Electronic Supplementary Information

Counterion dependent hydrogelation of amino acid-based amphiphiles: switching from non-gelators to gelators and facile synthesis of silver nanoparticles

Sounak Dutta, Anshupriya Shome, Sisir Debnath and Prasanta Kumar Das*

Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur, Kolkata – 700 032, India.

*To whom correspondence should be addressed. Fax: +(91)-33-24732805, E-mail: bcpkd@iacs.res.in

Synthesis of 1a. This amphiphile was prepared following the same protocol as described in our previous report.⁴ Briefly, Boc-protected L-tryptophan was coupled with *n*-hexadecylamine using dicyclohexylcarbodiimide (DCC, 1 equivalent) and catalytic amount of 4-N,N-(dimethyl) aminopyridine (DMAP) in presence of 1 equivalent of 1-hydroxybenztriazole (HOBT) in dry DCM. Boc-protected amide was then purified through column chromatography using 60-120 mesh silica gel and acetone/hexane as the eluent. Amide was then subjected to deprotection by Trifluoroacetic acid (TFA, 4 equivalents) in dry DCM. After 2h of stirring, solvents were removed on a rotary evaporator and the mixture was taken in ethyl acetate. The EtOAc part was thoroughly washed with aqueous 10% sodium carbonate solution followed by brine to neutrality. The organic part was dried over anhydrous sodium sulphate and concentrated to get the corresponding amine. The primary amine (1 equivalent) thus obtained was quaternized with excess methyl iodide using 2.2 equivalent anhydrous potassium carbonate and catalytic amount of 18-crown-6-ether in dry DMF for 2h. The reaction mixture was taken in ethyl acetate and washed with aqueous thiosulphate solution and water, respectively. The concentrated ethyl acetate part was then subjected to column chromatography using 60-120 mesh silica gel and methanol/chloroform as the eluent. Finally, it was crystallized from methanol/ether to obtain solid quaternized iodide salt, which was subjected to ion exchange on Amberlyst A-26 chloride ion exchange resin column to get the pure chloride (1a). Overall yield was ~60%. The surfactants 2a, 3a, 4a, 5a, 6a, and 7a were prepared following same experimental procedure.

Syntheses of Surfactants. The surfactants (1b-h) were prepared by using ion-exchange procedure. A hydroxide ion-exchange column was made with Dowex $1\times8-400$. This column was activated by passing 300 mL 2N sodium hydroxide solution and followed by washing with water (2L) and methanol (0.5L). Three times recrystallized **1a** (1 gm) dissolved in minimum

volume of methanol was then loaded on the column and the corresponding hydroxide form was collected as eluent by passing methanol slowly through this column. This methanolic solution of the hydroxide form was concentrated in a rotary evaporator to about 5 mL and to it 20 mL of distilled water was added. Then the solution was neutralized with equivalent amount of acid and allowed to stir for an hour. The solution was again concentrated in the rotary evaporator to ensure that no traces of methanol were present. The resulting solution was then lyophilized to obtain the surfactant with desired counter ion. The yield of the product was ~ 80-85%. The surfactants **2b-h**, **3b-h**, **4b-h**, **5b-h**, **6b-h**, and **7b-h** were prepared following similar synthetic methodologies.

All the compounds of the series 1 have same quaternary ammonium cation. So, m/z values are same for all the compounds in this series and hence the value of 1a is only given.

Compound 1a: $[\alpha]^{23}_{D}$ -29.3 (c 3.8 in CHCl₃); (Found: C, 71.28; H, 10.43; N, 8.35. Calcd (%) for C₃₀H₅₂N₃OCl: C, 71.18; H, 10.35; N, 8.30.); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 0.97-0.99 (2H, br, CH₂CH₃), 1.11-1.32 (24H, br, (CH₂)₁₂CH₂CH₃), 1.66-1.73 (2H, br, NHCH₂CH₂), 2.82-2.91 (2H, m, COCH(NMe₃)CH₂), 3.2-3.24 (2H, m, NHCH₂), 3.31 (9H, s, NMe₃) 5.60 (1H, br, NHCOCH), 7.01-7.06 (1H, br, NHCH=), 7.29-7.31 (2H, d, =CHCH=), 7.41 (1H, d, NHC(=C)CH), 7.48-7.51 (1H, d, NHC=CCH), 8.02 (1H, br, CONH), 8.39 (1H, s, CNHC); MS (ESI): *m/z* calcd for C₃₀H₅₂N₃O (the 4° ammonium ion, 100%): 470.411, found 470.3679 [M⁺].

Compound 1b: $[\alpha]^{23}{}_{D}$ -23.5 (c 3.8 in CHCl₃); (Found: C, 71.99; H, 10.85; N, 7.15. Calcd (%) for C₃₂H₅₅N₃O₃ (1 mol% crystal water): C, 70.16; H, 10.49; N, 7.67); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 0.94-1.05 (2H, br, CH₂CH₃) 1.23-1.40 (24H, br, (CH₂)₁₂CH₂CH₃), 1.69 (2H, br, NHCH₂CH₂), 1.96 (3H, s, CH₃COO), 2.92-3.01 (2H, m, COCH(NMe₃)CH₂), 3.23-

3.28 (2H, m, NHC*H*₂), 3.38 (9H, s, NMe₃), 5.82 (1H, br, NHCOC*H*), 7.07-7.17 (1H, br, NHC*H*=), 7.32-7.34 (2H, d, =C*H*C*H*=), 7.43 (1H, s, NHC(=C)C*H*), 7.54-7.57 (1H, d, NHC=CC*H*), 8.73 (1H, br, CONH), 9.84 (1H, s, CNHC).

Compound 1c: $[\alpha]^{23}_{D}$ -15 (3.5 in CHCl₃); (Found: C, 71.38; H, 10.70; N, 7.25. Calcd (%) for C₃₆H₆₃N₃O₃ (1 mol% crystal water): C, 71.60; H, 10.85; N, 6.96); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.91 (6H, t, 2CH₃,), 0.98-1.05 (4H, br, CH₂CH₃ and CH₂CH₃) 1.21-1.25 (28H, br, (CH₂)₁₂CH₂CH₃ and (CH₂)₂CH₂COO) 1.48-1.58 (4H, br, NHCH₂CH₂ and CH₂COO), 2.88-3.0 (2H, m, COCH(NMe₃)CH₂), 3.29-3.3 (2H, m, NHCH₂), 3.46 (9H, s, NMe₃) 5.91 (1H, br, NHCOCH), 7.11-7.16 (1H, br, NHCH=), 7.19-7.21 (2H, d, =CHCH=), 7.34-7.37 (1H, d, NHC(=C)CH), 7.57-7.59 (1H, d, NHC=CCH), 7.95 (1H, br, CONH), 8.34 (1H, s, CNHC).

