conditions (χ = 0.47 ~ 1/2) the mesh size ξequil at swelling 
equilibrium is closer to ξ Θ = aN

1
2  than to the Flory mesh size 

ξ F =aN
3

5 , a = 0.58 nm being the length of monomer AM.9,10  
 
 The experimental evidence that the structure of hydrogels is 
homogeneous (in the synthesis conditions and at swelling 
equilibrium) is provided by the fact that the effective 
concentration of cross-links at swelling equilibrium (~ 1/Nc ) is 
found proportional to CL. The mesh size after the synthesis is 
here given by ξ synth =ξ equil G HG

synth G HG
equil( )1 3

. 
 
2 Ferrofluids 
 
2.1 Synthesis  
 The magnetic nanoparticles are synthesized by co-
precipitation in an aqueous ammonia solution of FeCl2 and 
FeCl3 salts that leads to colloidal magnetite which is fully 
oxidized to maghemite by Fe(NO3)3 in acidic medium.11 The 
experimental conditions have been chosen in order to prepare 
particles with an average diameter of the order of 6-12 nm. A 
size-sorting process allows then a fractionation of the 
population of nanoparticles according to their diameter.12 
Finally the initially positively charged nanoparticles are coated 
with citrate species by addition of tri-sodium citrate (Na3Cit) in 
order to have negative surface charges associated to ionized 
carboxylate groups for pH ranging between 6 to 10. The citrate 
coated particles yield to stable dispersions in water at pH 7, the 
electrostatic inter-particle repulsion preventing the nanoparticle 
aggregation. The adsorption equilibrium of citrate gives a 
residual ionic strength due to unadsorbed (free) citrate species 
Cit3- and their Na+ counterions. To ensure the citrate coating, 
one needs to keep free citrate salt concentration [Na3Cit] above 
a given minimal value, which depends on pH.13 At pH 7, the 
adsorption plateau corresponds to a free citrate concentration 
inside the solution [Na3Cit] ≥ 2. 10-3 mol.L-1.  
 
2.2 SANS experiments :  
 The size and structure of FFA and FFB dispersions have 
been determined by SANS experiments performed at the LLB 
facility (CEA-Saclay, France) on the PAXY spectrometer, in 
the wave-vector range 0.0065 Å-1 ≤ q ≤ 0.15 Å-1. In pure light 
water, the intensity after subtraction of the incoherent 
background is largely dominated by the nuclear contribution of 
the particles.14 The intensity I(q,Φ) scattered by the dispersion 
of roughly spherical nanoparticles  at volume fraction Φ writes: 

  I (q,Φ)
Φ

=Δρ 2 F q( )S q,Φ( )   (S6) 

where Δρ2 = 5.67 1021 cm-4 is the neutron nuclear contrast of 
the nanoparticles with respect to H2O, F(q) is the form factor of 
the nanoparticles and S(q,Φ) the structure factor of the colloidal 
dispersion. In the dilute regime and if the inter-particle 
interactions are negligible, the structure factor of the 
dispersions is equal to 1. The scattered intensity is then 
proportional to F(q). 
 Figure S2a presents the SANS scattered intensity (divided 
by Φ) for sample FFB at various Φ and low ionic strength 
[Na3Cit] = 8.10-3 mol.L-1. The intensity at Φ=0 is proportional 
to F(q) and gives the size and shape characterization deduced 
from such an experiment. The plateau at low q in the Guinier 
range (q < 2.10-2 Å-1) obtained at the lowest volume fraction 
confirms that for Φ < 1%, the interactions between 
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nanoparticles can be almost neglected in the experimental 
conditions. At large q (q > 6.10-2 Å-1) in the so-called Porod 
regime, I(q,Φ)/Φ  roughly decreases as q-4 whatever Φ, which 
is characteristic of solid particles with a sharp interface. Figure 
S2a presents the best fit of the form factor of the FFB particles, 
assumed spherical with a lognormal distribution of median 
diameter dO

scat  = 7 nm and polydispersity σ scat  = 0.26 (see 
Table S2 for FFA characteristics). 
 

