On the Mechanism of Formation of Vesicles from Poly(Ethylene Oxide)-*block*-Poly(Caprolactone) Copolymers

Dave J. Adams,^a* Craig Kitchen,^b Sarah Adams,^b Steve Furzeland,^b Derek Atkins,^b Peter Schuetz,^b Christine M. Fernyhough,^c Nadia Tzokova,^c Anthony J. Ryan ^c and Michael F. Butler ^b*

a) Unilever Research Colworth, Sharnbrook, Bedfordshire, MK44 1LQ, current address: Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK; b) Unilever Research Colworth, Sharnbrook, Bedfordshire, MK44 1LQ, UK; c) Department of Chemistry, Dainton Building, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK

Email: <u>Michael.Butler@Unilever.com</u>; <u>d.j.adams@liverpool.ac.uk</u>

SUPPORTING INFORMATION

Supplementary Material (ESI) for Soft Matter This journal is (c) The Royal Society of Chemistry 2009

Figure S1. Representative cryo-TEM images of PEO-b-PCL samples in 20 % THF for which self-assembled structures were obtained. (a) PEO₁₆-*b*-PCL₄₉, (b) PEO₁₆-*b*-PCL₃₈, (c) PEO₄₅*b*-PCL₁₀₁, d) PEO₂₃-*b*-PCL₄₇, (e) PEO₂₃-*b*-PCL₄₀ (no structures observed) (f) PEO₁₆-*b*-PCL₂₃

This journal is (c) The Royal Society of Chemistry 2009

(no structures observed) (g) PEO_{23} -b- PCL_{28} , (h) PEO_{45} -b- PCL_{43} , (i) PEO_{16} -b- PCL_{14} , (j) PEO_{113} -b- PCL_{56} . The scale bar in all cases represents 200nm.

Figure S2. Representative cryo-TEM images of dialysed PEO-b-PCL samples, for which self-assembled structures were obtained. (a) PEO₁₆-*b*-PCL₄₉, (b) PEO₁₆-*b*-PCL₃₈, (c) PEO₄₅-

This journal is (c) The Royal Society of Chemistry 2009

b-PCL₁₀₁, d) PEO₂₃-*b*-PCL₄₇, (e) PEO₂₃-*b*-PCL₄₀ (no structures observed) (f) PEO₁₆-*b*-PCL₂₃ (almost no structures observed) (g) PEO₂₃-*b*-PCL₂₈, (h) PEO₄₅-*b*-PCL₄₃, (i) PEO₁₆-*b*-PCL₁₄, (j) PEO₁₁₃-*b*-PCL₅₆. The scale bar in all cases represents 200nm.

Figure S3 shows the influence of THF content on the size of the vesicles for PEO_{23} -*b*-PCL₂₈, along with the effect of rate of water addition on the final vesicle size. For the range of rates used (0.005 to 8 mL min⁻¹), the final vesicle size was constant for dialysed and non-dialysed samples.

Figure S3. Variation in z-average diameter with rate of water addition to a solution of PEO_{23} -*b*-PCL₂₈ in THF (initial concentration 10 mg mL⁻¹, final concentration 2 mg mL⁻¹); •, before dialysis and \circ , after dialysis. The error bars were calculated from the variation in diameter from at least five different samples.

Extrusion had a significant effect on the polydispersity of the structures observed by cryo-TEM and DLS. **Figure S4** shows correlograms of the vesicle-forming sample (PEO_{23} -*b*- PCL_{40}) before and after extrusion through the 100nm polycarbonate membrane demonstrating the measurable effect of extrusion on decreasing the polydispersity of aggregate sizes.

Figure S4. Example correlogram obtained by DLS (•) before and (\circ) after extrusion of a PEO₂₃-*b*-PCL₄₀ solution through a 100 nm membrane.

Zimm plots for the extruded vesicle samples are shown in Figure S5.

This journal is (c) The Royal Society of Chemistry 2009

Figure S5. Zimm plots for the vesicle-forming systems, after dialysis and extrusion: (a) PEO₂₃-*b*-PEO₁₆, (b) PEO₄₅-*b*-PCL₁₀₁, (c) PEO₂₃-*b*-PCL₄₇, (d) PEO₂₃-*b*-PCL₄₀, (e) PEO₂₃-*b*-PCL₂₈, (f) PEO₄₅-*b*-PCL₄₃.

Figure S6 shows an example SAXS pattern (two repeats of fresh batches of extruded vesicle solution), from which the vesicle membrane thickness was measured.

Figure S6. Example SAXS patterns for two freshly prepared extruded and dialysed PEO_{23} -*b*-PCL₄₀ samples, showing the minimum around 0.04Å⁻¹ resulting from the membrane thickness.