Compound 1d: $[\alpha]^{23}_{D}$ -23 (c 3.2 in CHCl₃); (Found: C, 59.13; H, 8.46; N, 6.42. Calcd (%) for C₃₂H₅₂N₃O₃Cl₃ (1 mol% crystal water): C, 59.03; H, 8.36; N, 6.45); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.87 (3H, t, CH₃), 0.91-1.03 (2H, br, CH₂CH₃), 1.23-1.44 (24H, br, (CH₂)₁₂CH₂CH₃), 1.67 (2H, br, NHCH₂CH₂), 2.91-2.97 (2H, m, COCH(NMe₃)CH₂), 3.24-3.28 (2H, m, NHCH₂), 3.37 (9H, s, NMe₃) 5.72 (1H, br, NHCOC*H*), 7.06-7.16 (1H, br, NHC*H*=), 7.34-7.37 (2H, d, =C*H*C*H*=), 7.43 (1H, s, NHC(=C)C*H*), 7.53-7.56 (1H, d, NHC=CC*H*), 8.73 (1H, br, CONH), 8.88 (1H, s, CNHC).

Compound 1e: $[\alpha]^{23}{}_{D}$ -33 (c 4.5 in CHCl₃); (Found: C, 75.43; H, 10.14; N, 7.05. Calcd (%) for C₃₈H₅₉N₃O₃ (1 mol% crystal water): C, 73.15; H, 9.85; N, 6.73); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.97-1.03 (2H, br, CH₂CH₃), 1.25-1.35 (24H, br, (CH₂)₁₂CH₂CH₃), 1.42-1.56 (2H, br, NHCH₂CH₂), 2.81-2.97 (2H, m, COCH(NMe₃)CH₂), 3.27-3.33 (2H, m, NHCH₂), 3.37 (9H, s, NMe₃), 3.64 (2H, s, CH₂COO), 5.61 (1H, br, NHCOCH), 7.08-7.19 (1H,

S4

br, NHC*H*=), 7.29-7.38 (5H, m, Ph), 7.46-7.55 (2H, m, =C*H*C*H*=), 7.57 (1H, s, NHC(=C)C*H*), 7.61-7.87 (1H, d, NHC=CC*H*), 7.89 (1H, br, CONH), 8.65 (1H, s, CNHC).

Compound 1f: $[\alpha]^{23}{}_{D}$ -23 (c 4.2 in CHCl₃); (Found: C, 74.65; H, 9.31; N, 6.21. Calcd (%) for C₄₂H₆₁N₃O₃ (1 mol% crystal water): C, 74.85; H, 9.42; N, 6.23); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.97-1.03 (2H, br, CH₂CH₃), 1.25-1.38 (24H, br, (CH₂)₁₂CH₂CH₃), 1.46-1.56 (2H, br, NHCH₂CH₂), 2.81-2.9 (2H, m, COCH(NMe₃)CH₂), 3.22-3.28 (2H, m, NHCH₂), 3.46 (9H, s, NMe₃), 4.09 (2H, s, CH₂COO), 5.58 (1H, br, NHCOCH), 7.08-7.60 (12H, m, all aromatic CH), 7.87 (1H, br, CONH), 8.69 (1H, s, CNHC).

Compound 1g: $[\alpha]^{23}_{D}$ -23 (c 4.7 in CHCl₃); (Found: C, 72.67; H, 10.09; N, 7.06. Calcd (%) for C₃₇H₅₇N₃O₃ (1 mol% crystal water): C, 72.87; H, 9.75; N, 6.89); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 0.88-0.99 (2H, br, CH₂CH₃), 1.18-1.29 (24H, br, (CH₂)₁₂CH₂CH₃), 1.49-1.64 (2H, br, NHCH₂CH₂), 2.71-2.97 (2H, m, COCH(NMe₃)CH₂), 3.17-3.25 (2H, m, NHCH₂), 3.42 (9H, s, NMe₃), 5.79 (1H, br, NHCOCH), 7.03-8.02 (10H, m, all aromatic CH), 8.45 (1H, s, CONH), 8.87 (1H, s, CNHC).

Compound 1h: $[\alpha]^{23}{}_{D}$ -37.6 (c 4.9 in CHCl₃); (Found: C, 70.67; H, 10.01; N, 6.86. Calcd (%) for C₃₇H₅₇N₃O₄ (1 mol% crystal water): C, 71.0; H, 9.5; N, 6.71); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.87 (3H, t, CH₃), 0.97-1.01 (2H, br, CH₂CH₃), 1.24-1.37 (24H, br, (CH₂)₁₂CH₂CH₃), 1.56-1.69 (2H, br, NHCH₂CH₂), 2.88-2.96 (2H, m, COCH(NMe₃)CH₂), 3.3-3.39 (2H, m, NHCH₂), 3.47 (9H, s, NMe₃), 5.32 (1H, br, NHCOCH), 6.8-7.89 (9H, m, all aromatic CH), 8.68 (1H, s, CONH), 9.32 (1H, s, CNHC).

All the compounds of the series 2 have same quaternary ammonium cation. So, m/z values are same for all the compounds in this series and hence the value of 2a is only given.

Compound 2a: $[\alpha]^{23}_{D}$ +15.1 (c 2.02 in CHCl₃); (Found: C, 71.72; H, 11.09; N, 5.92.Calcd (%) for C₂₈H₅₁N₂OCl: C, 71.99; H, 11.00; N, 6.00.); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.80 (3H, t, CH₃), 1.08-1.18 (28H, br, (CH₂)₁₄CH₃), 2.82-2.86 (2H, m, COCH(NMe₃)CH₂), 3.15-3.18 (2H, m, NHCH₂), 3.4 (9H, s, NMe₃), 5.63-5.68 (1H, t, NHCOCH), 7.18-7.26 (5H, m, Ph), 8.68 (1H, s, CONH); MS (ESI) *m/z* calcd for C₂₈H₅₁N₂O (the 4° ammonium ion, 100%): 431.4001, found 431.2771 [M⁺].

