Fluorinated Microemulsions as Reaction Media for

Fluorous Nanoparticles

Electronic Supporting Information

Martin J. Hollamby, Julian Eastoe, Kevin J. Mutch

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

Sarah Rogers, Richard K Heenan

ISIS-CCLRC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, UK

Contact email: Julian.Eastoe@bristol.ac.uk

SANS data fitting

The form factor for polydisperse spheres each with radius R is defined as follows:¹

$$P(Q) = \int_{0}^{\frac{\pi}{2}} |G(Q,R)|^2 g(R) dR$$
(1)

$$G(Q,R) = \left(\frac{4\pi}{3}\right) R^3 \Delta \rho \left[\frac{3j_i(QR)}{QR}\right]$$
⁽²⁾

Where $j_i(QR)$ is a first order spherical Bessel function and g(R) in this case defines a Schultz distribution of homogeneous spheres:

$$g(R) = \frac{\left(\frac{Z+1}{\overline{R}}\right)^{z+1} R^z \exp\left[-\left(\frac{Z+1}{\overline{R}}\right)R\right]}{\Gamma(Z+1)}$$
(3)

Where the width parameter, Z > -1, \overline{R} is the mean of the distribution and polydispersity defined by an RMS deviation $\sigma = \overline{R} / (Z+1)^{1/2}$.

Fits to diHCF4-stabilised w/fc microemulsions included an attractive Ornstein-Zernike structure factor (OZ S(Q)), as given in equation 4.

$$S(Q,\zeta) = 1 + \left[\frac{\kappa}{1 + (Q\zeta)^2}\right]$$
(4)

This describes a decaying distribution, where ζ is a correlation length, and κ is related to the strength of interactions via the isothermal compressibility.²

Droplet polydispersity

Compared to normal H-AOT-based hydrocarbon microemulsions (polydispersity ~ 0.20)^{2, 3}, the fitted polydispersity of the F-microemulsions (F-MEs) may seem quite high at 0.28 or above. Polydispersity, *p* has been linked to interfacial rigidity, $2K+K_{BAR}$ as follows:^{3, 4}

$$2K + K_{BAR} = \frac{k_B T}{8\pi p^2} - \frac{k_B T}{4\pi} f(\phi)$$
(5)

Interfacial rigidity has been shown to be strongly dependent on the total carbon number of the surfactant tails (C_{surf}), and also on the concentration of surface-active co-solvents (discussed in the main paper).⁵ The systems studied here consist of surfactants with $C_{surf} = 8$ (= 2 × 4 carbons in diCF3) or $C_{surf} = 10$ (2 × 5 C in diHCF4). Studies have been done using homologous twin-tailed di-C_n-PC surfactants⁴, showing $2K+K_{BAR}$ to be related to roughly the square of C_{surf} (actually, $2K + K_{BAR} \sim C_{surf}^{2.4}$). This would imply that polydispersity should be approximately proportional to C_{surf}^{-1} . Using data reported therein,⁴ the dependence of ln (C_{surf}) vs ln (p) is shown in figure S1 below. The calculated gradient is -1.16; from this it can be predicted that for $C_{surf} = 10$ diHCF4, polydispersity = 0.48. On this basis a polydispersity range of 0.28 – 0.49 as found for the F-microemulsions is entirely reasonable.

In addition, it is worth comparing the value found here of 0.28 with that found by Nave⁶ for a di-chain sulfosuccinate hydrocarbon based system, comparable to the F-MEs studies here: H_2O / diC6SS / n-hexanol / hexane (10 vol% alcohol co-solvent). This system was studied by SANS and data fitted to a polydispersity of 0.26 (Note C_{surf} = 12 for diC6SS). If the same inverse relationship can be assumed as for di-C_n-PC surfactants (a reasonable assumption) one would expect a polydispersity of 0.32 for C_{surf} = 10, which again agrees with the value of 0.28 typically found here.

Figure S1: Dependence of polydispersity on surfactant chain length for twin-tailed phosphocholine di- C_n -PC surfactants studied previously.⁴ Solid line shows a linear fit, with gradient -1.16.

Compound	s.l.d. x 10 ⁻¹⁰ / cm ⁻²
H ₂ O	-0.56
D ₂ O (99%)	6.33
diHCF4	3.11
diCF3	3.15
1H,1H,5H-octafluoropentan-ol (OFP)	2.98
2H,3H-perfluoropentane (HPFP)	3.11
1H-perfluorohexane (HPFH)	3.42

Table S1: Calculated scattering length densities (s.l.d, ρ) for chemicals used in this study.