 
 

 
Figure S2 SANS probing of FFB ferrofluids at various Φ - The solid 
line is the form factor of the nanoparticles (see text and Table 2).  
(a) Reduced scattering intensity I(q, Φ)/ Φ versus q at various Φ;  
(b) Structure factor of the nanoparticles S(q, Φ) versus q at various Φ. 

 For volume fractions Φ > 1%, the inter-particle interactions 
are no longer negligible and the structure factor S(q,Φ) in eqn 
(S6) is no more equal to 1. Figure SI 2.b provides the structure 
factor S(q,Φ) of three dispersions at volume fractions Φ = 1%, 
3% and 7%, based on the same nanoparticles (FFB) at [Na3Cit] 
= 8.10-3 mol.L-1. In the thermodynamic limit (for q → 0), the 
structure factor tends to the compressibility of the system. 
Figure 2 shows that it decreases as the volume fraction 
increases, which means that the inter-particle interaction is 
repulsive on average. The maximum of S(q) at qmax, associated 
to the most-probable distance lmp = 2π/qmax between scattering 
entities inside the dispersion, increases in amplitude and 
simultaneously moves towards higher qmax values. If the inter-
particle interaction is repulsive on average, the nanoparticles 
are homogeneously dispersed inside the dispersion. Then the 
most probable distance 2π/qmax is also equal to the mean inter-
particle distance lmean, related to the volume fraction Φ of the 
dispersion and the median diameter d0 of particles through 

lmean = do
π

6Φ
3 . For Φ = 3%, lmp is ~ 196 Å (qmax ~ 0.032 Å-1) 

and lmean =212 Å. For Φ = 7%, lmp is ~ 161 Å (qmax ~ 0.039 Å-1) 
and lmean is 160 Å. The good agreement between those two 
estimates in our ferrofluid dispersions shows that there are 

strong repulsive interaction between our nanoparticles at 
[Na3Cit] = 8. 10-3 mol.L-1. 
 

 dO
scat  

�� 

σ scat dO
bir  

�� 

σ bir
 δno τo  

(μs) 
α � 

�� 
δ 
�m 

FFA 9.2 0.35 11.5 0.25 0.1 5.4 0.93 12 4.5 

FFB 7.0 0.26 9.1 0.2 0.07 1.8 0.95 11 5 
 
Table S2 - Characteristics of the ferrofluid nanoparticles – 
Parameters deduced by an adjustment to a log-normal distribution of 
diameters, of SANS ( dO

scat , σ scat ) and static birefringence ( dO
bir , σ bir ) 

measurements; δno is the intrinsic anisotropy of the nanoparticles15; τo 
characteristic relaxation time and α stretched exponent are deduced 
from the stretched exponential adjustment of birefringence relaxation 
using eqn (S8); d average nanoparticle diameter and δ electrostatic 
screening length are deduced from a Carnahan-Starling adjustment of 
the Φ-dependence of ferrofluid osmotic pressure Π(Φ) as in 16. 

2.3 Osmotic equilibrium of Ferrofluids 
 In the ferrofluid dispersions used here, the magnetic 
nanoparticles, due to their citrate coating, are in strong 
repulsive interaction. The osmotic pressure ΠFF  due to the 
nanoparticle/solvent mixing can be described in terms of 
repulsive effective Hard-Spheres following the Carnahan-
Starling formalism16 : 