Compound 2b: $[\alpha]^{23}{}_{D}$ +13.1 (c 5.1 in CHCl₃); (Found: C, 70.67; H, 10.95; N, 5.46. Calcd (%) for C₃₀H₅₄N₂O₃ (1 mol% crystal water): C, 70.82; H, 11.09; N, 5.51); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.84 (3H, t, CH₃), 0.99-1.24 (28H, br, (CH₂)₁₄CH₃), 1.88 (3H, s, CH₃COO), 2.87-2.93 (2H, m, COCH(NMe₃)CH₂), 3.07-3.21 (2H, m, NHCH₂), 3.43 (9H, s, NMe₃), 5.76 (1H, t, NHCOC*H*), 7.26-7.32 (5H, m, Ph), 8.97 (1H, s, CONH).

Compound 2c: $[\alpha]^{23}_{D}$ +8.6 (c 4.6 in CHCl₃); (Found: C, 72.11; H, 11.32; N, 4.92. Calcd (%) for C₃₄H₆₂N₂O₃ (1 mol% crystal water): C, 72.29; H, 11.42; N, 4.96); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (6H, t, 2CH₃), 0.98-1.31 (32H, br, (CH₂)₁₃CH₃ and CH₃(CH₂)₃CH₂COO), 1.59-1.61 (2H, m, NHCH₂CH₂), 2.24 (2H, t, CH₂COO), 2.88-2.94 (2H, m, COCH(NMe₃)CH₂), 3.07-3.23 (2H, m, NHCH₂), 3.46 (9H, s, NMe₃), 5.84 (1H, t, NHCOCH), 7.23-7.32 (5H, m, Ph), 9.29 (1H, s, CONH).

Compound 2d: $[\alpha]^{23}_{D}$ +10.2 (c 5.1 in CHCl₃); (Found: C, 59.11; H, 8.49; N, 4.76. Calcd (%) for C₃₀H₅₁Cl₃N₂O₃ (1 mol% crystal water): C, 58.87; H, 8.73; N, 4.58); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 1.00-1.25 (26H, br, (CH₂)₁₃CH₃), 1.41-1.63 (2H, m, NHCH₂CH₂), 2.88-2.95 (2H, m, COCH(NMe₃)CH₂), 3.06-3.23 (2H, m, NHCH₂), 3.48 (9H, s, NMe₃), 5.84 (1H, t, NHCOCH), 6.90-7.60 (5H, m, Ph), 8.89 (1H, s, CONH).

Compound 2e: $[\alpha]^{23}_{D}$ +6.6 (c 5.6 in CHCl₃); (Found: C, 73.77; H, 10.56; N, 4.93. Calcd (%) for C₃₆H₅₈N₂O₃ (1 mol% crystal water): C, 73.93; H, 10.34; N, 4.79); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.99-1.25 (26H, br, (CH₂)₁₃CH₃), 1.74 (2H, br, NHCH₂CH₂), 2.91-3.12 (2H, m, COCH(NMe₃)CH₂), 3.20-3.23 (2H, m, NHCH₂), 3.41 (9H, s, NMe₃), 3.48 (2H, s, CH₂COO), 5.66 (1H, t, NHCOCH), 7.26-7.33 (10H, m, all aromatic CH), 8.82 (1H, s, CONH). **Compound 2f**: $[\alpha]^{23}_{D}$ +5 (c 5.0 in CHCl₃); (Found: C, 75.79; H, 9.51; N, 4.36. Calcd (%) for C₄₀H₆₀N₂O₃ (1 mol% crystal water): C, 75.67; H, 9.84; N, 4.41); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.89-1.25 (28H, br, (CH₂)₁₄CH₃), 2.7-2.76 (2H, m, COCH(NMe₃)CH₂), 2.91-2.99 (2H, m, NHCH₂), 3.07 (9H, s, NMe₃), 4.02 (2H, s, CH₂COO), 5.12 (1H, t, NHCOCH), 7.20-8.02 (12H, m, all aromatic CH), 8.47 (1H, s, CONH).

Compound 2g: $[\alpha]^{23}{}_{D}$ +11.3 (c 4.6 in CHCl₃); (Found: C, 73.43; H, 10.05; N, 5.07. Calcd (%) for C₃₅H₅₆N₂O₃ (1 mol% crystal water): C, 73.64; H, 10.24; N, 4.91); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.98-1.25 (26H, br, (CH₂)₁₃CH₃), 1.77 (2H, br, NHCH₂CH₂), 2.89-2.95 (2H, m, COCH(NMe₃)CH₂), 3.06-3.31 (2H, m, NHCH₂), 3.44 (9H, s, NMe₃), 5.87 (1H, t, NHCOCH), 7.24-7.42 (10H, m, all aromatic CH), 9.01 (1H, s, CONH).

Compound 2h: $[\alpha]^{23}_{D}$ +9.4 (c 4.2 in CHCl₃); (Found: C, 71.48; H, 9.92; N, 4.63.Calcd (%) for C₃₅H₅₆N₂O₄ (1 mol% crystal water): C, 71.63; H, 9.96; N, 4.77); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.87$ (3H, t, CH₃), 0.96-1.24 (28H, br,(CH₂)₁₄CH₃), 2.89-2.91 (2H, m, COCH(NMe₃)CH₂), 3.07-3.22 (2H, m, NHCH₂), 3.41 (9H, s, NMe₃), 5.55 (1H, t, NHCOCH), 6.8-7.91 (9H, m, all aromatic CH), 8.82 (1H, s, CONH).

All the compounds of the series **3** have same quaternary ammonium cation. So m/z values are same for all the compounds in this series and hence the value of **3a** is only given.

Compound 3a: (Found: C, 66.84; H, 12.18; N, 7.31.Calcd (%) for $C_{21}H_{45}CIN_2O$: C, 66.89; H, 12.03; N, 7.43); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.78$ (3H, t, CH₃), 0.91-1.35 (28H, br,(CH₂)₁₄CH₃), 3.19-3.21 (2H, m, NHCH₂), 3.42 (9H, s, NMe₃), 4.62 (2H, s, NHCOCH₂), 8.20 (1H, s, CONH); MS (ESI): *m*/*z* calcd for $C_{21}H_{45}N_2O$ (the 4° ammonium ion, 100%): 341.3532, found 341.4761 [M⁺].

Compound 3b: (Found: C, 66.04; H, 11.87; N, 6.41.Calcd (%) for C₂₃H₄₈N₂O₃ (1 mol% crystal water): C, 65.98; H, 12.04; N, 6.69); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.9-1.25 (26H, br,(CH₂)₁₃CH₃), 1.48-1.57 (2H, m, NHCH₂CH₂), 2.0 (3H, s, CH₃COO), 3.22-3.26 (2H, m, NHCH₂), 3.46 (9H, s, NMe₃), 4.63 (2H, s, NHCOCH₂), 9.81 (1H, s, CONH).