D₂O vs H₂O contrast in the F-MEs

In an attempt to gain additional structural information available by SANS, some samples were studied with D_2O instead of H_2O (Figure S2). As can been seen, apart from a difference in the absolute value of I(Q) (due to changes in contrast) there is little or no difference in the forms of the plots, implying that H_2O or D_2O can be used interchangeably in these systems without affecting largely the fit parameters.

Figure S2: Comparison of core contrast SANS data from water / diCF3 / OFP / HPFH microemulsions at w = 40 using either H₂O or D₂O nanodroplets to generate contrast. Solid lines represent form factor fits to the Shultz polydisperse spheres model. [diCF3] = 100 mM, OFP : HPFH = 1 : 9 (v:v), T = 40°C. D₂O data and calculated fit has been multiplied by a constant value of 2.3 to overlay onto the H₂O data.

Additional SANS data and Repeats

Figure S3: Core contrast SANS data from $H_2O / diCF3 / OFP / HPFH$ microemulsions at different w = $[H_2O] / [diCF3]$ as indicated. Solid lines represent form factor fits to the Shultz polydisperse spheres model. [diCF3] = 100 mM, OFP : HPFH = 1 : 9 (v:v), T = 40°C

Figure S4: Core contrast SANS data from $H_2O / diCF3 / OFP / HPFP$ microemulsion systems at different w = $[H_2O] / [diCF3]$ values indicated. Solid lines represent form factor fits to the Shultz polydisperse spheres model. [diCF3] = 100 mM, OFP : HPFH = 1 : 9 (v:v), T = 40°C. Note for w 20 and

w 40 SANS measurements were repeated using freshly made samples. Good agreement was seen between these repeats.

Figure S5: Core contrast SANS data from $D_2O / diCF3 / OFP / HPFP$ microemulsions at high w = $[D_2O] / [diCF3]$ values indicated. Solid lines represent form factor fits to the Shultz polydisperse spheres model. [diCF3] = 100 mM, OFP : HPFH = 1 : 9 (v:v), T = 40°C

Supplementary Material (ESI) for *Soft Matter* This journal is © The Royal Society of Chemistry 2010

Figure S6: Core contrast SANS data from H_2O / diCF3 / OFP / HPFP microemulsions at different [diCF3] values indicated. Solid lines represent form factor fits to the Shultz polydisperse spheres model. w = 40, OFP : HPFH = 1 : 9 (v:v), T = 40°C.

Figure S7 Core contrast SANS data from $H_2O / diHCF4 / OFP / HPFP$ microemulsions at different w values as indicated. Solid lines represent form factor fits to the Shultz polydisperse spheres model with an attractive OZ S(Q) where necessary. [diHCF4] = 100 mM, OFP : HPFH = 1 : 9 (v:v), T = 40°C

Figure S8: Water droplet radius R vs w for diCF3 – stabilized water / OFP / HPFH microemulsions. R values are calculated from SANS analysis of core contrasts (Table 2) corrected for polydispersity via $R = \alpha(p).R_{bar}$, as in equations 1, 2. Example error bars are shown. Linear fits from these data are also shown (gradient = 0.877).

Figure S9: Example SAED patterns for diCF3- (left) and AOT-coated (right) Ag-NPs. Patterns were very faint, consisting of diffraction spots, so dashed-line circles have been added to the patterns to highlight important d-spacings. In increasing distance from the centre of each pattern, these rings represent (111), (200), (220) and (222) Ag cubic crystal planes (also see Table S1)

Ag cubic	diCF3 coated	AOT-coated
d-spacings [7]	Ag-NPs	Ag-NPs
2.36 (111)	2.24	2.34
2.04 (200)	1.92	1.94
1.44 (220)	1.35	1.61
1.18 (222)	1.16	1.19

Table S2: Comparison of d-spacing values obtained by SAED analysis and theoretical values for the cubic structure of silver for both diCF3 and AOT coated Ag-NPs.

Figure S10. UV spectra of Ag nanoparticles redispersed in OFP / HPFP.

References

- 1. M. Kotlarchyk and S.-H. Chen, J. Chem. Phys., 1983, 79, 2461-2469.
- 2. M. Kotlarchyk, S.-H. Chen, J. S. Huang and M. W. Kim, *Phys. Rev. A*, 1984, **29**, 2054-2069.
- 3. M. Gradzielski, D. Langevin and B. Farago, *Phys. Rev. E*, 1996, **53**, 3900-3919.
- 4. J. Eastoe, K. J. Hetherington, D. Sharpe, D. C. Steytler, S. Egelhaaf and R. K. Heenan, *Langmuir*, 1997, **13**, 2490-2493.
- I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart and S. A. Safran, *J. Chem. Phys.*, 1990, 92, 6800-6817.
- 6. S. Nave, PhD thesis, University of Bristol, Bristol, 2001.