Unraveling the packing pattern leading to gelation using SS NMR and X-ray diffraction: Direct observation of the evolution of selfassembled fibers

Nonappa,^a Manu Lahtinen,^{*a} Babita Behera,^a Erkki Kolehmainen^{*a} and Uday Maitra^b

^a Department of Chemistry, FI-40014, University of Jyväskylä, Finland.

^bDepartment of Organic Chemistry, Indian Institute of Science, Bangalore-560 012.

Email: erkki.t.kolehmainen@jyu.fi, manu.k.lahtinen@jyu.fi

1. Conformational overlay of the two crystallographically independent molecules of compound 2
and methylcholate 1 (pure form and solvates obtained from methanol and acetonitrile)
2. Molecular packing of methylcholate 1 acetonitrile solvate and the pure form of 1
3. Experimental and simulated PXRD pattern of methyl cholate 1 acetonitrile solvatee
4. Le Bail fit of indexed cholate 2 and 3
5. Experimental for powder structure determination
6. Crystallographic data of 2 and 3
7. Molecular packing and space filling model of 2
8. Thermal properties of methyl cholate 1 acetonitrile solvate
9. PXRD patterns of methyl cholate 1 and 6 at different temperature
10. Thermal properties of 1 – 6 obtained by DSC and TGA
11. DSC scans of fresh and preheated samples of 1 and 6
12. ¹³ C NMR spectra of 1-6
13. ¹³ C CPMAS NMR of 1-6 and the gels derived from 2
14. Solution ¹³ C NMR Chemical shift values of compounds 1-6
15. Solid State ¹³ C chemical shift* values of compounds 1-6

Figure S1. Top: conformational overlay of the two crystallographically independent molecules of compound **2**. Middle: conformations of solvate free methylcholate (YUTCEV) with two crystallographically independent molecules. Bottom left: methylcholate acetonitrile solvate (YUTCAR). Bottom right: methylcholate methanol solvate (FIVMIG10).

Comment. It can be noticed that the two different conformations of the side chain on compound **2** can be found also on methylcholates, as "boat"-conformation (colored red) can be seen on anhydrous methylcholate structure (YUTCEV), whereas the "chair" –conformation (colored blue) can be seen on methylcholate solvate (FIVMIG10). This for its part strengthens the correctness of the suggested powder structure of compound **2**, because similar kind molecular conformations seem to exist on other cholates esters as well. Similarly the second crystallographically independent conformation on the anhydrous methylcholate can be found on the methyl cholate acetonitrile solvate (YUTCAR), in which the side chain is leveled with the steroidal part.

Figure S2. Top: Molecular packing of methylcholate acetonitrile solvate (YUTCAR) along *b*-axis. Bottom: Molecular packing of methylcholate (YUTCEV) along *c*-axis. The hydrogen bonding is shown by green dashed lines.

Figure S3. Experimental and simulated PXRD pattern of methyl cholate 1 acetonitrile solvate.

Figure S4. Le Bail fit of indexed ethyl cholate 2.

Figure S5. Le Bail fit of indexed propyl cholate 3.

Experimental for powder structure determination

The instrumental resolution of the equipment was determined using highly crystalline silicon standard (SRM 640b, National Institute of Standards & Technology). For silicon, the sharpest half-width value of 0.04° (2 θ) was obtained from diffraction peak on the 28.44° (2 θ). The equipment was calibrated using mixture of LaB₆ (SRM 660, National Institute of Standards & Technology) and silicon standards so that an absolute error of less than 0.01° (2 θ) on peak positions was achieved.

The structure determination of cholate 2 including data processing, peak search, indexing (DICVOL implemented in DASH), space group analysis and solving of the structure was made by the DASH v3.1 [5]. Diffraction data range of $3 - 30^{\circ}$ C was used for indexing and range of $3.0-60^{\circ}$ (2 θ) structure determination. DASH program is based on simulated annealing method in which known structure moiety/moieties are needed to solve the structure. For ethyl and propyl cholates (2, 3) entire cholate molecule including hydrogen atoms was used as the moiety and was generated by