Compound 3c: (Found: C, 70.04; H, 12.27; N, 5.78.Calcd (%) for $C_{27}H_{56}N_2O_3$ (0.5 mol% crystal water): C, 69.63; H, 12.34; N, 6.01) ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (6H, t, 2CH₃), 0.96-1.25 (32H, br,(CH₂)₁₃CH₃ and CH3(CH₂)₃CH₂COO) , 1.42-1.57 (2H, m, NHCH₂CH₂), 2.0 (2H, t, CH₂COO) 3.22-3.29 (2H, m, NHCH₂), 3.42 (9H, s, NMe₃), 4.62 (2H, s, NHCOCH₂) , 9.81 (1H, s, CONH).

Compound 3d: (Found: C, 52.77; H, 8.86; N, 5.54.Calcd (%) for $C_{23}H_{45}Cl_3N_2O_3$ (1 mol% crystal water): C, 52.92; H, 9.08; N, 5.37); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.80 (3H, t, CH₃), 1.1-1.17 (26H, br, (CH₂)₁₃CH₃), 1.47 (2H, br, NHCH₂CH₂), 3.15 (2H, t, NHCH₂), 3.33 (9H, s, NMe₃), 4.62 (2H, t, NHCOCH₂), 9.81 (1H, s, CONH).

Compound 3e: (Found: C, 70.11; H, 10.85; N, 5.54.Calcd (%) for $C_{29}H_{52}N_2O_3$ (1 mol% crystal water): C, 70.4; H, 11.00; N, 5.66); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.81 (3H, t, CH₃), 0.9-1.25 (26H, br, (CH₂)₁₃CH₃), 1.42-1.51 (2H, br, NHCH₂CH₂), 3.19 (2H, t, NHCH₂), 3.26 (9H, s, NMe₃), 3.61 (2H, s, CH₂COO), 4.38 (2H, s, NHCOCH₂), 7.21-7.3 (5H, m, Ph), 9.37 (1H, s, CONH).

Compound 3f: (Found: C, 72.56; H, 10.52; N, 5.12.Calcd (%) for $C_{33}H_{54}N_2O_3$ (1 mol% crystal water): C, 72.75; H, 10.36; N, 5.14); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.89-1.25 (26H, br, (CH₂)₁₃CH₃), 1.56-1.58 (2H, br, NHCH₂CH₂), 2.95 (9H, s, NMe₃), 3.05-3.06 (2H, m, NHCH₂), 3.65 (2H, s, CH₂COO), 4.04 (2H, s, NHCOCH₂), 7.26-8.06 (7H, m, all aromatic CH), 8.98 (1H, s, CONH).

Compound 3g: (Found: C, 71.22; H, 10.74; N, 5.75. Calcd (%) for $C_{28}H_{50}N_2O_3$ (0.5 mol% crystal water): C, 71.29; H, 10.9; N, 5.94); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 1.21-1.25 (26H, br, (CH₂)₁₃CH₃), 1.50-1.56 (2H, m, NHCH₂CH₂), 3.01-3.25 (2H, m, NHCH₂), 3.43 (9H, s, NMe₃), 4.63 (2H, s, NHCOCH₂), 7.41-8.1 (5H, m, Ph), 9.46 (1H, s, CONH).

Compound 3h: ¹H NMR (Found: C, 69.12; H, 10.63; N, 5.52.Calcd (%) for $C_{28}H_{50}N_2O_4$ (0.5 mol% crystal water): C, 68.95; H, 10.54; N, 5.74); (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.98-1.25 (26H, br, (CH₂)₁₃CH₃), 1.42-1.56 (2H, m, NHCH₂CH₂), 3.08-3.26 (2H, m, NHCH₂), 3.47 (9H, s, NMe₃), 4.56 (2H, s, NHCOCH₂), 7.85-7.92 (4H, m, all aromatic CH), 9.24 (1H, s, CONH).

All the compounds of the series 4 have same quaternary ammonium cation. So m/z values are same for all the compounds in this series and hence the value of 4a is only given.

Compound 4a: $[\alpha]^{23}_{D}$ -6.2 (c 4.1 in CHCl₃); (Found: C, 67.81; H, 12.31; N, 6.98. Calcd (%) for C₂₂H₄₇ClN₂O: C, 67.57; H, 12.11; N, 7.16) ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.9-1.35 (26H, br, (CH₂)₁₃CH₃), 1.54-1.61 (3H, d, CHCH₃) 1.87 (2H, br, NHCH₂CH₂), 3.13-3.29 (2H, m, NHCH₂), 3.61 (9H, s, NMe₃), 5.43-5.49 (1H, q, NHCOCH), 8.65 (1H, s, CONH); MS (ESI): *m/z* calcd for C₂₂H₄₇N₂O (the 4° ammonium ion, 100%): 355.3688, Found 355.2365 [M⁺].

Compound 4b: $[\alpha]^{23}_{D}$ -5.2 (c 5.1 in CHCl₃); (Found: C, 68.15; H, 12.27; N, 6.79.Calcd (%) for C₂₄H₅₀N₂O₃ (0.5 mol% crystal water): C, 68.04; H, 12.13; N, 6.61); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 0.9-1.35 (26H, br, (CH₂)₁₃CH₃), 1.55-1.57 (3H, d, CHCH₃) 1.77 (2H, br, NHCH₂CH₂), 1.99 (3H, s, CH₃COO), 3.19-3.24 (2H, m, NHCH₂), 3.29 (9H, s, NMe₃), 5.53-5.6 (1H, q, NHCOC*H*), 10.22 (1H, s, CONH).

Compound 4c: $[\alpha]^{23}{}_{D}$ -4.2 (c 5.7 in CHCl₃); (Found: C, 69.01.32; H, 12.33; N, 6.02. Calcd (%) for C₂₈H₅₈N₂O₃ (1 mol% crystal water): C, 68.8; H, 12.37; N, 5.73); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (6H, t, 2CH₃), 1.1-1.24 (34H, br, (CH₂)₁₄CH₃ and CH₃(CH₂)₃CH₂COO), 1.56-1.58 (3H, d, CHCH₃), 2.22 (2H, t, CH₂COO), 3.19-3.26 (2H, m, NHCH₂), 3.30 (9H, s, NMe₃), 5.48-5.53(1H, q, NHCOC*H*), 10.20 (1H, s, CONH).