      
ΠFF V
Φ kT

=
1+ Φ+ Φ 2 + Φ 3

1− Φ( )3          (S7) 

where V = π
6

d 3, d being an averaged nanoparticle diameter. In 

the limit Φ → 0, the right hand term is equal to 1 and eqn (S7) 
reduces to the Perfect Gas law, also valid in the limit of low Φ 
if the balance of inter-particle interaction is null (i.e. if the 
second virial of the osmotic pressure equals zero). Here the 
balance is repulsive and the repulsions are taken into account in 
the right hand term of eqn (S7) replacing Φ by an effective 
volume fraction Φeff, which includes the range of the 
repulsion.16 Indeed the repulsion is strong enough to consider 
the nanoparticles as Hard-Spheres with an effective diameter d 
+ 2δ, where δ  is the electrostatic screening length. It leads to 
an effective volume fraction Φeff = Φ (1 + 2δ /d)3. Figure 2 of 
the main text presents such fits for the two ferrofluids used 
here. We obtain d = 12 nm and δ =  4.5 nm for FFA (resp. d = 
11 nm and δ  = 5 nm for FFB). 
 
2.4 - Magnetic and magneto-optical properties  
 Each nanoparticle bears a magnetic moment  

 μ  which is of 
the order of 104 Bohr magnetons and an optical anisotropy axis 
 
 

e . Its modulus  
 μ = mSVmagn  is proportional to the magnetic 

volume Vmagn of the nanoparticles and to mS the magnetization 
of the nanoparticles material. Under a large applied field  

 
H , 

this magnetic moment  
 μ  orientates along the field direction. In 

a liquid dispersion of 10 nm-sized γ-Fe2O3 nanoparticles, the 
magnetic torque also rotates mechanically the core of the 
nanoparticle together with its optical axis. At equilibrium in 
large fields, the optical axis   

 
e  becomes parallel to  

 
H . The 

alignment of  
 μ  along  

 
H  confers to the dispersion a 

macroscopic magnetization M. The alignment of the optical 
axis  

 
e  of all the nanoparticles gives a macroscopic optical 

birefringence Δn to the dispersion. At saturation, all the 
magnetic moments and all the optical axes are aligned along 
 
 

H , then M = MS = mSΦ and Δn = ΔnS = δnoΦ, δno being the 



 4

intrinsic optical anisotropy parameter of the nanoparticles.17 
For intermediate fields and low Φ’s, M and Δn are well 
described by a Langevin’s formalism with in particular Δn = 
ΔnSL2(ζ ), where L2(ζ) = 1-3L(ζ)/ζ,  L(ζ) = ctanh(ζ)-1/ζ and 
ζ =

μoμH
kT

 being respectively the Langevin’s function and the 

Langevin’s parameter. However, the shape of Δn(H) is 
modified by the size distribution of the nanoparticles.17 In 
ferrofluids at low Φ’s , the experimental measurements of 
magneto-optical birefringence as a function of the applied field 
enable the determination of ( dO

bir ,σ bir ) by comparison to the 
theoretical Langevin formalism taking into account a log-
normal size-distribution (see Table S2 and best fit of  Δn(H) for 
FFA in fig.6).  
 The magneto-optical birefringence Δn(H) is measured as in 
15 up to a few 100 kA/m. Figure 6 of main text presents the 
variations of Δn(H) normalized by its volume fraction Φ for a 
sample based on FFA nanoparticles at [Na3Cit] = 8. 10-3 mol.L-

1 for Φ = 1% and the corresponding fit. The maximum value 
ΔnS of Δn is proportional to the volume fraction Φ, the 
proportionality coefficient δno being dependent on the 
nanoparticle size distribution.15 The values of δno for FFA and 
FFB are given in Table S2. Figure 6 of main text presents also 
the reduced variations of Δn(H)/ΔnS at Φ = 7%. The shape of 
the curve is almost independent on Φ in our range of volume 
fractions expressing the weak influence of inter-particle 
interactions on magneto-optical birefringence in the present 
repulsive regime.  
 