Supplementary Material (ESI) for Soft Matter This journal is (c) The Royal Society of Chemistry 2010

molecular editor program Avogadro (v 0.9.7.),¹ using methyl cholate conformation from a known structure (YETCEW) as a starting point. Optimized geometry of the built molecule was produced by molecular mechanics in Avogadro. Z-matrices of two identical cholates were used on solving the structure, because the suggested unit cell volume (4919 or 5036 Å³) together with most agreeable chiral space group no. 19 (4-fold symmetry) insist presence of two crystallographically different molecules in order to fill the entire unit cell volume. Typical estimate for number of formula units per unit cell (Z) is calculated by dividing cell volume (V) with number of non-hydrogen atoms multiplied by the average volume (18-20 $Å^3$) occupied by an atom in solid. In this case eight times 31 times 20 Å³ = 4960 Å³ and to achieve Z = 8 with 4-fold symmetry, atom coordinates of two molecules are needed (2 x 4 = 8). Due to large structure model (150 atoms altogether distributed in two separate molecules with 6 torsion angles, three position and four orientational variables on each molecule), the large search space was attempted to simplify by using the knowledge of chemically realistic bounds for particular torsion angles. The CSD was searched by MOGUL for chemically related compounds to find statistically the most common torsion angle ranges for the types of angles present in the ethyl cholate. For example, the torsion angle C24-C23-C22-C17 was restricted to vary within +- 20° around its initial angle, as in almost all structures found in the database the torsion angle C16-C17-C20-C21 is close to 180° (that torsion angle cannot be varied in the DASH program, directly). Similarly the torsion angle associated O=C-O-C ester group was restricted to vary with +- 10°. The final structure with most promising reduced chi2 value of 101 was revealed after 20 million simulated annealing moves.

Comp.	2	3
Param.		
a (Å)	7.8062(3)	7.8547(5)
b (Å)	18.7495(6)	19.470(1)
<i>c</i> (Å)	33.4892(6)	33.333(2)
α (°)	90	90
$\beta(\circ)$	90	90
$\gamma(^{\circ})$	90	90
$V(\text{Å}^{-3})$	4901.6	5097.7
SG (No.)	$2_1 2_1 2_1 (19)$	$2_{1}2_{1}2_{1}$ (19)
Temp (°C)	25	25
$R_{\rm B}(\%)^{\rm a}$	1.33	1.76
R_{p} (%) ^b	6.27	7.21
R_{wp} (%) ^c	8.38	9.65

 Table S1. Crystallographic data of cholates 2 and 3

a = Bragg factor, agreement between the reflection intensities calculated from a crystallographic model and those measured experimentally; b = profile factor, c = weighted profile factor. Values are obtained by Le Bail fit of the indexed data using HighScore Plus.

$$R_{p} = 100 \left(\frac{\sum_{i=1,n} |y_{i} - y_{c,i}|}{\sum_{i=1,n} y_{i}} \right), R_{wp} = 100 \left(\frac{\sum_{i=1,n} w_{i} |y_{i} - y_{c,i}|^{2}}{\sum_{i=1,n} w_{i} y_{i}^{2}} \right)^{1/2}, R_{B} = 100 \left(\sum_{h} |I_{obs,h}| - I_{calc,h}| / \sum_{h} |I_{obs,h}| \right)$$

Figure S6. Molecular packing of ethyl cholate **2** along *b*-axis. Hydrogen bonding network between the cholates are highlighted by blue dashed lines. Hydrogen atoms are omitted for

Figure S7. Spacefill presentation of ethyl cholate 2 along *c*-axis.

Specimen	Mw.	1 st Heating	Melting	2 nd heating	Decomp.
	g mol ⁻¹	<i>Т</i> , (<i>ДH</i>);	points	T_x , (ΔH);	T_d
		T_{g} , $[\Delta C_p]$	$T_{m^*} (T_{lit})^{\text{ref.}}$	T_g , $[\Delta C_p]$	
1 –	422.61 +	T_{dh} 87 – 99 (31.04),		<i>T_g</i> 71.2 [0.54],	262
acetonitrile	41.05	<i>T_{ss}</i> 110.2 (23.16),			
solvate		<i>T_m</i> 150.9 (59.72)	154.7 (154 – 156) ¹¹		

 Table S2. Thermal properties of methyl cholate 1 acetonitrile solvate.

Figure S8. PXRD patterns of methyl cholate 1, corresponding to a sample at room temperature, extracted at 90 °C and at 130°C, respectively.

Figure S9. PXRD patterns of butyl cholate 6, corresponding to a sample at room temperature, extracted at 70 °C and at 100°C, respectively.