Compound 4d: $[\alpha]^{23}_{D}$ -11.1 (c 5.4 in CHCl₃); (Found: C, 54.03; H, 9.28; N, 5.45. Calcd (%) for C₂₄H₄₇Cl₃N₂O₃ (1 mol% crystal water): C, 53.78; H, 9.21; N, 5.23); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.99-1.25 (28H, br, (CH₂)₁₄CH₃), 1.45-1.58 (3H, br, CHCH₃), 3.16-3.32 (2H, m, NHCH₂), 3.39 (9H, s, NMe₃), 5.2 (1H, br, NHCOCH), 10.14 (1H, s, CONH).

Compound 4e: $[\alpha]^{23}{}_{D}$ -8.9 (c 5.0 in CHCl₃); (Found: C, 70.66; H, 11.26; N, 5.41.Calcd (%) for C₃₀H₅₄N₂O₃ (1 mol% crystal water): C, 70.82; H, 11.09; N, 5.51) ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.99-1.35 (28H, br, (CH₂)₁₄CH₃), 1.42-1.44 (3H, br, CHCH₃), 2.85-3.09 (2H, m, NHCH₂), 3.33 (9H, s, NMe₃), 3.59 (2H, s, CH₂COO) 5.07 (1H, br, NHCOC*H*), 7.06-7.32 (5H, m, Ph), 9.59 (1H, s, CONH).

Compound 4f: $[\alpha]^{23}{}_{D}$ -7.2 (c 5.2 in CHCl₃); (Found: C, 73.12; H, 10.69; N, 5.16.Calcd (%) for C₃₄H₅₆N₂O₃ (1 mol% crystal water): C, 73.07; H, 10.46; N, 5.01) ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.88 (3H, t, CH₃), 0.9-1.25 (28H, br, (CH₂)₁₄CH₃), 1.35-1.42 (3H, br, CHCH₃), 2.85-

3.33 (2H, m, NHC*H*₂), 3.49 (9H, s, NMe₃), 3.59 (2H, s, CH₂COO), 5.05 (1H, br, NHCOC*H*), 7.2-7.32 (7H, m, all aromatic CH), 9.61 (1H, s, CONH).

Compound 4g: $[\alpha]^{23}{}_{D}$ -7.6 (c 4.2 in CHCl₃); (Found: C, 71.80; H, 10.92; N, 5.72.Calcd (%) for C₂₉H₅₂N₂O₃ (0.5 mol% crystal water): C, 71.71; H, 11.0; N, 5.77); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 1.01-1.35 (28H, br, (CH₂)₁₄CH₃), 1.42-1.56 (3H, br, CHCH₃), 3.25-3.4 (2H, m, NHCH₂), 3.48 (9H, s, NMe₃), 5.44 (1H, br, NHCOC*H*), 7.39-8.09 (5H, m, Ph), 10.08 (1H, s, CONH).

Compound 4h: $[\alpha]^{23}_{D} -10$ (c 4.8 in CHCl₃); (Found: C, 67.95; H, 10.52; N, 5.36.Calcd (%) for C₂₉H₅₂N₂O₄ (1 mol% crystal water): C, 68.2; H, 10.66; N, 5.48); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.87$ (3H, t, CH₃), 1.0-1.36 (28H, br, (CH₂)₁₄CH₃), 1.4-1.52 (3H, br, CHCH₃), 2.73-3.23 (2H, m, NHCH₂), 3.27 (9H, s, NMe₃), 5.17 (1H, br, NHCOCH), 6.81-7.91 (4H, m, all aromatic CH), 9.44 (1H, s, CONH).

All the compounds of the series 5 have same quaternary ammonium cation. So m/z values are same for all the compounds in this series and hence the value of 5a is only given.

Compound 5a: $[\alpha]^{23}{}_{D}$ –7.8 (c 4.5 in CHCl₃); (Found: C, 68.92; H, 12.38; N, 7.01.Calcd (%) for C₂₄H₅₁ClN₂O: C, 68.78; H, 12.26; N, 6.68); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.81 (3H, t, CH₃), 0.93-0.97 (6H, d, (CH₃)₂CH), 1.06-1.27 (26H, br, (CH₂)₁₃CH₃), 1.48-1.53 (2H, m, NHCH₂CH₂), 2.28-2.36 (1H, m, (CH₃)₂CH), 3.13-3.24 (2H, m, NHCH₂), 3.35 (9H, s, NMe₃), 5.38 (1H, br, NHCOCH), 8.28 (1H, s, CONH); MS (ESI): *m/z* calcd for C₂₄H₅₁N₂O (the 4° ammonium ion, 100%): 383.4001, Found 383.3309 [M⁺].

Compound 5b: $[\alpha]^{23}{}_{D}$ -9.5 (c 6.2 in CHCl₃); (Found: C, 68.02; H, 11.96; N, 6.12.Calcd (%) for C₂₆H₅₄N₂O₃ (1 mol% crystal water): C, 67.78; H, 12.25; N, 6.08); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.87-0.9 (6H, d, (CH₃)₂CH), 0.99-1.28 (26H, br, (CH₂)₁₃CH₃),

1.43-1.55 (2H, m, NHCH₂C*H*₂), 2.25 (3H, s, C*H*₃COO), 2.36 (1H, br, (CH₃)₂C*H*), 3.16-3.29 (2H, m, NHC*H*₂), 3.39 (9H, s, NMe₃), 5.18 (1H, br, NHCOC*H*), 8.36 (1H, s, CONH).

Compound 5c: $[\alpha]^{23}_{D}$ -13.2 (c 5.1 in CHCl₃); (Found: C, 70.03; H, 12.35; N, 5.49.Calcd (%) for $C_{30}H_{62}N_2O_3$ (1 mol% crystal water): C, 69.72; H, 12.48; N, 5.42); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (6H, t, 2CH₃), 0.87-0.9 (6H, d, (CH₃)₂CH), 0.99-1.31 (32H, br, (CH₂)₁₃CH₃ and CH₃(CH₂)₃CH₂COO), 1.55-1.57 (2H, m, NHCH₂CH₂), 2.25-2.35 (3H, m, (CH₃)₂CH and CH₂COO), 3.16-3.29 (2H, m, NHCH₂), 3.34 (9H, s, NMe₃), 5.21 (1H, br, NHCOCH), 8.56 (1H, s, CONH).

Compound 5d: $[\alpha]^{23}{}_{D}$ -12.2 (c 6.3 in CHCl₃); (Found: C, 56.21; H, 9.56; N, 4.96.Calcd (%) for C₂₆H₅₁Cl₃N₂O₃ (0.5 mol% crystal water): C, 56.26; H, 9.46; N, 5.05); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.82$ (3H, t, CH₃), 0.85-0.9 (6H, d, (CH₃)₂CH), 0.99-1.3 (26H, br, (CH₂)₁₃CH₃), 1.54-1.56 (2H, m, NHCH₂CH₂), 2.25-2.35 (1H, m, (CH₃)₂CH), 3.15-3.31 (2H, m, NHCH₂), 3.39 (9H, s, NMe₃), 5.18 (1H, br, NHCOCH), 8.34 (1H, s, CONH).

