Non-Newtonian viscous shear thinning in ionic liquids

Supplementary data

Geoffrey L. Burrell* Noel F. Dunlop[†] Frances Separovic[‡]

January 15, 2010

Figure 1: BMIm.Cl shear viscosity $(\eta_{\dot{\gamma}})$ at increasing temperature (a) as a function of shear rate $\dot{\gamma}$ (s⁻¹) and, (b) normalised with respect to zero shear viscosity (η_0) . Higher temperature demonstrates shift of shear thinning onset to higher frequency as a function of temperature. 348 K (\odot) , 358 K (+), 368 K (\times) .

^{*}School of Chemistry, The University of Melbourne, Melbourne, Australia

[†]Orica Ltd, Melbourne, Australia

[‡]School of Chemistry, The University of Melbourne, Melbourne, Australia, E-mail: fs@unimelb.edu.au

Figure 2: Differential scanning calorimetry scan of (HOEt)₂NH.AcOH.