Table S3. Thermal properties of compounds $1 - 6$ obtained by DSC and TGA							
Specimen	Mw.	1 st Heating	Melting	2 nd heating	Decomp.		
	g mol ⁻¹	$T, (\Delta H);$	points	T_x , (ΔH);	T_d		
		T_{g} , $[\Delta C_p]$	$T_{m^*} (T_{lit})^{\text{ref.}}$	T_{g} , $[\Delta C_p]$			
		$T_{dh} 60 - 108 (99.06),$		<i>T_g</i> 71.4 [0.44],	262		
1 methanol	422.61	<i>T</i> _{ss} 116.3 (5.54),					
solvate	+ 32.04	<i>T_m</i> 147.8 (56.83)	152.6 (154 – 156) ¹¹				
2		<i>T_m</i> 161.6 (92.83)	$163.5(162 - 164)^{10}$	<i>T_g</i> 64.4 [0.38],	253		
	436.64			<i>T_c</i> 102.8 (-57.22),			
				T_m 155.3 (76.53) *			
3		<i>T_m</i> 158.7 (95.7)	161.7 (164 – 166) ¹⁰	<i>T_g</i> 56.7 [0.36],	253		
	450.66			<i>T_c</i> 96.5 (-59.72),			
				<i>T_m</i> 159.4 (79.28)			
4		<i>T_m</i> 156.2 (90.73)	$157.7 (154 - 156)^{10}$	<i>T_g</i> 55.3 [0.42],	267		
	448.65			<i>T_c</i> 87.4 (-52.98),			
				T_m 156.2 (81.02)			
5	446.63	<i>T_m</i> 140.5 (83.19)	$144.0(143 - 145)^{10}$	T_g 60.3 [0.37],	262		
6	464.69	T_{dh} 48 – 100 (125.10), ^a		<i>T_g</i> 50.4 [0.50]	267		
	$+ xH_2O$	<i>T_m</i> 122.6 (33.66)	125.6 (125 – 126) ¹⁰				

Supplementary Material (ESI) for Soft Matter This journal is (c) The Royal Society of Chemistry 2010

 T_{dh} = dehydration/ desolvation, T_{ss} = solid-solid phase transition, T_m = melting, T_c = cold crystallization (on heating) temperatures (°C) and its ΔH = enthalpy change (J g⁻¹); T_g = glass-transition (°C) and its ΔC_p = heat capacity change [J g⁻¹ °C⁻¹]; T_{m*} = for comparison with a literature melting points are taken also as the peak maximum values; T_{lit} = literature values; T_d = decomposition onset temperature (°C); * = T_m of a polymorph. a = cold crystallization exotherm is overlapped by the evaporation endotherm (see text).

Figure S10. DSC scans of fresh and preheated (at 90 °C) samples of **1** together with embedded PXRD patterns of the samples extracted at room temperature, 90 °C and 130 °C

FigureS11. DSC scans of fresh and preheated (70 °C) samples of **6** together with embedded PXRD patterns of the samples extracted at room temperature, 70 °C and 100 °C.

^{13}C NMR in CDCl₃ at 125 MHz of 1 (MeOH solvate)

^{13}C NMR in CDCl₃ at 125 MHz of 1 (CH₃CN solvate)

^{13}C NMR in CDCl3 at 125 MHz of 3

 ^{13}C NMR in CDCl₃ at 125 MHz of 4

¹³C NMR in CDCl₃ at 125 MHz of 6

¹³C CPMAS NMR spectra of **1** (CH₃CN Solvate)

¹³C CPMAS NMR spectra of **1** (1,2-DCB Solvate)

173.696 75.342 74.170 72.783 68.682 52.425 51.236 48.465 48.465 48.465 48.465 48.465 33.333 34.103 34.535 34.76 29.477 29.477 29.477 29.371 217.699 12.918 10 ppm

¹³C CPMAS NMR spectra of **1** (pure form)

¹³C CPMAS NMR spectra of **2**

¹³C CPMAS NMR spectra of **3**

Carbon	1	2	3	4	5	6
1	35.24	35.23	35.32	35.26	35.26	35.32
2	30.38	30.58	30.46	30.52	30.50	30.47
3	71.82	71.97	71.91	71.93	71.91	71.92
4	39.48	39.78	39.59	39.58	39.63	39.62
5	41.60	41.49	41.70	41.80	41.77	41.73
6	34.70	34.68	34.77	34.73	34.74	34.76
7	68.34	68.36	68.45	68.42	68.42	68.45
8	39.48	39.65	39.56	39.58	39.57	39.57
9	26.20	26.73	26.43	26.52	26.49	26.45
10	34.70	34.58	34.70	34.66	34.68	34.69
11	28.15	28.37	28.21	28.28	28.27	28.22
12	72.96	72.92	73.06	73.00	73.00	73.06
13	46.38	46.54	46.47	46.49	46.49	46.47
14	41.47	41.49	41.53	41.50	41.49	41.53
15	23.14	23.17	23.22	23.19	23.19	23.22
16	27.42	27.41	27.48	27.44	27.45	27.48
17	46.94	47.21	47.09	47.10	47.06	47.10
18	12.39	12.54	12.47	12.49	12.48	12.47
19	22.40	22.55	22.47	22.48	22.48	22.47
20	35.21	35.12	35.25	35.18	35.15	35.23
21	17.23	17.35	17.32	17.33	17.30	17.32
22	31.04	31.34	31.37	31.24	31.00	31.38
23	30.87	30.91	30.98	30.89	30.75	30.97
24	174.70	174.21	174.43	173.88	173.35	174.42
25	51.35	60.17	65.85	64.92	51.73	64.12
26		14.25	22.01	132.36	77.84	26.45
27			10.38	118.04	74.67	19.15
28						13.69
Solvent peaks	116.24					
	1.73					
	(CH ₃ CN)					