Compound 5e: $[\alpha]^{23}_{D}$ -10.3 (c 3.9 in CHCl₃); (Found: C, 72.78; H, 11.15; N, 5.25. Calcd (%) for C₃₂H₅₈N₂O₃ (0.5 mol% crystal water): C, 72.82; H, 11.27; N, 5.31); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.82$ (3H, t, CH₃), 0.87-0.9 (6H, d, (CH₃)₂CH), 1.12-1.31 (26H, br, (CH₂)₁₃CH₃), 1.53-1.58 (2H, m, NHCH₂CH₂), 2.33-2.4 (1H, m, (CH₃)₂CH), 3.16-3.29 (2H, m, NHCH₂), 3.38 (9H, s, NMe₃), 3.6 (2H, s, CH₂COO), 5.24 (1H, br, NHCOCH), 7.26-7.3 (5H, m, Ph), 9.2 (1H, s, CONH).

Compound 5f: $[\alpha]^{23}_{D}$ -8.5 (c 3.9 in CHCl₃); (Found: C, 73.81; H, 10.53; N, 5.01. Calcd (%) for C₃₆H₆₀N₂O₃ (1 mol% crystal water): C, 73.67; H, 10.65; N, 4.77); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 0.87-0.9 (6H, d, (CH₃)₂CH), 1.0-1.3 (26H, br, (CH₂)₁₃CH₃), 1.54-1.58 (2H, m, NHCH₂CH₂), 2.35-2.38 (1H, m, (CH₃)₂CH), 3.18-3.29 (2H, m, NHCH₂), 3.46 (9H,

s, NMe₃), 3.48 (2H, s, CH₂COO), 5.28 (1H, br, NHCOC*H*), 7.26-7.31(7H, m, all aromatic CH), 9.22 (1H, s, CONH).

Compound 5g: $[\alpha]^{23}{}_{D}$ -11.2 (c 5.2 in CHCl₃); (Found: C, 72.35; H, 11.25; N, 5.31.Calcd (%) for C₃₁H₅₆N₂O₃ (0.5 mol% crystal water): C, 72.47; H, 11.18; N, 5.45); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.87-0.89 (6H, d, (CH₃)₂CH), 1.02-1.28 (26H, br, (CH₂)₁₃CH₃), 1.56-1.58 (2H, m, NHCH₂CH₂), 2.2-2.41 (1H, m, (CH₃)₂CH), 3.2-3.31 (2H, m, NHCH₂), 3.48 (9H, s, NMe₃), 5.26 (1H, br, NHCOCH), 7.35-8.07 (5H, m, Ph), 10.07 (1H, s, CONH).

Compound 5h: $[\alpha]^{23}{}_{D}$ -13.2 (c 4.3 in CHCl₃); (Found: C, 70.13; H, 11.06; N, 5.15. Calcd (%) for C₃₁H₅₆N₂O₄ (0.5 mol% crystal water): C, 70.28; H, 10.84; N, 5.29); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.87-0.89 (6H, d, (CH₃)₂CH), 0.97-1.24 (26H, br, (CH₂)₁₃CH₃), 1.55-1.57 (2H, m, NHCH₂CH₂), 2.34 (1H, m, (CH₃)₂CH), 2.96-3.24 (2H, m, NHCH₂), 3.36 (9H, s, NMe₃), 5.02 (1H, br, NHCOCH), 6.83-7.92 (4H, m, all aromatic CH), 9.26 (1H, s, CONH).

All the compounds of the series 6 have same quaternary ammonium cation. So m/z values are same for all the compounds in this series and hence the value of **6a** is only given.

Compound 6a: $[\alpha]^{23}_{D}$ –6.2 (c 4.8 in CHCl₃); (Found: C, 69.24; H, 12.2; N, 6.38.Calcd (%) for C₂₅H₅₃ClN₂O: C, 69.32; H, 12.33; N, 6.47); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.84-0.9 (6H, m, (CH₃)₂CH), 1.0-1.25 (26H, br, (CH₂)₁₃CH₃), 1.41-1.44 (1H, m, CH₃)₂CH), 1.55-1.58 (2H, m, NHCH₂CH₂), 2.08-2.12 (2H, m, (CH₃)₂CHCH₂), 3.22-3.26 (2H, m, NHCH₂), 3.4 (9H, s, NMe₃), 5.3 (1H, br, NHCOCH), 8.78 (1H, s, CONH); MS (ESI): *m/z* calcd for C₂₅H₅₃N₂O (the 4° ammonium ion, 100%): 397.4158, Found 397.3561 [M⁺].

Compound 6b: $[\alpha]^{23}_{D}$ -12.1 (c 4.6 in CHCl₃); (Found: C, 70.01; H, 12.14; N, 5.83.Calcd (%) for C₂₇H₅₆N₂O₃ (0.5 mol% crystal water): C, 69.63; H, 12.34; N, 6.01); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.85-0.9 (6H, m, (CH₃)₂CH), 0.98-1.25 (26H, br, (CH₂)₁₃CH₃),

1.56-1.59 (1H, m, CH₃)₂CH), 1.61-1.68 (2H, m, NHCH₂CH₂), 1.99 (3H, s, CH₃COO), 2.1-2.11 (2H, m, (CH₃)₂CHCH₂), 3.19-3.23 (2H, m, NHCH₂), 3.31 (9H, s, NMe₃), 5.44 (1H, br, NHCOCH), 10.26 (1H, s, CONH).

Compound 6c: $[\alpha]^{23}_{D}$ -10.3 (c 4.3 in CHCl₃); (Found: C, 70.02; H, 12.75; N, 5.37.Calcd (%) for C₃₁H₆₄N₂O₃ (1 mol% crystal water): C, 70.14; H, 12.53; N, 5.28); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.82$ (6H, t, 2CH₂CH₃), 0.99-1.12 (6H, m, (CH₃)₂CH), 1.25-1.30 (33H, br, (CH₂)₁₃CH₃, CH₃(CH₂)₃CH₂COO and CH₃)₂CH), 1.32-1.56 (4H, m, NHCH₂CH₂ and (CH₃)₂CHCH₂), 2.25 (2H, br, CH₂COO), 3.17-3.28 (2H, m, NHCH₂), 3.38 (9H, s, NMe₃), 5.32 (1H, br, NHCOCH), 8.59 (1H, s, CONH).