 The ferrofluid solutions can be also probed from a dynamic 
point of view. Using the same experimental device as the one 
described in 18 , we analyze the optical rotational answer of the 
colloid to a pulse of magnetic field of small amplitude (H = 4.8 
kA/m) and duration (~100 ms). The magnetic particles, being 
suspended in a liquid, align along the field direction during the 
pulse. It leads to a birefringence which, in low-field 
approximation, writes ΔnLF =δnOΦζ 2 /15. Here ζ ≤ 0.14 and 
∆nLF is at most of the order of 10-5. The temporal analysis of 
the birefringence relaxation at the cut-off of the field is 
performed in terms of a stretched exponential decay of optical 
intensity I(t) (see figure S3a): 

              I(t) = Ioe
−

τ
τ o

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

         (S8)  

with I(t) ∝ sin ϕ, ϕ being the (here time-dependent) phase-lag 
of the birefringent sample. We can determine three physical 
quantities: the initial intensity Io, the characteristic relaxation 
time τo and the stretched exponent α.  Providing that the phase-
lag ϕ of the birefringent sample is small enough, the intensity Io 
is proportional to ΔnLF. The condition ϕ =   2πeΔnLF/λ << 1, 
where e is the thickness of the optical sample cell (here of the 
order of 100 μm) and λ the optical wave-length (here = 0.633 
μm), is easily fulfilled (ϕ  ≤ 10-2). Thus we obtain in the liquid 
suspension: 
- for the intensity Io of the magneto-optical pulse  

          Io ∝ Φζ 2 ∝ ΦVmagn
2           (S9) 

- for the time τo, which is proportional to the characteristic time 
of rotational diffusion: 

                              τ o =
ηVH

kT
                 (S10) 

with η the viscosity of the liquid carrier and VH the 
hydrodynamic volume of the nanoparticles. 
- for the exponent α,  which is related to the width of the 
distribution of relaxation times in the dispersion 

                                 α ≈ 1                 (S11) 

for samples based on nanoparticles of thin distribution of sizes. 
This α value is decreasing towards 0.6 in polydisperse or 
agglomerated liquid dispersions18,19 and may reach a value of 
0.3 in arrested thixotropic gels18 or glass-forming systems19. 
 The stretched-exponential nature of the relaxation of the 
magneto-optical signal is illustrated in the inset of figure S3a 
for sample FFA at Φ = 3% and [Na3Cit] = 8. 10-3 mol.L-1. The 
almost linear variation of -ln(I/Io) as a function of time t in this 
log-log representation, shows that there is only one stretched 
exponential relaxation process involved in the decay of 
intensity. The adjusted straight line crosses the horizontal axis   
- ln(I/Io) = 1 at t = τo = 5.4 μs. It has a slope α = 0.93. In our 
range of Φ and within our experimental accuracy, this 
relaxation time is found here independent of Φ. Table S2 gives 
τo (denoted τ o

FF ) and α, obtained for the two kinds of samples 
based on FFA and FFB nanoparticles. 
  

 

 
Figure S3 – Dynamic birefringence of ferrofluids  
 a – Relaxation of the optical intensity due to the birefringence of the 
dispersion under applied magnetic field (FFA with  [cit] = 8 10-3 mol/L 
and Φ = 3%). The inset illustrates that the decay is a stretched 
exponential by plotting – ln(I/I0) as a function of time t in a log-log 
representation.  
b – Distribution of characteristic relaxation times for FFA and FFB 
ferrofluids as obtained from eqn (S13). 

In Table S2, the values of α are rather close to 1 but different 
from 1, it expresses that the relaxation is non-exponential. Such 
a non-exponential relaxation is usually asserted to the existence 
of a distribution of times τ inside the ferrofluid. In these liquid 
solutions it is associated to the polydispersity in hydrodynamic 
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size of the nanoparticles. This temporal relaxation can be 
inverted like in 20. It leads to a distribution Q ln τ( )( ) of 
relaxation times τ such that: 

   I(t) = Io τ( )∫ e
− t

τ Q(ln(τ ))d(ln(τ ))              (S12) 

  Providing the approximations Io(τ) ≈ Io ≈ cst for a given 
sample, e−t /τ  = 1 for t < τ and e−t /τ  = 0 for t > τ, it comes 19  : 

             Q(lnτ ) = −
d I(t) Io( )

d(ln t)
= α τ

τ o

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α

e
− τ

τ o

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

    (S13) 

 Figure SI3.b plots these distributions of characteristic times 
(denoted Qτ all along this text) for the two kinds of 
nanoparticles employed here FFA and FFB. Note that in our 
experimental range of Φ and [Na3Cit] the obtained distributions 
are independent of Φ and [Na3Cit]. 
 