 Table S4. Solution ¹³C NMR Chemical shift values of compounds 1-6

Carbon	1 ^{a,c}	2 ^b	3 ^b	4 ^b	5 ^b	6 ^c
1	36.50	36.12	35.59	35.14	35.59	35.95
2	30.25	30.12	30.13	30.35	30.53	30.26
		29.81	29.71	29.74		
3	71.45	72.31	72.43	71.00	71.78	72.47
		71.48	71.34	70.57	70.92	
4	39.39	41.14	41.06	40.19	39.70	40.38
			39.96		39.34	
5	41.91	42.82	42.31	41.29	41.60	41.87
				40.96	40.69	
6	34.96	37.33	35.94	34.89	34.67	34.78
7	70.24	71.32	70.97	70.31	68.94	67.88
		69.49	69.21	68.44		
8	39.39	40.00	39.96	39.11	40.28	40.38
9	26.42	25.35	24.98	27.07	28.84	26.05
10	34.96	35.56	36.82	36.07	36.03	36.63
11	28.13	28.33	28.40	28.83	28.73	29.00
					28.25	
12	72.14	74.00	73.63	72.98	73.61	72.92
		72.90	72.91	71.30		
13	46.75	48.31	46.90	46.08	46.63	46.16
14	40.85	41.12	41.06	40.96	41.60	40.98
15	23.97	24.85	23.61	23.67	23.85	23.64
				23.27		
16	26.42	28.32	28.35	27.74	27.98	27.34
			27.99	27.51	27.61	
17	47.95	48.31	47.88	47.06	47.47	46.54
18	12.39	13.43	13.22	12.53	12.78	11.40
			12.67	11.96		
19	23.06	24.90	21.84	23.67	23.85	22.74
		24.06	21.31	23.27		
20	34.96		34.89	35.14	35.59	34.78
21	17.89	20.04	19.68	19.00	20.31	17.50
		18.45	19.02	17.94	18.07	
22	31.94	31.26	31.29	30.25	30.53	33.74
			30.63			
23	30.78	30.13	30.10	29.74	29.84	32.04
	155.11	29.81	29.62	1.50.00	150.10	150.50
24	175.11	174.06,	174.44	172.88	173.18	172.53
	5 0.11	172.74	172.85	171.91	172.78	(=
25	53.11	61.25	66.63	65.56	52.73	65.00
26		60.11	65.97	64.89	51.31	a c a -
26		14.23	23.61	117.63	78.31	26.05
		13.46		116.05	77.11	

 Table S5. Solid State ¹³C chemical shift,* values of compounds 1-6

Supplementary Material (ESI) for Soft Matter This journal is (c) The Royal Society of Chemistry 2010

27		11.72 11.41	134.01 131.38	76.27 75.18	19.50
28					14.10
Solvent peaks	116.67 1.79				

* The chemical shift values in solid state are assigned based on 13 C NMR chemical shift values in solution NMR. It is known in the literature that the 13 C chemical shifts might deviate slightly from those in solution NMR spectra but the 13 C sequence assignments are still valid in solid-state NMR spectra.²

^{a 13}C data obtained from acetonitrile solvate of **1**.

^b Compounds displaying doublet resonance pattern (gelators).

^c Compounds displaying singlet resonance pattern (non-gelators).

References:

1. Avogardo 0.9.7, http://avogadro.openmolecules.net/wiki/Main_Page, 2009.

2. R. A. Fletton, R. K. Harris, A. M. Kenwright, R. W. Lancaster, K. J. Packer and N. Sheppard,

Spectrochim. Acta, Part A 1987, 43, 1111; R. K. Harris, S. A. Joyce, C. J. Pickard, S. Cadars and L. Emsley, *Phys.Chem. Chem. Phys.* 2006, 8, 137.