Supplementary Material (ESI) for Soft Matter

Viscoelasticity of pore-spanning polymer membranes derived from giant polymersomes

Marta Kocun,^a Waltraut Mueller,^b Michael Maskos,^{b,c} Ingo Mey,^a Burkhard Geil,^a Claudia Steinem^d and Andreas Janshoff^{a,*}

^a Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
^b Institute of Physical Chemistry, University of Mainz, Jakob Welder Weg 11, 55128 Mainz, Germany.
^c Federal Institute of Materials Research and Testing BAM, Unter den Eichen 87, 12205 Berlin, Germany
^d Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.

Supplementary information

<u>Figure S1</u>: Difference between a force curve performed on the flat part of the substrate (black), force curve performed on the flat part covered with a polymer bilayer (red) and a force curve performed on bilayer-covered pore (blue). As the polymer membrane is compressed on the hard, flat surface the polymer ruptures (Rupture in the red curve).