Compound 6d: $[\alpha]^{23}_{D}$ -13.4 (c 4.7 in CHCl₃); (Found: C, 56.63; H, 9.32; N, 5.05.Calcd (%) for C₂₇H₅₃Cl₃N₂O₃ (1 mol% crystal water): C, 56.10; H, 9.59; N, 4.85) ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.85 (3H, t, CH₃), 0.9-1.13 (6H, m, (CH₃)₂CH), 1.15-1.25 (26H, br, (CH₂)₁₃CH₃), 1.38-1.42 (1H, m, CH₃)₂CH), 1.45-1.55 (2H, m, NHCH₂CH₂), 1.8-2.11 (2H, m, (CH₃)₂CHCH₂), 3.23-3.32 (2H, m, NHCH₂), 3.48 (9H, s, NMe₃), 5.26 (1H, br, NHCOCH), 8.76 (1H, s, CONH). **Compound 6e**: $[\alpha]^{23}_{D}$ -9.3 (c 4.1 in CHCl₃); (Found: C, 72.08; H, 11.46; N, 5.32. Calcd (%) for C₃₃H₆₀N₂O₃ (1 mol% crystal water): C, 71.95; H, 11.34; N, 5.09); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.83 (3H, t, CH₃), 0.87-0.96 (6H, m, (CH₃)₂CH), 0.99-1.24 (27H, br, (CH₂)₁₃CH₃ and CH₃)₂CH), 1.43 (2H, br, NHCH₂CH₂), 1.99-2.03 (2H, m, (CH₃)₂CHCH₂), 3.18-3.25 (2H, m, NHCH₂), 3.46 (9H, s, NMe₃), 3.6 (2H, s, CH₂COO), 5.15 (1H, br, NHCOCH), 7.22-7.29 (5H, m, Ph), 9.81 (1H, s, CONH).

Compound 6f: $[\alpha]^{23}{}_{D}$ –8.5 (c 4.1 in CHCl₃); (Found: C, 73.71; H, 10.21; N, 5.03.Calcd (%) for C₃₇H₆₂N₂O₃ (1 mol% crystal water): C, 73.95; H, 10.73; N, 4.66); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.82 (3H, t, CH₃), 0.87-0.93 (6H, m, (CH₃)₂CH), 1.17-1.35 (27H, br, (CH₂)₁₃CH₃ and

CH₃)₂C*H*), 1.43 (2H, br, NHCH₂C*H*₂), 1.9-1.95 (2H, m, (CH₃)₂CH*CH*₂), 3.09-3.28 (2H, m, NHC*H*₂), 3.39 (9H, s, NMe₃), 3.52 (2H, s, C*H*₂COO), 4.95 (1H, br, NHCOC*H*), 7.13-7.22 (7H, m, all aromatic CH), 9.62 (1H, s, CONH).

Compound 6g: $[\alpha]^{23}_{D} -11.3$ (c 6.1 in CHCl₃); (Found: C, 71.32; H, 11.02; N, 5.07. Calcd (%) for C₃₂H₅₈N₂O₃ (1 mol% crystal water): C, 71.59; H, 11.27; N, 5.22); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.84$ (3H, t, CH₃), 0.88-0.98 (6H, m, (CH₃)₂CH), 1.01-1.23 (26H, br, (CH₂)₁₃CH₃), 1.38-1.42 (1H, m, CH₃)₂CH), 1.46-1.6 (2H, m, NHCH₂CH₂), 2.1-2.11 (2H, m, (CH₃)₂CHCH₂), 3.2-3.31 (2H, m, NHCH₂), 3.4 (9H, s, NMe₃), 5.19 (1H, br, NHCOCH), 7.43-8.1 (5H, m, Ph), 8.73 (1H, s, CONH).

Compound 6h: $[\alpha]^{23}_{D}$ -14.1 (c 4.9 in CHCl₃); (Found: C, 71.04; H, 11.12; N, 5.27.Calcd (%) for C₃₂H₅₈N₂O₄ (0.5 mol% crystal water): C, 70.67; H, 10.94; N, 5.15); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.84 (3H, t, CH₃), 0.89-0.93 (6H, m, (CH₃)₂CH), 0.99-1.24 (26H, br, (CH₂)₁₃CH₃), 1.38-1.43 (1H, m, CH₃)₂CH), 1.45-1.59 (2H, m, NHCH₂CH₂), 2.07-2.11 (2H, m, (CH₃)₂CHCH₂), 3.22-3.35 (2H, m, NHCH₂), 3.4 (9H, s, NMe₃), 5.19 (1H, br, NHCOCH), 7.43-8.1 (4H, m, all aromatic CH), 8.74 (1H, s, CONH).

All the compounds of the series 7 have same quaternary ammonium cation. So m/z values are same for all the compounds in this series and hence the value of 7a is only given.

Compound 7a: $[\alpha]^{23}{}_{D}$ -8.3 (c 5.4 in CHCl₃); (Found: C, 69.13; H, 12.02; N, 6.12. Calcd (%) for C₂₅H₅₃ClN₂O: C, 69.32; H, 12.33; N, 6.47); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.84 (3H, t, CH₃), 0.87-1.02 (6H, m, CH(CH₃)CH₂CH₃), 1.13-1.3 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.41-1.44 (2H, m, NHCH₂CH₂), 2.08-2.11 (1H, m, CH(CH₃)CH₂CH₃), 3.22-3.3 (2H, m, NHCH₂), 3.4 (9H, s, NMe₃), 5.3 (1H, br, NHCOCH), 8.78 (1H, s, CONH); MS (ESI): *m/z* calcd for C₂₅H₅₃N₂O (the 4° ammonium ion, 100%): 397.4158, Found 397.3561 [M⁺].

Compound 7b: $[\alpha]^{23}_{D}$ -6.5 (c 5.4 in CHCl₃); (Found: C, 69.88; H, 11.97; N, 5.82.Calcd (%) for C₂₇H₅₆N₂O₃ (0.5 mol% crystal water): C, 69.63; H, 12.34; N, 6.01); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.84$ (3H, t, CH₃), 0.89-1.01 (6H, m, CH(CH₃)CH₂CH₃), 1.12-1.37 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.43-1.56 (2H, m, NHCH₂CH₂), 1.8 (3H, s, CH₃COO), 2.1-2.11 (1H, m, CH(CH₃)CH₂CH₃), 3.22-3.31 (2H, m, NHCH₂), 3.35 (9H, s, NMe₃), 5.2 (1H, br, NHCOC*H*), 8.75 (1H, s, CONH).