3 – Rotational diffusion of nanoparticles within ferrogels 
probed by dynamical birefringence 
 
 Such a dynamical probing may be also performed in 
ferrogels. Here below the index “FG” stands either for “synth” 
or “equil” depending on the state of the ferrogel either in the 
synthesis conditions or at swelling equilibrium. 

 
 

 
Figure S4 - Dynamic birefringence ferrogels FGA - CL = 0.5% – 
Reduced distribution of characteristic times Qτ Φ FG

rot Φ synth  inside 
ferrogels at various Φ synth , in the synthesis conditions (a) and at 
swelling equilibrium (b) as compared to pure ferrofluid FFA. 

 Performing two experiments, one with a ferrogel and one 
with its corresponding ferrofluid, at the same volume fraction 
ΦFF = ΦFG and with the same sample thickness e, it is also 

possible to compare the respective initial intensities I o
FG  and 

I o
FF . I o

FG  is here much lower than I o
FF  and at most equal to 

I o
FF /10. Using eqns (S10) and (S11), and with the hypothesis 

that the ratio of magnetic volumes is proportional to the ratio of 
hydrodynamic volumes, we obtain: 

              
I o

FG

I o
FF =

ΦFG
rot

ΦFF

τ o
FG

τ o
FF

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

            (S14) 

Here ΦFG
rot  is the volume fraction of rotating nanoparticles 

inside the ferrogel in the low-field experiment of birefringence 
relaxation. The ratios Io

FG Io
FF  and τ o

FG τ o
FF  being both 

measured, it is possible using eqn (S14) to deduce Φ FG
rot Φ FG  

the proportion (in volume) of nanoparticles rotating inside the 
ferrogel in this low field experiment. It is also possible to 
calculate the volume fraction ΦFG

block  of nanoparticles blocked in 
low field using ΦFG

block = Φ FG - ΦFG
rot . They are given in Tables 2, 

3 and 5 of main text for the various samples probed here. 
Figure S4 illustrates for FGA ferrogels at CL = 0.5%, the 
reduced distributions of characteristic times Qτ Φ synth

rot Φ synth  
obtained in non swollen samples at various Φ synth (see Figure 
S4a) and the corresponding distributions Qτ Φ equil

rot Φ synth  
obtained in swollen samples at various Φsynth (see Figure S4b). 
In these figures, the factors Φ synth

rot Φ synth  and Φ equil
rot Φ synth  allow 

a quantitative visualization of the nanoparticles which are 
rotating in the ferrogel with respect to those initially 
introduced. 
 
End-note 
 
(*) A fraction of charged chains could indeed arise from the 
hydrolysis of the acrylamide monomer into acrylic acid during 
the synthesis. However, this side reaction of polymerization has 
been described for PAM hydrogels synthesized at room 
temperature thanks to the base Tetramethylethylenediamine  
(TEMED) acting as a catalyst of the persulfate initiator 
decomposition but also raising the pH (which causes 
hydrolysis).21 In our case, we have deliberately chosen to 
polymerize the hydrogels with thermal initiation at 60°C thus 
without TEMED. Hence the fraction of charged monomers in 
the chains of our hydrogels due to spontaneous hydrolysis is 
estimated below 0.1%, and their effect is visible only by the 
anomalous swelling ratio of hydrogels in pure water.8 In the 
presence of a slight ionic strength (all the experiments of the 
present article were done in 8mM tri-sodium citrate), this 
polyelectrolyte effect is screened and therefore we can neglect 
the ionic contribution to the swelling pressure. 
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