Compound 7c: $[\alpha]^{23}_{D}$ -7.8 (c 5.0 in CHCl₃); (Found: C, 71.13; H, 12.89; N, 5.11. Calcd (%) for C₃₁H₆₄N₂O₃ (0.5 mol% crystal water): C, 71.35; H, 12.55; N, 5.37); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.77$ (6H, t, 2CH₃), 0.81-1.04 (6H, m, CH(CH₃)CH₂CH₃), 1.07-1.24 (34H, br, (CH₂)₁₃CH₃ CH₃(CH₂)₃CH₂COO and CH(CH₃)CH₂CH₃), 1.48-1.59 (3H, m, NHCH₂CH₂ and CH(CH₃)CH₂CH₃), 2.17-2.28 (2H, m, CH₂COO), 3.11-3.24 (2H, m, NHCH₂), 3.38 (9H, s, NMe₃), 5.26 (1H, br, NHCOCH), 9.27 (1H, s, CONH).

Compound 7d: $[\alpha]^{23}_{D}$ -9 (c 4.7 in CHCl₃); (Found: C, 56.6; H, 9.42; N, 4.71.Calcd (%) for C₂₇H₅₃Cl₃N₂O₃ (0.5 mol% crystal water): C, 56.98; H, 9.56; N, 4.92); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.84 (3H, t, CH₃), 0.87-1.02 (6H, m, CH(CH₃)CH₂CH₃), 1.13-1.41 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.44-1.58 (2H, m, NHCH₂CH₂), 2.08-2.12 (1H, m, CH(CH₃)CH₂CH₃), 3.22-3.30 (2H, m, NHCH₂), 3.35 (9H, s, NMe₃), 5.3 (1H, br, NHCOCH), 8.79 (1H, s, CONH);

Compound 7e: $[\alpha]^{23}{}_{D} - 14.3$ (c 4.5 in CHCl₃); (Found: C, 71.73; H, 11.04; N, 5.06. Calcd (%) for C₃₃H₆₀N₂O₃ (1 mol% crystal water): C, 71.95; H, 11.34; N, 5.09); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.85$ (3H, t, CH₃), 0.9-1.01 (6H, m, CH(CH₃)CH₂CH₃), 1.07-1.35 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.43-1.51 (2H, m, NHCH₂CH₂), 1.99-2.03 (1H, m,

CH(CH₃)CH₂CH₃), 3.17-3.27 (2H, m, NHC*H*₂), 3.37 (9H, s, NMe₃), 3.55 (2H, s, CH₂COO), 5.04 (1H, br, NHCOC*H*), 6.9-7.93 (5H, m, Ph), 9.7 (1H, s, CONH).

Compound 7f: $[\alpha]^{23}{}_{D}$ -11 (c 4.2 in CHCl₃); (Found: C, 74.86; H, 10.64; N, 4.57.Calcd (%) for C₃₇H₆₂N₂O₃ (0.5 mol% crystal water): C, 75.08; H, 10.73; N, 4.73); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.82$ (3H, t, CH₃), 0.88-0.99 (6H, m, CH(CH₃)CH₂CH₃), 1.01-1.35 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.43-1.51 (2H, m, NHCH₂CH₂), 1.96-2.05 (1H, m, CH(CH₃)CH₂CH₃), 3.21-3.27 (2H, m, NHCH₂), 3.47 (9H, s, NMe₃), 3.6 (2H, s, CH₂COO), 5.0 (1H, br, NHCOC*H*), 7.21-7.29 (7H, m, all aromatic CH), 9.73 (1H, s, CONH).

Compound 7g: $[\alpha]^{23}_{D}$ –12.2 (c 6.2 in CHCl₃); (Found: C, 72.64; H, 11.58; N, 5.12. Calcd (%) for C₃₂H₅₈N₂O₃ (0.5 mol% crystal water): C, 72.82; H, 11.27; N, 5.31); ¹H NMR (300 MHz, CDCl₃, Me₄Si) δ = 0.84 (3H, t, CH₃), 0.88-1.11 (6H, m, CH(CH₃)CH₂CH₃), 1.13-1.43 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.47-1.61 (2H, m, NHCH₂CH₂), 2.1-2.11 (1H, m, CH(CH₃)CH₂CH₃), 3.22-3.32 (2H, m, NHCH₂), 3.36 (9H, s, NMe₃), 5.2 (1H, br, NHCOCH), 7.44-8.11 (5H, m, Ph), 8.72 (1H, s, CONH).

Compound 7h: $[\alpha]^{23}{}_{D}$ -9.3 (c 7.1 in CHCl₃); (Found: C, 69.38; H, 10.84; N, 5.05.Calcd (%) for C₃₂H₅₈N₂O₄ (1 mol% crystal water): C, 69.52; H, 10.94; N, 5.07); ¹H NMR (300 MHz, CDCl₃, Me₄Si) $\delta = 0.81$ (3H, t, CH₃), 0.87-1.14 (6H, m, CH(CH₃)CH₂CH₃), 1.18-1.42 (28H, br, (CH₂)₁₃CH₃ and CH(CH₃)CH₂CH₃), 1.43-1.57 (2H, m, NHCH₂CH₂), 2.08-2.15 (1H, m, CH(CH₃)CH₂CH₃), 3.21-3.3 (2H, m, NHCH₂), 3.35 (9H, s, NMe₃), 5.27 (1H, br, NHCOCH), 7.44-8.09 (4H, m, all aromatic CH), 8.76 (1H, s, CONH).

Fig. S1 (a-f) FT-IR spectra of **3g**, **3h**, **4g**, **4h**, **5g**, **5h** in its CHCl₃ solution state (dotted line) and D₂O gel state (solid line).

Fig. S2 (a-c) Luminescence spectra of ANS($1x10^{-5}$ M) with varying concentration of gelators in water at room temperature (a) [**1g**] a: 0;b: 0.001;c: 0.0025;d: 0.005;e: 0.01;f: 0.025;g: 0.05;h: 0.1;i: 0.25. [**2h**] a: 0;b: 0.001;c: 0.0025;d: 0.005;e: 0.01;f: 0.025;g: 0.05;h: 0.1;i: 0.25. [**5h**] a: 0;b: 0.001;c: 0.0025;d: 0.005;e: 0.01;f: 0.25.

Fig. S3 (a-e) Time dependent UV-Visible study of generation of Ag nanoparticles by the reaction of **1c**, **1d**, **1e**, **1f** and **1h** with AgNO₃ (5:0.5).